矩阵基本运算

合集下载

矩阵的基本运算

矩阵的基本运算

如果 AT A 则矩阵A称为反对称矩阵.
由此可知,反对称矩阵旳对角元必为零,即 aii = 0
0 5 4
例如
B
5
0 1 是3阶反对称矩阵.
4 1 0
例 设列矩阵 X x1, x2 , , xn T 满足 X T X 1,
E为n阶单位矩阵, H E 2XX T , 证明 H是对称矩阵, 且HH T E.
(i 1, 2, m; j 1, 2, , n)
把此乘积记作 C AB
例如
C 2 1
4 2
222 3
4
16
?
32
622 8 16 22
1 0


A
1
1
0 5
求AB.
1 3 1
2
0
4
0
B
1
3
1
3 2 1 2
4
1
1
1


A
aij
,B
34
bij
证 因为 H T (E 2 XX T )T ET 2( XX T )T E 2XX T H
所以H 是对称矩阵. HH T H 2 (E 2 XX T )2
E 4XX T 4( XX T )( XX T ) E 4XX T 4X ( X T X )X T E 4XX T 4XX T E
(3) (AB)( A)B A(B) (其中为常数)
(4) AE EA A
注 矩阵乘法不满足互换律,即 AB BA
例如

A
1
1
,
B
1
1
1 1
1 1
两个非零矩阵旳 乘积可能是零矩阵

矩阵的运算知识点总结

矩阵的运算知识点总结

矩阵的运算知识点总结一、矩阵的定义在开始讨论矩阵的运算知识点之前,首先需要了解矩阵的定义。

矩阵是由数个数按矩形排列组成的数组。

一般地,我们定义一个m×n矩阵A为一个m行n列的数组,其中每个元素aij(i行j列的元素)都是一个实数。

数学上通常用大写字母A、B、C、...表示矩阵。

例如,一个3×2矩阵可以表示为:A = [a11 a12a21 a22a31 a32]其中,a11、a12、a21、a22、a31、a32是矩阵的元素。

二、矩阵的基本运算1. 矩阵的加法当两个矩阵具有相同的行数和列数时,它们可以相加。

矩阵相加是将对应位置的元素相加得到新的矩阵。

例如,对于矩阵A和矩阵B相加,结果矩阵C的第i行第j列元素为:cij = aij + bij。

2. 矩阵的减法矩阵的减法定义与加法类似,对应位置的元素相减得到新的矩阵。

例如,对于矩阵A和矩阵B相减,结果矩阵C的第i行第j列元素为:cij = aij - bij。

3. 矩阵的数量乘法矩阵与一个实数相乘,是将矩阵的每个元素都乘以该实数。

例如,对于矩阵A和实数k相乘,结果矩阵B的元素为:bij = k * aij。

4. 矩阵的转置矩阵的转置是将矩阵的行列互换得到新的矩阵。

例如,对于矩阵A的转置矩阵AT,有AT 的第i行第j列元素为A的第j行第i列元素。

5. 矩阵的乘法矩阵的乘法是矩阵运算中最重要的部分。

两个矩阵的乘法只有在满足第一个矩阵的列数等于第二个矩阵的行数时才能进行。

如果A是一个m×p的矩阵,B是一个p×n的矩阵,它们的乘积为一个m×n的矩阵C。

矩阵的乘法运算过程中,结果矩阵C的第i行第j列元素为:cij = a(i,1)b(1,j) + a(i,2)b(2,j) + ... + a(i,p)b(p,j)。

以上就是矩阵的基本运算,矩阵运算的内容很广泛,包括了基本运算,特殊矩阵运算和矩阵运算的性质定理等。

线性代数:矩阵的基本运算及性质

线性代数:矩阵的基本运算及性质

0 0 ......k
数量矩 阵
等……
5
●矩阵的乘法
a11

A
i行
am1
c11

AB
C
cm1
a1t
b11
amt
B
mt
bt1
b1n j 列
btn tn
c1n
左矩阵
A的列数
右矩阵 B的行数
cmn
mn
其中 cij ai1b1 j ai2b2 j ... aitbtj
D (i k) ai1Ak1 ai2 Ak 2 ain Akn 0 (i k)
a1 j A1s a2 j A2s
anj s)
18
2、设有行列式 2 1 3 2 3322
(5)0A 0, A0 0
或 BA CA BC
7
若 A 是方阵,则乘积 AA......A 有意义,记作 Ak
称为 A 的 k 次幂。
性质 Ak Al Akl
Ak l Akl
●矩阵A的转置
a11
如果
A
am1
AT 或 At , A
a1n
a11
,则
AT
amn
a1n
am1
A为反对称矩阵
aij a ji
10
10 方阵的行列式
定义 n阶方阵A (aij )的行列式A(或det A)是 按如下规则确定的一个数:
当n 1时, A a11 a11;
当n 1时, a11 a12 a1n
A
a21
a22
a2n
an1 an2 ann
(1)11 a11M11 (1)12 a12M12 (1)1n a1n M1n

矩阵的基本运算

矩阵的基本运算

例如
1 3 5
2 2 8
19316
6 0
8 不存在. 1
乘积AB 维的关系
A
B
m n
n s
C ms
=
A
8
注 两个矩阵相乘, 乘积有可能是一个数.
1
2
3
3 2
1 3 2 2 3 1 10.
1
练习 计算下列矩阵的乘积,并观察结果.
1
1 2 1 4 1 2 1 4
1
5
8
0
2
5
8
0
2
13310 1 3 734 10 1 3 7 34
1
1 2 1 4
5
10
8 1
0 3
2 734
1
1
A
1
144
5 10
2 8
1
1 0 3
4
2
7
9
34
1
2
a11 a12 L a1s
a21
a22
L
a2s
O M M M M
nnnan1
an2
L
2an2
L na1n
L
na2n
M M
L
nann
nn
A
11
a1
b1
a2
b2
O
O
an nn
bn nn
a1b1
a2b2 O
anbn nn
结论 两个n 阶对角阵之积仍为n 阶对角阵.
结论 两个n阶上(下)三角阵A之积仍为n阶上(下)三角阵12 .
❖矩阵乘法的运算规律 (1 )结 合 律 :(A B )C A (B C )

矩阵的运算与性质

矩阵的运算与性质

矩阵的运算与性质矩阵是线性代数中的基本概念,广泛应用于各个学科领域。

本文将介绍矩阵的运算及其性质,探讨在不同情况下矩阵的特点和应用。

一、矩阵的定义与分类1. 矩阵的定义:矩阵是一个按照矩形排列的数表,由m行n列的数构成,通常用大写字母表示,如A、B等。

2. 矩阵的分类:根据行数和列数的不同,矩阵可以分为行矩阵、列矩阵、方阵、零矩阵等。

二、矩阵的基本运算1. 矩阵的加法:对应位置元素相加,要求两个矩阵的行数和列数相等。

2. 矩阵的数乘:一个矩阵的所有元素乘以一个常数。

3. 矩阵的乘法:矩阵乘法不满足交换律,要求左边矩阵的列数等于右边矩阵的行数。

4. 矩阵的转置:将矩阵的行和列互换得到的新矩阵,记作A^T。

三、矩阵的性质和特点1. 矩阵的单位矩阵:对角线上元素为1,其余元素为0的方阵。

2. 矩阵的逆矩阵:若矩阵A存在逆矩阵A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。

3. 矩阵的行列式:方阵A经过运算得到的一个标量值,记作det(A)或|A|,用于判断矩阵是否可逆及求解线性方程组等。

4. 矩阵的秩:矩阵中线性无关的行或列的最大个数。

5. 矩阵的特征值与特征向量:对于方阵A,存在数值λ和非零向量x,使得A·x = λ·x,λ为A的特征值,x为对应的特征向量。

四、矩阵的应用1. 线性方程组的求解:通过矩阵的运算和性质,可以将线性方程组表示为矩阵的形式,从而求解出方程组的解。

2. 矩阵在图像处理中的应用:利用矩阵的运算,可以对图像进行变换、旋转、缩放等操作。

3. 矩阵在经济学中的应用:使用矩阵可以模拟经济系统,进行量化分析、预测等。

总结:矩阵作为线性代数中的基本概念,具有丰富的运算规则和性质。

通过矩阵的加法、数乘、乘法、转置等基本运算,可以推导出矩阵的逆矩阵、行列式、秩、特征值等重要概念。

矩阵在不同学科领域有着广泛的应用,如线性方程组求解、图像处理、经济学分析等。

矩阵常见运算

矩阵常见运算

矩阵的基本运算公式加法,减法,数乘,转置,共轭和共轭转置。

1、矩阵的加法满足A+B=B+A;(A+B)+C=A+(B+C)。

在两个数的加法运算中,在从左往右计算的顺序,两个加数相加,交换加数的位置,和不变。

A+B+C=A+C+B。

加法定理一个是指概率的加法定理,讲的是互不相容事件或对立事件甚至任意事件的概率计算方面的公式;另一个是指三角函数的加法定理。

2、把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵,这一过程称为矩阵的转置。

设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)定义A的转置为这样一个n×m阶矩阵B,满足B=b(j,i),即a(i,j)=b (j,i)(B的第i行第j列元素是A的第j 行第i列元素),记A'=B。

3、矩阵乘法是一种根据两个矩阵得到第三个矩阵的二元运算。

二元运算属于数学运算的一种。

二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。

如四则运算的加、减、乘、除均属于二元运算。

如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。

二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。

第三讲矩阵的基本运算

第三讲矩阵的基本运算

• 矩阵特征值和特征向量 • E=eig(A) 求特征值 • [V,D]=eig(A) D是特征值构成的对角阵;V是 特征向量阵,列为特征向量。 • 对称正定阵的cholesky分解 • R=chol(A) A对称正定,R为上三角阵,R’*R=A
• • • • • 方阵的QR分解 [Q,R]=qr(A) Q为正交矩阵,R为上三角阵,Q*R=A 可逆阵的 LU分解 [L,U]=lu(A) L是下三角阵,U是上三角阵 这些对解线性方程组还是很有利的。
3.1.5 矩阵的转置和共轭转置
复矩阵的共轭转置:B=A’ or B=ctranspose(A);
复矩阵的转置:B=A.’ or B=transpose(A)
注意:共轭转置是指先每个元素求共轭,再把矩 阵转置;转置运算是点运算。 3.1.6 矩阵的函数运算 1. 常用函数见P59函数表,是对每个元素求函数 值 记住一些常用函数格式!!!
第三讲内容介绍
目标:进一步了解MATLAB,能够
熟练掌握矩阵的各种基本运算法
则。
3.1 MATLAB矩阵的代数运算
3.1.1 加法和减法运算
C=A+B或 C=plus(A,B)
C=A-B或C=minus(A,B) 注意:加减运算要求A、B同构,即大小一样 特别地,标量可以和任意大小的矩阵进行加减 例题3.1.1显然略讲 3.1.2 乘法运算 普通矩阵乘法:C=A*B或C=mtimes(A,B)
3.4.2 两个集合的并集 格式:c=union(a,b)
%返回a,b的并集,即c=a
b
C=union(A,B,’rows’) %返回矩阵A,B不同行向量构成的大矩阵, 其中相同行向量只取其一。 [c,ia,ib]=union(…) % ia,ib分别表示c中行向量在原矩阵(向量)中的位置。 >> A=[1,2,3,4]; >> B=[2,4,5,8]; >> C=union(A,B) 则结果为: C= 1 2 3 4 5 8 >> A=[1,2,3,4;1,2,4,6]; >> B=[1,2,3,8;1,1,4,6]; >> [C,IA,IB]=union(A,B,'rows') C= 1 1 4 6 1 2 3 4 1 2 3 8 1 2 4 6 IA = 1

矩阵运算规则

矩阵运算规则

矩阵运算规则在数学中,矩阵是一个非常常见且重要的概念。

矩阵运算规则是指在矩阵之间进行各种数学运算时需要遵循的规则和原则。

本文将详细介绍矩阵的基本运算规则,包括矩阵的加法、减法、乘法以及转置等。

1. 矩阵的加法和减法矩阵的加法和减法都是按照对应位置上的元素进行运算的。

即对于两个相同大小的矩阵A和B,它们的和C和差D分别为:C = A + B,D = A - B。

加法运算的规则是,对应位置上的元素相加。

例如,如果A = [1 2;3 4],B = [5 6; 7 8],则矩阵C的元素为:C = [1+5 2+6; 3+7 4+8] = [6 8; 10 12]。

减法运算的规则与加法类似,也是对应位置上的元素相减。

2. 矩阵的乘法矩阵的乘法是一种较为复杂的运算,需要满足一定的规则。

具体来说,对于两个矩阵A和B进行乘法运算(记为C = AB),要求A的列数等于B的行数。

乘法运算的规则是,矩阵C的第i行第j列的元素等于矩阵A的第i 行与矩阵B的第j列对应元素的乘积之和。

换句话说,C的第i行第j列的元素等于A的第i行的元素与B的第j列的元素对应相乘后再求和。

例如,如果A = [1 2; 3 4],B = [5 6; 7 8],则矩阵C的元素为:C = [1*5+2*7 1*6+2*8; 3*5+4*7 3*6+4*8] = [19 22; 43 50]。

需要注意的是,矩阵乘法不满足交换律,即AB不一定等于BA。

3. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。

对于一个矩阵A,它的转置矩阵记为AT。

转置的规则是,A的第i行第j列的元素等于AT的第j行第i列的元素。

换句话说,转置后矩阵的行变为原矩阵的列,列变为原矩阵的行。

例如,如果A = [1 2 3; 4 5 6],则矩阵AT为:AT = [1 4; 2 5; 3 6]。

矩阵的转置有一些常见的性质,如(AB)T = BTAT,(A + B)T = AT + BT等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i 1
(2)连续函数空间C[a,b]:令
C[a,b]={x(t)|x(t)是[a,b]上的连续函数}
则称C[a,b]为连续函数空间,在C[a,b]上定义
d(x,y)=max|x(t)-y(t)|
(3)平方可积函数空间L2(R): 令
L2 (R) {x(t) | |x(t) |2 dt<} R
则称 L2(R) 为平方可积函数空间 ,定义距离:
欧氏距 0.1217 0.1612 0.1720 0.2280 0.1612 0.2600 0.3162 0.4817 0.1020 0.0825 0.1612 0.0566 0.1442 0.1970 0.3945 0.1800 0.2600 0.0632
绝对距 0.1400 0.2200 0.2400 0.3200 0.1800 0.3400 0.4000 0.6800 0.1200 0.1000 0.1800 0.0800 0.2000 0.2600 0.5400 0.1800 0.2600 0.0800
d(x, y) { |x(t) y(t) |2 dt}1/2 x, y L2(R) R
(4)平方可和离散序列空间 l 2 :令
l 2 { x ( x1 , x2 , , xn , ) | |xi |2 } i1
则称l 2平方可和离散序列空间,定义距离: d( x, y) [ |xi yi |2 ]1/ 2 i1
(2)点击编辑界面上方Debug Run 于是
运行结果出现在command界面。
Mat lab
一. 矩阵与向量的基本运算
1.矩阵(向量、数组)的输入方法 矩阵的输入利用[ ],采取分行输入方法,
每个元素之间用逗号或空格,每行之间用分号.
1 5 1 0 1
例1.矩阵
A= 2
3
6 7
0 1
1 0
1 1
例8. 现测得6只Apf和9只Af蠓虫的触长,翅长数据如下:
Apf:(1.14,1.78), (1.18,1.96), (1.20,1.86), (1.26,2.00), (1.28,2.00), (1.30,1.96) Af:(1.24,1.72), (1.36,1.74), (1.38,1.64), (1.38,1.82), (1.38,1.90), (1.40,1.70), (1.48,1.82),(1.54,1.82), (1.56,2.08) 计算两类蠓虫的各自之间的欧氏、绝对、马氏距离
d1=(pdist(Apf))’; d2=(pdist(Apf,'cityblock'))’; d=[d1,d2,d3] d3=pdist(Apf,'mahal'))’;
表一.Apf蠓虫之间的距离
Apf蠓虫 欧氏距离 绝对距离
d12
0.1844
0.2200
d13
0.1000
0.1400
d14
0.2506
其中 V是一个实对称正定矩阵,通常取样
本的协方差矩阵,当V=E时即为欧氏距离.
y
X
~
N
(
1
,
2 1
),Y
~
N
(
2
,
2 2
)
A
1 0 t 2
| t 1 | | t 2 |
| t 1 | 41,| t 2 | 3 2
x | t 1 | 4,| t 2 | 3
1
2
以上距离,在Matlab (6.)中有命令: pdist
C
2 m

各列表示X中各行向量按如下顺序的距离
(1,2),(1,3),…(1,m),(2,3),(2,4),…(2,m),…(m-1,m)
三. 向量的均值、方差、协方差与相关矩阵
设A为m n矩阵,则有:
mean(A) — A中各列向量的均值 Var(A) — A中各列向量的方差 Std(A) — A中各列向量的标准差 Cov(A) — A中各列向量的协方差矩阵 Corrcoef(A) — A中各列向量的相关矩阵 如果计算A中各行向量的均值、方差、协方 差矩阵,相关矩阵,只需先将A转置即可.
马氏距 1.4423 2.3963 1.4225 1.5517 2.2078 2.6110 3.3635 3.3694 1.1705 0.6601 1.4345 0.8277 1.2266 1.9404 2.6612 1.7814 2.5731 0.4756
Af蠓 d37 d38 d39 d45 d46 d47 d48 d49 d56 d57 d58 d59 d67 d68 d69 d78 d79 d89
7 8 0
2 1 1
求:AB,B-1,B-AT,|A|
解:A=[1,2,3;4,5,6;7,8,0];B=[1,2,1;1,1,2;2,1,1];
a=A*B,b=inv(B),c=B-A’,d=det(A)
a = 9 7 8 b = -1/4 1/4 -3/4 c = 0 -2 -6
21 19 20 3/4 -1/4 -1/4 -1 -4 -6
n
d( , ) | xi yi | i 1
Matlab中命令:mandist(A,B)计算A中每 个行向量与B中每个列向量之间绝对距离, A的行数必须等于B的列数.
例7. 求例6中向量之间的绝对值距离.
解: mandist(a,c')=4; mandist(a,b')=8;
mandist(c,b')=12
B= 15101 37101 48011
解法二:B=[A(1,:);A(3,:);A(4,:)] 3. 矩阵的加减法、乘法、转置与求逆运算 A+B,A-B,A*B,A.^2,A’, inv(A),det(A) 分别表示:A,B的和,差,积,点乘方,转置,求逆
以及A的行列式
1 2 3
1 2 1
例5. 已知 A 4 5 6 B 1 1 2
0.0200
d46
0.0566
0.0800
d56
0.0447
0.0600
马氏距离
2.5626 0.9883 2.4942 2.5318 2.5478 2.2507 1.5470 2.0430 3.0777 1.6534 1.5873 1.6025 0.5129 1.6616 1.1764
Af蠓 d12 d13 d14 d15 d16 d17 d18 d19 d23 d24 d25 d26 d27 d28 d29 d34 d35 d36
若 a ( x1, x2 ,..., xn ),则norm(a)
n
xi2
i 1
例6 a=[1,2,3], b=[-1,5,6],c=[1,0,1], 求a,b的范数
解:norm(a)= 3.7417 , norm(b)=7.8740
练习:对例6计算:a,b夹角的余弦
解法一: dot(a/norm(a),b/norm(b)) 解法二: dot(a,b)/norm(a)/norm(b) =0.9164 思考:a,b,c三个向量那两个更接近?
设样本X是m个n维向量所组成的矩阵,则有:
Pdist(X) — 样本X中各n维向量的欧氏距离
Pdist(X,’cityblock’) — 各n维向量的绝对距离
Pdist(X,’Minkowski’,r) — 闵可夫斯基距离
Pdist(X,’mahal’) — 各n维向量的马氏距离
注意:
X
是m
n
矩阵而pdist(X)是一行
3. 向量的距离与计算 (1)欧氏距离: ( x1 , x2 , ..., xn ); ( y1 , y2 , ..., yn )
n
d( , ) ( xi yi )2 i 1
Matlab中命令:dist(A,B)计算A中每个行向 量与B中每个列向量之间欧氏距离,A的行 数必须等于B的列数.
3 7 1 0 4 8 0 1
解:A1=A(1,:) 表示矩阵A的第一行;
A2=A(:,1) 表示矩阵A的第一列;
练习:A(4,:),A(3,2),分别表示什么?
例3. 求矩阵A的第1,3,4行元素组成的矩阵.
解:首先健入a=[1,3,4];然后健入 B=A(a,:)即可
其中a=[1,3,4]称为索引向量.
解: Apf=[1.14,1.78;1.18,1.96;1.2,1.86;1.26,2.;1.28,2; 1.30,1.96] ;
Af=[1.24,1.72;1.36,1.74;1.38,1.64;1.38,1.82; 1.38,1.90 ; 1.40,1.70;1.48,1.82;1.54,1.82;1.56,2.08];
例7. a=[1,2,3],b=[-1,5,6],c=[1,0,1]求a,b,c欧氏距离 解:dist(a,b’)=4.6904, dist(a,c’)= 2.8284
dist(c,b’)= 7.3485
(2)绝对距离: ( x1, x2 ,..., xn ); ( y1, y2 ,..., yn )
Matlab输入:
4 8 0 1 1
A=[1,5,1,0,1;2,6,0,1,1;3,7,1,0,1;4,8,0,1,1];
注:; 分号的作用在于运算结果不显示.
n维行(列)向量可以看成是一个行(列) 矩阵, 因此向量的输入和矩阵一样.
2.矩阵的合成与分解
1 5 1 0
例2.矩阵A= 2 6 0 1 求A的第一行与第一列
二. 度量空间与距离 1.度量空间 定义:设X是任一集合,如果X中任意两个元素x 与y,都对应一个实数d(x,y),且满足: (1)非负性: d(x,y)≥0,当且仅当x=y时,d(x,y)=0
(2)对称性: d(x,y)= d(y, x)
(3)三角不等式:对任意的x,y,z∈X,有
相关文档
最新文档