矩阵的基本运算

合集下载

数学矩阵的基本运算

数学矩阵的基本运算

数学矩阵的基本运算引言:在数学中,矩阵是一种非常重要的工具,它在多个学科和领域都有广泛的应用。

矩阵不仅可以表示线性方程组,还可以描述向量空间的变换。

矩阵的基本运算是我们学习矩阵的第一步,掌握了这些基本运算,我们才能在后续的学习中更好地应用矩阵解决问题。

本次教案将系统地介绍数学矩阵的基本运算,包括加法、减法、数乘和乘法,并结合具体的例子进行解释和演示。

第一节加法运算1.1 矩阵加法的定义矩阵加法是指将两个具有相同行数和列数的矩阵对应位置上的元素相加,得到一个新的矩阵。

例如,对于两个3行2列的矩阵A和B,它们的加法运算可以表示为:C=A+B。

C矩阵中的每个元素c(i,j)等于矩阵A中元素a(i,j)和矩阵B中元素b(i,j)的和。

1.2 矩阵加法的性质矩阵加法具有以下性质:- 结合律:(A+B)+C=A+(B+C),即矩阵加法满足结合律。

- 交换律:A+B=B+A,即矩阵加法满足交换律。

- 零矩阵:对于任意的矩阵A,都有A+O=A,其中O是全零矩阵。

1.3 矩阵加法的例子考虑以下两个矩阵:A = [1 2 34 5 6]B = [7 8 910 11 12]它们的加法运算为:C = A + B = [8 10 1214 16 18]解释:C矩阵中的第一个元素c(1,1)等于矩阵A中元素a(1,1)和矩阵B中元素b(1,1)的和,即1+7=8,以此类推。

第二节减法运算2.1 矩阵减法的定义矩阵减法是指将两个具有相同行数和列数的矩阵对应位置上的元素相减,得到一个新的矩阵。

例如,对于两个3行2列的矩阵A和B,它们的减法运算可以表示为:C=A-B。

C矩阵中的每个元素c(i,j)等于矩阵A中元素a(i,j)和矩阵B中元素b(i,j)的差。

2.2 矩阵减法的性质矩阵减法具有以下性质:- 结合律:(A-B)-C=A-(B-C),即矩阵减法满足结合律。

- 零矩阵:对于任意的矩阵A,都有A-O=A,其中O是全零矩阵。

矩阵的基本概念与运算

矩阵的基本概念与运算

矩阵的基本概念与运算矩阵是线性代数中的重要概念之一,在数学和计算机科学中广泛运用。

它是由数个数按矩形排列而成的矩形阵列,可以表示向量、方程组以及线性变换等。

一、矩阵的基本概念矩阵由m行n列的数按一定顺序排列而成,通常用大写字母表示。

例如,一个3行2列的矩阵可以表示为:A = [a11, a12;a21, a22;a31, a32]其中的aij表示矩阵A中第i行第j列的元素。

矩阵的行数m和列数n分别称为其维度,m×n为矩阵的规模。

二、矩阵的运算1. 矩阵的加法若矩阵A和B的维度相等(均为m行n列),则它们可以相加。

矩阵相加的结果为一个新的维度相同的矩阵C,其元素由对应位置的矩阵A和B的元素相加得到。

即:C = A + B = [a11 + b11, a12 + b12;a21 + b21, a22 + b22;a31 + b31, a32 + b32]2. 矩阵的减法矩阵的减法与加法类似,只需将相应位置上的元素相减即可。

例如:C = A - B = [a11 - b11, a12 - b12;a21 - b21, a22 - b22;a31 - b31, a32 - b32]3. 矩阵的数乘矩阵的数乘指的是将矩阵的每个元素乘以一个常数k。

结果仍为同一维度的矩阵。

记为:C = kA = [ka11, ka12;ka21, ka22;ka31, ka32]4. 矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A与一个n行p列的矩阵B相乘得到一个m行p列的矩阵C。

矩阵乘法的运算规则如下:C = AB = [c11, c12, ..., c1p;c21, c22, ..., c2p;...cm1, cm2, ..., cmp]其中,cij表示矩阵C中第i行第j列的元素,计算公式为:cij = a1i * b1j + a2i * b2j + ... + ani * bnj5. 矩阵的转置矩阵的转置是指将矩阵的行与列对调。

矩阵的基本运算

矩阵的基本运算

如果 AT A 则矩阵A称为反对称矩阵.
由此可知,反对称矩阵旳对角元必为零,即 aii = 0
0 5 4
例如
B
5
0 1 是3阶反对称矩阵.
4 1 0
例 设列矩阵 X x1, x2 , , xn T 满足 X T X 1,
E为n阶单位矩阵, H E 2XX T , 证明 H是对称矩阵, 且HH T E.
(i 1, 2, m; j 1, 2, , n)
把此乘积记作 C AB
例如
C 2 1
4 2
222 3
4
16
?
32
622 8 16 22
1 0


A
1
1
0 5
求AB.
1 3 1
2
0
4
0
B
1
3
1
3 2 1 2
4
1
1
1


A
aij
,B
34
bij
证 因为 H T (E 2 XX T )T ET 2( XX T )T E 2XX T H
所以H 是对称矩阵. HH T H 2 (E 2 XX T )2
E 4XX T 4( XX T )( XX T ) E 4XX T 4X ( X T X )X T E 4XX T 4XX T E
(3) (AB)( A)B A(B) (其中为常数)
(4) AE EA A
注 矩阵乘法不满足互换律,即 AB BA
例如

A
1
1
,
B
1
1
1 1
1 1
两个非零矩阵旳 乘积可能是零矩阵

矩阵知识点总结

矩阵知识点总结

矩阵知识点总结矩阵是线性代数中重要的概念和工具之一,广泛应用于数学、物理、工程、计算机科学等领域。

下面将对矩阵的基本知识点进行总结。

1. 矩阵的定义:矩阵是一个按照长和宽排列的矩形数组,其中的元素可以是任意类型的数值。

一个矩阵由行和列组成,通常记作A=[a_ij]。

2. 矩阵的运算:(1) 矩阵的加法和减法:对应元素相加或相减。

(2) 矩阵的乘法:矩阵乘法是一种非交换运算,两个矩阵相乘的结果是第一个矩阵的行乘以第二个矩阵的列。

(3) 矩阵的转置:将矩阵的行和列交换位置得到的新矩阵。

(4) 矩阵的数量乘法:将矩阵的每个元素同一个实数相乘得到的新矩阵。

3. 矩阵的特殊类型:(1) 方阵:行数和列数相等的矩阵。

(2) 零矩阵:所有元素都为零的矩阵。

(3) 对角矩阵:除了对角线上的元素外,其他元素都为零的矩阵。

(4) 单位矩阵:对角线上的元素都为1,其他元素都为零的矩阵。

(5) 上三角矩阵:下三角(低三角)矩阵:除了对角线及其以上的元素外,其他元素都为零的矩阵。

4. 矩阵的性质:(1) 矩阵的加法和乘法满足结合律和分配律,但不满足交换律。

(2) 矩阵乘法的转置性质:(AB)^T = B^T A^T。

(3) 矩阵的逆:如果矩阵A的逆存在,记作A^(-1),则A和A^(-1)的乘积等于单位矩阵:A A^(-1) = I。

(4) 矩阵的秩:矩阵的秩是指矩阵中非零行的最大线性无关组数。

5. 矩阵的应用:(1) 线性方程组的解:通过矩阵的运算和逆矩阵可以解决线性方程组的求解问题。

(2) 向量空间的表示:矩阵可以表示向量空间内的线性变换和线性组合。

(3) 特征值和特征向量:矩阵的特征值和特征向量可以用于描述矩阵的性质和变换规律。

(4) 数据处理和机器学习:矩阵在数据处理和机器学习中广泛应用,用于存储和处理大量数据。

总的来说,矩阵是一种重要的数学工具,它的运算性质和特殊类型有助于解决线性方程组、描述线性变换和计算大量数据等问题。

矩阵的基本运算

矩阵的基本运算

例如
1 3 5
2 2 8
19316
6 0
8 不存在. 1
乘积AB 维的关系
A
B
m n
n s
C ms
=
A
8
注 两个矩阵相乘, 乘积有可能是一个数.
1
2
3
3 2
1 3 2 2 3 1 10.
1
练习 计算下列矩阵的乘积,并观察结果.
1
1 2 1 4 1 2 1 4
1
5
8
0
2
5
8
0
2
13310 1 3 734 10 1 3 7 34
1
1 2 1 4
5
10
8 1
0 3
2 734
1
1
A
1
144
5 10
2 8
1
1 0 3
4
2
7
9
34
1
2
a11 a12 L a1s
a21
a22
L
a2s
O M M M M
nnnan1
an2
L
2an2
L na1n
L
na2n
M M
L
nann
nn
A
11
a1
b1
a2
b2
O
O
an nn
bn nn
a1b1
a2b2 O
anbn nn
结论 两个n 阶对角阵之积仍为n 阶对角阵.
结论 两个n阶上(下)三角阵A之积仍为n阶上(下)三角阵12 .
❖矩阵乘法的运算规律 (1 )结 合 律 :(A B )C A (B C )

矩阵的计算方法总结

矩阵的计算方法总结

矩阵的计算方法总结矩阵是线性代数中的重要概念,广泛应用于各个科学领域。

矩阵的计算方法主要包括矩阵的基本运算、矩阵的乘法、矩阵的逆以及特殊矩阵的计算等。

本文将对这些计算方法进行详细的总结。

首先,矩阵的基本运算包括矩阵的加法和减法。

矩阵的加法和减法都是对应位置上的元素进行相加或相减的操作。

具体而言,对于两个相同大小的矩阵A和B,矩阵的加法计算公式为C = A + B,其中C的第i行第j列的元素等于A的第i行第j列的元素加上B的第i行第j列的元素。

矩阵的减法同样遵循相同的规则。

接下来,矩阵的乘法是比较复杂的计算方法。

矩阵的乘法不遵循交换律,即AB不一定等于BA。

矩阵的乘法计算公式为C= AB,其中A是m×n矩阵,B是n×p矩阵,C是m×p矩阵。

具体来说,在矩阵乘法中,C的第i行第j列的元素等于A的第i行的元素与B的第j列的元素进行内积运算得到的结果。

在进行矩阵乘法计算时,需要注意两个矩阵的维度是否满足相乘的条件。

若A的列数不等于B的行数,则无法进行矩阵乘法运算。

矩阵的逆是指对于一个n阶方阵A,通过运算求解另一个方阵B,使得AB = BA = I,其中I为单位矩阵。

矩阵的逆是在求解线性方程组和矩阵方程时经常使用的工具。

具体来说,对于一个n阶非奇异矩阵A,如果存在一个矩阵B,使得AB = BA = I,那么矩阵B就是矩阵A的逆矩阵,记作A^-1。

逆矩阵的计算可以使用高斯-约旦消元法、伴随矩阵法等多种方法,其中伴随矩阵法是逆矩阵计算的一种常用方法。

此外,还有一些特殊矩阵的计算方法。

例如,对称矩阵是指矩阵的转置等于它本身的矩阵。

对称矩阵的特殊性质使得其在计算中有着很多便利,例如,对称矩阵一定可以对角化,即可以通过相似变换变为对角矩阵。

对角矩阵是指非对角线上的元素都为0的矩阵,对角线上的元素可以相同也可以不同。

对角矩阵的计算相对简单,只需要对角线上的元素进行相应的运算即可。

综上所述,矩阵的计算方法包括矩阵的基本运算、矩阵的乘法、矩阵的逆以及特殊矩阵的计算等。

矩阵的运算与性质

矩阵的运算与性质

矩阵的运算与性质矩阵是线性代数中的基本概念,广泛应用于各个学科领域。

本文将介绍矩阵的运算及其性质,探讨在不同情况下矩阵的特点和应用。

一、矩阵的定义与分类1. 矩阵的定义:矩阵是一个按照矩形排列的数表,由m行n列的数构成,通常用大写字母表示,如A、B等。

2. 矩阵的分类:根据行数和列数的不同,矩阵可以分为行矩阵、列矩阵、方阵、零矩阵等。

二、矩阵的基本运算1. 矩阵的加法:对应位置元素相加,要求两个矩阵的行数和列数相等。

2. 矩阵的数乘:一个矩阵的所有元素乘以一个常数。

3. 矩阵的乘法:矩阵乘法不满足交换律,要求左边矩阵的列数等于右边矩阵的行数。

4. 矩阵的转置:将矩阵的行和列互换得到的新矩阵,记作A^T。

三、矩阵的性质和特点1. 矩阵的单位矩阵:对角线上元素为1,其余元素为0的方阵。

2. 矩阵的逆矩阵:若矩阵A存在逆矩阵A^-1,满足A·A^-1 = A^-1·A = I,其中I为单位矩阵。

3. 矩阵的行列式:方阵A经过运算得到的一个标量值,记作det(A)或|A|,用于判断矩阵是否可逆及求解线性方程组等。

4. 矩阵的秩:矩阵中线性无关的行或列的最大个数。

5. 矩阵的特征值与特征向量:对于方阵A,存在数值λ和非零向量x,使得A·x = λ·x,λ为A的特征值,x为对应的特征向量。

四、矩阵的应用1. 线性方程组的求解:通过矩阵的运算和性质,可以将线性方程组表示为矩阵的形式,从而求解出方程组的解。

2. 矩阵在图像处理中的应用:利用矩阵的运算,可以对图像进行变换、旋转、缩放等操作。

3. 矩阵在经济学中的应用:使用矩阵可以模拟经济系统,进行量化分析、预测等。

总结:矩阵作为线性代数中的基本概念,具有丰富的运算规则和性质。

通过矩阵的加法、数乘、乘法、转置等基本运算,可以推导出矩阵的逆矩阵、行列式、秩、特征值等重要概念。

矩阵在不同学科领域有着广泛的应用,如线性方程组求解、图像处理、经济学分析等。

矩阵的简单运算公式

矩阵的简单运算公式

矩阵的简单运算公式矩阵是数学中一个非常重要的概念,它在众多领域都有着广泛的应用,比如物理学、计算机科学、统计学等等。

要理解和运用矩阵,掌握其基本的运算公式是必不可少的。

接下来,让我们一起来了解一下矩阵的一些简单运算公式。

首先,矩阵的加法和减法相对来说比较直观。

如果有两个矩阵 A 和B,它们的行数和列数都相同,那么矩阵 A 与矩阵 B 的和(差)就是将它们对应位置的元素相加(减)得到的新矩阵。

例如,如果矩阵 A= a₁₁ a₁₂; a₂₁ a₂₂,矩阵 B = b₁₁ b₁₂; b₂₁ b₂₂,那么 A+ B = a₁₁+ b₁₁ a₁₂+ b₁₂; a₂₁+ b₂₁ a₂₂+ b₂₂,A B= a₁₁ b₁₁ a₁₂ b₁₂; a₂₁ b₂₁ a₂₂ b₂₂。

接下来是矩阵的数乘运算。

如果有一个矩阵 A 和一个实数 k,那么数 k 与矩阵 A 的乘积,就是将矩阵 A 中的每一个元素都乘以 k。

比如,矩阵 A = a₁₁ a₁₂; a₂₁ a₂₂,kA = ka₁₁ ka₁₂; ka₂₁ ka₂₂。

矩阵的乘法运算相对复杂一些。

当矩阵 A 的列数等于矩阵 B 的行数时,矩阵 A 和矩阵 B 才能相乘。

假设矩阵 A 是 m×n 的矩阵,矩阵B 是 n×p 的矩阵,那么它们的乘积C = AB 是一个 m×p 的矩阵。

C 中的元素 cᵢⱼ等于矩阵 A 的第 i 行与矩阵 B 的第 j 列对应元素乘积的和。

例如,矩阵 A = a₁₁ a₁₂; a₂₁ a₂₂,矩阵 B = b₁₁ b₁₂; b₂₁b₂₂,那么 AB = a₁₁b₁₁+ a₁₂b₂₁ a₁₁b₁₂+ a₁₂b₂₂;a₂₁b₁₁+ a₂₂b₂₁ a₂₁b₁₂+ a₂₂b₂₂。

需要注意的是,矩阵的乘法一般不满足交换律,也就是说 AB 不一定等于 BA。

但是矩阵的乘法满足结合律和分配律。

结合律:(AB)C = A(BC);分配律:A(B + C) = AB + AC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵的基本运算(摘自:华东师范大学数学系;/)§3.1 加和减§3.2矩阵乘法§3.2.1 矩阵的普通乘法§3.2.2 矩阵的Kronecker乘法§3.3 矩阵除法§3.4矩阵乘方§3.5 矩阵的超越函数§3.6数组运算§3.6.1数组的加和减§3.6.2数组的乘和除§3.6.3 数组乘方§3.7 矩阵函数§3.7.1三角分解§3.7.2正交变换§3.7.3奇异值分解§3.7.4 特征值分解§3.7.5秩§3.1 加和减如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差.如果矩阵A和B的维数不匹配,Matlab会给出相应的错误提示信息.如:A= B=1 2 3 1 4 74 5 6 2 5 87 8 0 3 6 0C =A+B返回:C =2 6 106 10 1410 14 0如果运算对象是个标量(即1×1矩阵),可和其它矩阵进行加减运算.例如:x= -1 y=x-1= -20 -12 1§3.2矩阵乘法Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍.§3.2.1 矩阵的普通乘法矩阵乘法用“ * ”符号表示,当A矩阵列数与B矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同.如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B,结果为C=×==即Matlab返回:C =19 2243 50如果A或B是标量,则A*B返回标量A(或B)乘上矩阵B(或A)的每一个元素所得的矩阵.§3.2.2 矩阵的Kronecker乘法对n×m阶矩阵A和p×q阶矩阵B,A和B的Kronecher乘法运算可定义为:由上面的式子可以看出,Kronecker乘积A B表示矩阵A的所有元素与B之间的乘积组合而成的较大的矩阵,B A则完全类似.A B和B A均为np ×mq矩阵,但一般情况下A B B A.和普通矩阵的乘法不同,Kronecker乘法并不要求两个被乘矩阵满足任何维数匹配方面的要求.Kronecker乘法的Matlab命令为C=kron(A,B),例如给定两个矩阵A和B:A= B=则由以下命令可以求出A和B的Kronecker乘积C:A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; C=kron(A,B)C =1 32 2 6 42 4 6 4 8 123 9 64 12 86 12 18 8 16 24作为比较,可以计算B和A的Kronecker乘积D,可以看出C、D是不同的:A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; D=kron(B,A)D =1 2 3 6 2 43 4 9 12 6 82 4 4 8 6 126 8 12 16 18 24§3.3 矩阵除法在Matlab中有两种矩阵除法符号:“\”即左除和“/”即右除.如果A矩阵是非奇异方阵,则A\B是A的逆矩阵乘B,即inv(A)*B;而B/A是B乘A的逆矩阵,即B*inv(A).具体计算时可不用逆矩阵而直接计算.通常:x=A\B就是A*x=B的解;x=B/A就是x*A=B的解.当B与A矩阵行数相等可进行左除.如果A是方阵,用高斯消元法分解因数.解方程:A*x(:, j)=B(:, j),式中的(:, j)表示B矩阵的第j列,返回的结果x 具有与B矩阵相同的阶数,如果A是奇异矩阵将给出警告信息.如果A矩阵不是方阵,可由以列为基准的Householder正交分解法分解,这种分解法可以解决在最小二乘法中的欠定方程或超定方程,结果是m×n的x矩阵.m是A矩阵的列数,n是B矩阵的列数.每个矩阵的列向量最多有k个非零元素,k 是A的有效秩.右除B/A可由B/A=(A'\B')'左除来实现.§3.4矩阵乘方A^P意思是A的P次方.如果A是一个方阵,P是一个大于1的整数,则A^P 表示A的P次幂,即A自乘P次.如果P不是整数,计算涉及到特征值和特征向量的问题,如已经求得:[V,D]=eig(A),则:A^P=V*D.^P/V(注:这里的.^表示数组乘方,或点乘方,参见后面的有关介绍)如果B是方阵, a是标量,a^B就是一个按特征值与特征向量的升幂排列的B次方程阵.如果a和B都是矩阵,则a^B是错误的.§3.5 矩阵的超越函数在Matlab中解释exp(A)和sqrt(A)时曾涉及到级数运算,此运算定义在A的单个元素上.Matlab可以计算矩阵的超越函数,如矩阵指数、矩阵对数等.一个超越函数可以作为矩阵函数来解释,例如将“m”加在函数名的后边而成expm(A)和sqrtm(A),当Matlab运行时,有下列三种函数定义:expm 矩阵指数logm 矩阵对数sqrtm 矩阵开方所列各项可以加在多种m文件中或使用funm.请见应用库中sqrtm.m,1ogm.m,funm.m文件和命令手册.§3.6数组运算数组运算由线性代数的矩阵运算符“*”、“/”、“\”、“^”前加一点来表示,即为“.*”、“./”、“.\”、“.^”.注意没有“.+”、“.-”运算.§3.6.1数组的加和减对于数组的加和减运算与矩阵运算相同,所以“+”、“-”既可被矩阵接受又可被数组接受.§3.6.2数组的乘和除数组的乘用符号.*表示,如果A与B矩阵具有相同阶数,则A.*B表示A和B 单个元素之间的对应相乘.例如 x=[1 2 3]; y=[ 4 5 6];计算z=x.*y结果z=4 10 18数组的左除(.\)与数组的右除(./),由读者自行举例加以体会.§3.6.3 数组乘方数组乘方用符号.^表示.例如:键入:x=[ 1 2 3]y=[ 4 5 6]则z=x.^y=[1^4 2^5 3^6]=[1 32 729](1) 如指数是个标量,例如x.^2,x同上,则:z=x.^2=[1^2 2^2 3^2]=[ 1 4 9](2) 如底是标量,例如2 .^[x y] ,x、y同上,则:z=2 .^[xy]=[2^1 2^2 2^3 2^4 2^5 2^6]=[2 4 8 16 32 64]从此例可以看出Matlab算法的微妙特性,虽然看上去与其它乘方没什么不同,但在2和“.”之间的空格很重要,如果不这样做,解释程序会把“.”看成是2的小数点.Matlab看到符号“^”时,就会当做矩阵的幂来运算,这种情况就会出错,因为指数矩阵不是方阵.§3.7 矩阵函数Matlab的数学能力大部分是从它的矩阵函数派生出来的,其中一部分装入Matlab本身处理中,它从外部的Matlab建立的M文件库中得到,还有一些由个别的用户为其自己的特殊的用途加进去的.其它功能函数在求助程序或命令手册中都可找到.手册中备有为Matlab提供数学基础的LINPACK和EISPACK软件包,提供了下面四种情况的分解函数或变换函数:(1)三角分解;(2)正交变换;(3) 特征值变换;(4)奇异值分解.§3.7.1三角分解最基本的分解为“LU”分解,矩阵分解为两个基本三角矩阵形成的方阵,三角矩阵有上三角矩阵和下三角矩阵.计算算法用高斯变量消去法.从lu函数中可以得到分解出的上三角与下三角矩阵,函数inv得到矩阵的逆矩阵,det得到矩阵的行列式.解线性方程组的结果由方阵的“\”和“/”矩阵除法来得到.例如:A=[ 1 2 34 5 67 8 0]LU分解,用Matlab的多重赋值语句[L,U]=lu(A)得出L =U =注:L是下三角矩阵的置换,U是上三角矩阵的正交变换,分解作如下运算,检测计算结果只需计算L*U即可.求逆由下式给出: x=inv(A)x =从LU分解得到的行列式的值是精确的,d=det(U)*det(L)的值可由下式给出:d=det(A)d =27直接由三角分解计算行列式:d=det(L)*det(U)d =27.0000为什么两种d的显示格式不一样呢? 当Matlab做det(A)运算时,所有A的元素都是整数,所以结果为整数.但是用LU分解计算d时,L、U的元素是实数,所以Matlab产生的d也是实数.例如:线性联立方程取 b=[ 135]解Ax=b方程,用Matlab矩阵除得到x=A\b结果x=0.33330.33330.0000由于A=L*U,所以x也可以有以下两个式子计算:y=L\b,x=U\y.得到相同的x值,中间值y为:y =5.00000.28570.0000Matlab中与此相关的函数还有rcond、chol和rref.其基本算法与LU分解密切相关.chol函数对正定矩阵进行Cholesky分解,产生一个上三角矩阵,以使R'*R=X.rref用具有部分主元的高斯-约当消去法产生矩阵A的化简梯形形式.虽然计算量很少,但它是很有趣的理论线性代数.为了教学的要求,也包括在Matlab中.§3.7.2正交变换“QR”分解用于矩阵的正交-三角分解.它将矩阵分解为实正交矩阵或复酉矩阵与上三角矩阵的积,对方阵和长方阵都很有用.例如A=[ 1 2 34 5 67 8 910 11 12]是一个降秩矩阵,中间列是其它二列的平均,我们对它进行QR分解:[Q,R]=qr(A)Q =R =可以验证Q*R就是原来的A矩阵.由R的下三角都给出0,并且R(3,3)=0.0000,说明矩阵R与原来矩阵A都不是满秩的.下面尝试利用QR分解来求超定和降秩的线性方程组的解.例如:b=[ 1357]讨论线性方程组Ax=b,我们可以知道方程组是超定的,采用最小二乘法的最好结果是计算x=A\b.结果为:Warning: Rank deficient, rank = 2 tol = 1.4594e-014x =0.50000.1667我们得到了缺秩的警告.用QR分解法计算此方程组分二个步骤:y=Q'*bx=R\y求出的y值为y =x的结果为Warning: Rank deficient, rank = 2 tol = 1.4594e-014x =0.50000.1667用A*x来验证计算结果,我们会发现在允许的误差范围内结果等于b.这告诉我们虽然联立方程Ax=b是超定和降秩的,但两种求解方法的结果是一致的.显然x向量的解有无穷多个,而“QR”分解仅仅找出了其中之一.§3.7.3奇异值分解在Matlab中三重赋值语句[U,S,V]=svd(A)在奇异值分解中产生三个因数:A=U*S*V 'U矩阵和V矩阵是正交矩阵,S矩阵是对角矩阵,svd(A)函数恰好返回S的对角元素,而且就是A的奇异值(其定义为:矩阵A'*A的特征值的算术平方根).注意到A矩阵可以不是方的矩阵.奇异值分解可被其它几种函数使用,包括广义逆矩阵pinv(A)、秩rank(A)、欧几里德矩阵范数norm(A,2)和条件数cond(A).§3.7.4 特征值分解如果A是n×n矩阵,若λ满足Ax=λx,则称λ为A的特征值,x为相应的特征向量.函数eig(A)返回特征值列向量,如果A是实对称的,特征值为实数.特征值也可能为复数,例如:A=[ 0 1-1 0]eig(A)产生结果ans =0 + 1.0000i0 - 1.0000i如果还要求求出特征向量,则可以用eig(A)函数的第二个返回值得到:[x,D]=eig(A)D的对角元素是特征值.x的列是相应的特征向量,以使A*x=x*D.计算特征值的中间结果有两种形式:Hessenberg形式为hess(A),Schur形式为schur(A).schur形式用来计算矩阵的超越函数,诸如sqrtm(A)和logm(A).如果A和B是方阵,函数eig(A,B)返回一个包含一般特征值的向量来解方程Ax= Bx双赋值获得特征向量[X,D]=eig(A,B)产生特征值为对角矩阵D.满秩矩阵X的列相应于特征向量,使A*X=B*X*D,中间结果由qz(A,B)提供.§3.7.5秩Matlab计算矩阵A的秩的函数为rank(A),与秩的计算相关的函数还有:rref(A)、orth(A)、null(A)和广义逆矩阵pinv(A)等.利用rref(A),A的秩为非0行的个数.rref方法是几个定秩算法中最快的一个,但结果上并不可靠和完善.pinv(A)是基于奇异值的算法.该算法消耗时间多,但比较可靠.其它函数的详细用法可利用Help求助.。

相关文档
最新文档