初一数学下册讲义
人教版七年级数学下精编讲义

线与线的位置关系课前预习1.如果两个角的和等于90°,就说这两个角互为________,即其中一个角是另一个角的________.2.如果两个角的和等于180°,就说这两个角互为________,即其中一个角是另一个角的________.3.同角(等角)的余角_______,同角(等角)的补角_______.知识点睛1.平面上不重合的两条直线的位置关系只有两种,即______和______.2._______________________________________叫做平行线.3.平行的两个基本事实:___________________________________________________;___________________________________________________.4.垂直的定义:__________________________________________________________________________________________.5.垂直的两个基本事实:___________________________________________________;___________________________________________________.6.直线外一点到这条直线的___________________,叫做点到直线的距离.7.几何语言书写规范:①过点A作AC∥BD;②过点A作AC⊥BD,垂足为点C.8.有一条公共边,且另一边互为反向延长线的两个角互为___________.9.有公共顶点且两边互为反向延长线的两个角互为_________.对顶角__________.10.判断一件事情的语句,叫做命题.命题由_____和_____两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常可以写成“如果……,那么……”的形式.11.如果题设成立,那么结论一定成立,这样的命题叫做真命题.题设成立时,不能保证结论一定成立,这样的命题叫做假命题.精讲精练1.平面内三条两两相交的直线()A.有一个交点B.有一个或三个交点C.有三个交点D.有两个交点2.在平面内有任意四个点,那么这四个点可以确定()条直线.A.1或6B.4C.6D.1或4或63.下列推理正确的是( )A .因a ∥b ,b ∥c ,故c ∥d B .因a ∥b ,b ∥d ,故c ∥d C .因a ∥b ,a ∥c ,故b ∥c D .因a ∥b ,c ∥d ,故a ∥c4.如图,要从小河引水到村庄A ,请设计并作出一条最佳路线,理由是____________________________________.第4题图第5题图5.如图,P 是直线l 外一点,A ,B ,C 在直线l 上,且PB ⊥l ,那么下列说法中不正确的是( )A .点P 到直线l 的距离是线段BP 的长度B .PA ,PB ,PC 三条线段中,PB 最短C .PA 是点P 到直线l 的垂线段D .点A 到直线PB 的距离是线段AB 的长度6.(1)体育课上老师要测量学生的跳远成绩,其测量时主要依据是___________________________________________;(2)直线l 的同侧有A ,B ,C 三点,如果A ,B 两点确定的直线l 1与B ,C 两点确定的直线l 2都与l 平行,那么A ,B ,C 三点在一条直线上,它的依据是___________________________________________________________________.7.下列说法中正确的个数为( )①在同一平面内不相交的两条线段叫做平行线②平面内经过一点有且只有一条直线与已知直线垂直③经过一点有且只有一条直线与已知直线平行④平行于同一条直线的两条直线平行A .1个B .2个C .3个D .4个B AC Pl8.下列推理中,错误的是( )A .在m ,n ,p 三个量中,如果m =n ,n =p ,那么m =pB .在∠A ,∠B ,∠C ,∠D 四个角中,若∠A =∠B ,∠C =∠D ,∠A =∠D ,则∠B =∠CC .a ,b ,c 是同一平面内的三条直线,如果a ∥b ,b ∥c ,那么a ∥cD .a ,b ,c 是同一平面内的三条直线,如果a ⊥b ,c ⊥b ,那么a ⊥c9.一个角的邻补角是60°,则这个角是________.10.如图,∠1,∠2是对顶角的是()A .B .C .D .11.如图,直线AB ,CD 相交于点O ,EO ⊥CD ,垂足为点O ,若∠BOE =50°,则∠AOD 的度数为_______.第11题图第12题图12.如图,直线AB ,CD 相交于点O ,OB 是∠DOE 的平分线,若∠COE =100°,则∠AOC 的度数为_______.13.如图,直线AB ,CD ,EF 相交于点O ,且AB ⊥CD ,OB 平分∠EOG ,若∠FOD =60°,则∠BOG 的度数为( )A .90°B .60°C .30°D .无法确定12121221OEDCBAOEDC BAGOFEDCBA14.下列语句属于命题的是()A.你吃过午饭了吗?B.过点A作直线MNC.同角的余角相等D.红扑扑的脸蛋15.已知下列命题:①两个锐角的和是锐角;②互补的两个角一定是一个为锐角,另一个为钝角;③若∠1与∠2是对顶角,则∠1=∠2;④若∠1与∠2是邻补角,则∠1+∠2=180°;⑤若∠1=∠2,则∠1与∠2是对顶角;⑥若∠1+∠2=180°,则∠1与∠2是邻补角.其中是真命题的有_________.(填写序号)16.把命题“对顶角相等”改写成“如果……,那么……”的形式:如果__________________,那么__________________.【参考答案】课前预习1.余角;余角2.补角;补角3.相等;相等知识点睛1.相交,平行2.在同一平面内,不相交的两条直线3.①经过直线外一点有且只有一条直线与这条直线平行②如果两条直线都与第三条直线平行,那么这两条直线也互相平行4.如果两条直线相交成直角,那么称这两条直线互相垂直5.①在同一平面内,过一点有且只有一条直线与已知直线垂直②连接直线外一点与直线上各点的所有线段中,垂线段最短6.垂线段的长度8.邻补角9.对顶角;相等10.题设;结论精讲精练1. B2. D3. C4.垂线段最短5. C6.(1)垂线段最短(2)经过直线外一点有且只有一条直线与已知直线平行7. B8. D9.120°10.C11.140°12.40°13.C14.C15.③④16.两个角是对顶角;这两个角相等线与线的位置关系(随堂测试)1.在同一平面内互不重合的三条直线的交点个数可能是_____.2.下列命题是真命题的是__________(填序号).①在同一平面内,两条直线不相交就平行②平面内,过一点有且只有一条直线与已知直线垂直③过一点有且只有一条直线与已知直线平行④在同一平面内,两条线段没有公共点,那么这两条线段互相平行3.如图,∠AOB=120°,OD丄OA,OC丄OB,则∠COD=_____.【参考答案】1.0,1,2,32.①②3.60°DBCO A线与线的位置关系(习题)巩固练习1.下列说法中正确的是( )A .在同一平面内,两条不平行的射线必相交B .在同一平面内,不相交的两条线段是平行线C .两条射线或线段平行是指它们所在的直线平行D .一条直线有可能同时与两条相交直线平行2.已知同一平面内的直线l 1,l 2,l 3,如果l 1⊥l 2,l 2⊥l 3,那么l 1与l 3的位置关系是( )A .平行B .相交C .垂直D .无法判断3.下列结论正确的是_____________(填序号).①如果a ⊥b ,b ⊥c ,那么a ⊥c ②如果a ∥b ,b ∥c ,那么a ∥c ③如果a ∥b ,b ⊥c ,那么a ∥c ④如果a ⊥b ,b ∥c ,那么a ⊥c4.河边有一村庄(近似看作点A ),如果在河岸上建一码头(近似看作点B ),使村庄的人到码头最近,请作出点B ,依据是__________________________________________.5.如图:PC ∥AB ,QC ∥AB ,则点P ,C ,Q 在一条直线上,理由是______________________________________.AA BCPQ6.如图所示,直线AD ,CF 交于点O ,过点O 作射线OB ,OE ,点B ,O ,E 不在一条直线上,试写出图中所有的对顶角:__________________________________________________.第6题图第7题图7.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,写出所有互为余角的角:①_______与_______;②_______与_______;③_______与_______;④_______与_______.8.如图,CO ⊥AO ,DO ⊥BO ,垂足为点O ,则∠AOD =________,理由是_________________________________.第8题图第9题图9.如图,直线AB ,CD ,EF 相交于点O .(1)∠AOC 的邻补角为________________,∠BOE 的邻补角为____________;(2)∠DOA 的对顶角为________________,∠EOC 的对顶角为____________.10.如图,∠AOC =90°,∠BOC 与∠COD 互补,∠COD =115°,则∠AOB 的度数为_______.11.已知∠1与∠2互为邻补角,且∠1=110°,则∠2的余角的度数为_________.12.若互为邻补角的两个角的比是2:3,则其中较大角的度数为_________.A BCD ABCDOOFED CBAABCDO13.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,则∠BOD =_________;(2)若∠EOC :∠EOD =2:3,则∠BOD =_________.14.已知下列命题:①若|m |=|n|,则m =n ;②在同一平面内,过一点有且只有一条直线与已知直线平行;③经过直线外一点,有且只有一条直线与这条直线垂直;④相等的两个角互为对顶角.其中是假命题的有_______________.(填写序号)15.把命题“互为余角的两个角的和为90°”改写成“如果……那么……”的形式:如果_______________________,那么_______________________.【参考答案】 巩固练习1.C2.A3.②④4.图略,垂线段最短5.经过直线外一点有且只有一条直线与这条直线平行6.∠AOF 与∠COD ,∠AOC 与∠DOF7.①∠A 与∠B②∠A 与∠ACD ③∠B 与∠DCB ④∠ACD 与∠DCB 8.∠COB ,同角的余角相等9.(1)∠AOD ,∠COB ;∠AOE ,∠BOF (2)∠COB ;∠FOD 10. 25°11.20°12.108°13.(1)35°;(2)36°14.①②③④OE D CBA15.两个角互为余角;这两个角的和为90°同位角、内错角、同旁内角(讲义)课前预习1.回顾余角、补角、对顶角有关内容,回答下列问题:(1)若∠1与∠2互为余角,则∠1+∠2=______;(2)若∠1与∠2互为补角,则∠1+∠2=______;(3)若∠1与∠2互为对顶角,则____________.2.在同一平面内,_________________________叫做平行线.3.如图,三根木条相交成∠1,∠2.固定木条b ,c ,转动木条a ,当转动到a ∥b 时,用量角器测量一下∠1,∠2的度数,你会发现∠1_____∠2.(填“>”、“<”或“=”)知识点睛1.同位角、内错角、同旁内角:2.平行线的判定:①____________相等,两直线平行;②____________相等,两直线平行;③____________互补,两直线平行.3.平行线的性质:①两直线平行,____________相等;②两直线平行,____________相等;③两直线平行,____________互补.ab12345678cabc41238567精讲精练1.如图所示:(1)∠1和∠2是直线______和直线______被直线_____所截得到的_________角;(2)∠3和∠4是直线______和直线______被直线_____所截得到的_________角;(3)∠1和∠5是直线______和直线______被直线_____所截得到的_________角;(4)∠6和∠4是同位角吗?(5)∠1和∠4是内错角吗?(6)∠5和∠6是同位角吗?2.如图所示:(1)∠NOP和∠OMD是直线______和直线______被直线_______所截得到的_______角;(2)∠BON和∠DMN是直线______和直线______被直线_______所截得到的_______角;(3)∠AOM和∠CMO是直线______和直线______被直线_______所截得到的_________角.3.如图,在所标识的角中,是内错角的是()A.∠1和∠BB.∠1和∠3C.∠3和∠BD.∠2和∠34.如图,判断正误:①∠1和∠4是同位角;()②∠1和∠5是同位角;()③∠1和∠3是内错角;()④∠1和∠2是同旁内角.()QDPBOMCAN第1题图123456abcd54321DC34B1 A25.请根据给出的图形完成推理过程:(1)若∠1=∠A ,则______∥______,理由是___________________________________________.(2)若∠1=∠DFE ,则______∥______,理由是___________________________________________.(3)若∠DEC +∠C =180°,则______∥______,理由是___________________________________________.(4)若∠ADE =_________,则DE ∥BC ,理由是___________________________________________.6.已知:如图,∠1=∠ADC ,∠DAB +∠ABC =180°.求证:(1)AB ∥CD ;(2)AD ∥BC .7.如图,直线a 和直线b 被直线c 所截,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a ∥b 的条件是( )A .①②B .②④C .①②④D .①②③④第5题图CE 1F BDA 第5题图1D CB A ab48623751c8.如图,已知AD ∥BC ,∠B =30°,DB 平分∠ADE ,则∠DEC =______.第8题图第9题图9.如图,AD ∥CE ,AB ∥CD ,∠C =50°,则∠DAB =______.10.如图,DH ∥EG ∥BC ,且DC ∥EF ,则图中和∠1(∠1本身除外)相等的角有________个.11.请根据给出的图形完成推理过程:(1)若∠1=∠2,则______∥______,理由是__________________________________________.(2)若∠3=______,则AB ∥CD ,理由是__________________________________________.(3)若∠DAB +∠ABC =180°,则______∥______,理由是__________________________________________.(4)若______∥______,则∠C +∠ABC =180°,理由是__________________________________________.(5)若AD ∥BC ,则∠3=______,理由是__________________________________________.DC E BAEDC BA1H G F E D CBAA BC31DE 212.请根据题意,完成推理并填空:如图,已知∠A =∠F ,∠C =∠D .求证:BD ∥CE .证明:如图,∵∠A =∠F(__________________________________)∴AC ∥DF (__________________________________)∴∠D =_______(__________________________________)∵∠C =∠D (__________________________________)∴∠1=∠C (__________________________________)∴BD ∥CE(__________________________________)【参考答案】课前预习1.(1)90°;(2)180°;(3)∠1=∠2.2.不相交的两条直线.3.=知识点睛2.①同位角;②内错角;③同旁内角.3.①同位角;②内错角;③同旁内角. 精讲精练1.(1)a ,b ,c ,同位;(2)a ,b ,d ,内错;1FEDABC(3)c,d,a,同旁内;(4)不是;(5)不是;(6)是.2.(1)OP,CD,NQ,同位;(2)AB,CD,NQ,同位;(3)AB,CD,NQ,同旁内.3.D4.①× ②√③√④√5.AB,EF,同位角相等,两直线平行.DF,AC,内错角相等,两直线平行.DE,BC,同旁内角互补,两直线平行.∠B,同位角相等,两直线平行.6.证明:(1)∵∠1 =∠ADC(已知)∴AB∥CD(内错角相等,两直线平行)(2)∵∠DAB+∠ABC=180°(已知)∴AD∥BC(同旁内角互补,两直线平行)7. D8.60°9.50°10.511.(1)AB,CD,内错角相等,两直线平行.(2)∠A,同位角相等,两直线平行.(3)AD,BC,同旁内角互补,两直线平行.(4)AB,CD,两直线平行,同旁内角互补.(5)∠C,两直线平行,内错角相等.12.已知内错角相等,两直线平行∠1 两直线平行,内错角相等已知等量代换同位角相等,两直线平行同位角、内错角、同旁内角(随堂测试)1.如图所示:(1)∠1和∠2是直线_____和直线_____被直线_____所截得到的________角;(2)∠3和∠A是直线_____和直线_____被直线_____所截得到的________角;(3)∠C和∠1是直线_____和直线_____被直线_____所截得到的________角;(4)∠3和∠C是直线_____和直线_____被直线_____所截得到的________角.2.如图所示:(1)若∠2=__________,则AB∥CD,理由是_________________________________________.(2)若AD∥BC,则_______=∠5,理由是_________________________________________.(3)若∠BCD+_______=180°,则AB∥CD,理由是_________________________________________.3.请根据题意,完成推理并填空:如图,已知∠1=∠2.求证:∠C+∠DBC=180°.证明:如图,∵∠1=∠DGF(______________________________)∠1=∠2(______________________________)∴∠DGF=∠2(______________________________)∴BD∥CE(______________________________)∴∠C+∠DBC=180°(______________________________)第2题图54321D AB C第1题图AD31CB2第3题图21HGFEDCBA【参考答案】1.(1)CD ,AB ,BD ,内错(2)CD ,AB ,AD ,同位(3)BC ,BD ,CD ,同旁内(4)AD ,BC ,CD ,内错2.(1)∠4,内错角相等,两直线平行(2)∠B ,两直线平行,同位角相等(3)∠B ,同旁内角互补,两直线平行3.对顶角相等已知等量代换同位角相等,两直线平行两直线平行,同旁内角互补同位角、内错角、同旁内角(习题)例题示范例1:如图,判断下列各组角的位置关系:①∠1与∠2;②∠1与∠7;③∠1与∠BAD ;④∠2与∠6.思路分析操作步骤:①找角;②找角的边所在的直线;③找到截线与被截线,判断角的位置关系.分析可得,∠1与∠2是________角;∠1与∠7是______角;∠1与∠BAD 是______角;∠2与∠6是______角.FE987654321DC BA巩固练习1.如图,直线CD 与∠O 的两边相交.(1)∠O 和∠2是直线_____和直线_____被直线_____所截得到的_________角;(2)∠2和∠8是直线_____和直线_____被直线_____所截得到的_________角;(3)∠2和∠5是直线_____和直线_____被直线______所截得到的_________角.第1题图第2题图2.如图,判断正误:①∠1和∠5是同位角;( )②∠2和∠5是内错角;( )③∠3和∠5是内错角;()④∠1和∠4是同旁内角.()3.如图所示,当____________________时,有AB ∥CE 成立,理由是___________________________________.(只需写出一个条件即可)第3题图 第4题图4.如图,若∠1=∠2,则下列结论:①∠3=∠4;②AB ∥CD ;③AD ∥BC .其中正确的是______________.(填序号)D CBOA 87654321DBCA 52143321EC DBA4A BCD 2315.如图,点B 在DC 上,若BE 平分∠ABD ,∠DBE =∠A ,则BE _____AC .理由如下:∵BE 平分∠ABD (______________________________)∴∠ABE =∠DBE (角平分线的定义)∵∠DBE =∠A (______________________________)∴_______=∠A (______________________________)∴BE _____AC(______________________________)6.已知:如图,E 为DF 上的点,B 为AC 上的点,∠1=∠2,AC ∥DF .求证:∠C =∠D .证明:如图,∵∠1=∠2(__________________________________)∠1=∠3(__________________________________)∴∠2=∠3(__________________________________)∴BD ∥CE (__________________________________)∴∠C =∠ABD (__________________________________)∵AC ∥DF(__________________________________)∴∠D =∠ABD (__________________________________)∴∠C =∠D(等量代换)EACBD E 312ACBDF思考小结1.动手操作:利用如图所示的方式,可以折出“过直线外一点和已知直线平行”的直线,依据是______________________.2.阅读材料什么是推理生活中,我们往往可以通过观察、实验来寻找规律,从而得出结论.但是要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有理有据地进行推理.过程.其作用是从已知的知识得到未知的知识,特别是可以得到不可能通过感觉经验掌握的未知知识.几何推理是我们中学接触最多的一种推理形式.要想进行严格的几何推理,首先要有一些对应前提.这些前提我们叫做“基本事实”或“定理”,比如我们学过的“同位角相等,两直线平行”、“两点确定一条直线”等都是一些基本事实.这些作为大前提,是我们进行推理的主要依据.而根据这些“基本事实”或“定理”,我们对某个句子进行判断或说明的过程就是证明.例如,如下的推理:已知:如图,∠ABC =∠1.求证:AD ∥BC .证明:如图,∵∠ABC =∠1(已知)∴AD ∥BC (同位角相等,两直线平行)我们分析可知,每一个判断都有自己的条件和结论.上述推理中的条件就是∠ABC =∠1,代表着一组同位角相等,而结论就是AD ∥BC .由条件得到结论的过程叫做证明,而这个证明必须依据基本事实.我们把基本事实放在结论后的括号中,表明我们是以此为依据进行推理的.1DCBA【参考答案】例题示范同旁内,同位,同旁内,内错巩固练习1.(1)CD,OB,OA,同位;(2)OA,OB,CD,内错;(3)OA,OB,CD,同旁内.2.①× ②× ③× ④√3.∠1=∠2,同位角相等,两直线平行.(答案不唯一,前后一致即可)4.②5.∥已知已知∠ABE,等量代换∥,内错角相等,两直线平行6.已知对顶角相等等量代换同位角相等,两直线平行两直线平行,同位角相等已知两直线平行,内错角相等思考小结1.同位角相等,两直线平行(或内错角相等,两直线平行,或同旁内角互补,两直线平行)几何推理初步(讲义)课前预习1.背默平行线的判定及性质.(1)平行线的判定:①_______________,_________________;②_______________,_________________;③_______________,_________________.(2)平行线的性质:①_______________,_________________;②_______________,_________________;③_______________,_________________.2.如图,已知OC平分∠AOB,∠AOB=70°,求∠AOC的度数.解:如图,∵OC平分∠AOB(_______________________)∴________________(_______________________)∵________________(_______________________)∴________________(_______________________)CO BA知识点睛在证明的过程中,由平行想到______、_______、________.对顶角模块书写如图,已知直线AB ,CD 相交于点O ,∠1=60°,求∠2的度数.解:如图,∵∠1=∠2 (_______________________)∠1=60° (已知)∴∠2=_____(_______________________)平行模块书写已知:如图,直线AB ,CD 被直线EF 所截,AB ∥CD ,∠1=50°,求∠2的度数.解:如图,∵AB ∥CD (_________________________)∴∠1=____(_________________________)∵∠1=50° (_________________________)∴∠2=____(_________________________)O 21DCBA21H G FECDBA精讲精练1.如图,点D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,DE ∥BA ,DF ∥CA ,∠A =50°,求∠EDF 的度数.解:如图,∵DE ∥BA (已知)∴∠A =∠DEC (_________________________)∵∠A =50°(已知)∴___________(_________________________)∵DF ∥CA (已知)∴___________(_________________________)∴∠EDF =50°(_________________________)2.如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD =70°,求∠1的度数.FED CB A 1ABC D3.已知:如图,AB ∥EF ,AB ∥CD ,若∠C =60°,∠E =110°,求∠CAE 的度数.4.已知:如图,在四边形ABCD 中,∠A =∠C ,AB ∥CD .求证:AD ∥BC .证明:如图,∵AB ∥CD (已知)∴∠A +____=180°(_________________________)∵∠A =∠C (已知)∴∠C +____=180°(_________________________)∴AD ∥BC (_________________________)5.如图,已知直线AB 和直线CD 被直线EF 所截,交点分别为E ,F ,AB ∥CD ,EM 平分∠AEF ,FN 平分∠EFD .求证:EM ∥FN .F EDCBADCB ANM FE D CBA6.已知:如图,∠BAC +∠GCA =180°,∠1=∠2.求证:AE ∥CF .7.已知:如图,∠1+∠2=180°,∠3=∠B .求证:∠AED =∠C .证明:如图,∵∠1+∠2=180°(_____________________________)∠1+∠DFE =180°(_____________________________)∴______=______ (_____________________________)∴______∥______(_____________________________)∴∠3=∠ADE (_____________________________)∵∠3=∠B(_____________________________)∴∠ADE =∠B (_____________________________)∴______∥______(_____________________________)∴∠AED =∠C(_____________________________)CGDFEBA 12AD 23EF 1CB8.已知:如图,∠1=∠2,∠C =∠D .求证:∠F =∠A .证明:如图,∵∠1=∠2 (________________________________)∠1=∠DGF (________________________________)∴∠2=_______(________________________________)∴____∥____ (________________________________)∴∠D =_______(________________________________)∵∠C =∠D (________________________________)∴______=∠C (________________________________)∴____∥____ (________________________________)∴∠F =∠A (________________________________)9.已知,如图,∠1=∠ACB ,CD ⊥AB 于点D ,FH ⊥AB 于点H .求证:∠2=∠3.10.如图,∠E =∠1,∠3+∠ABC =180°,BE 是∠ABC 的平分线,∠A =70°,求∠3的度数.321F ED CBAAB C1GH 2FED 321HF ED CB A【参考答案】 课前预习1.(1)①同位角相等,两直线平行;②内错角相等,两直线平行; ③同旁内角互补,两直线平行.(2)①两直线平行,同位角相等; ②两直线平行,内错角相等; ③两直线平行,同旁内角互补.2. 已知;角平分线的定义70°;已知70°=35°;等量代换知识点睛同位角、内错角、同旁内角对顶角相等60°;等量代换已知;两直线平行,同位角相等已知50°;等量代换精讲精练1.两直线平行,同位角相等∠DEC =50°;等量代换∠EDF=∠DEC ;两直线平行,内错角相等等量代换2.解:如图∵AD 平分∠BAC (已知)∴∠BAC=2∠BAD (角平分线的定义)∵∠BAD=70°(已知)∴∠BAC=2×70°=140°(等式的性质)∵AB ∥CD (已知)∴∠1+∠BAC =180°(两直线平行,同旁内角互补)∴∠1=180°-∠BAC=180°-140°12AOC AOB ∠=∠AOB ∠=12AOC ∠=⨯2∠=40°(等式的性质)3.解:如图∵AB ∥CD (已知)∴∠C +∠BAC =180°(两直线平行,同旁内角互补)∵∠C=60°(已知)∴∠BAC =180°-∠C =180°-60°=120°(等式的性质)∵AB ∥EF (已知)∴∠E +∠BAE =180°(两直线平行,同旁内角互补)∵∠E=110°(已知)∴∠BAE =180°-∠E =180°-110°=70°(等式的性质)∴∠CAE =∠BAC -∠BAE=120°-70°=50°(等式的性质).4.∠D ;两直线平行,同旁内角互补∠D ;等量代换同旁内角互补,两直线平行5.证明:如图∵AB ∥CD (已知)∴∠AEF =∠EFD (两直线平行,内错角相等)∵EM 平分∠AEF (已知)∴∠MEF=∠AEF (角平分线的定义)∵FN 平分∠EFD (已知)∴∠EFN=∠EFD (角平分线的定义)∴∠MEF=∠EFN (等式的性质)∴EM ∥FN (内错角相等,两直线平行)6.证明:如图∵∠BAC +∠GCA=180°(已知)∴AB ∥DG (同旁内角互补,两直线平行)∴∠BAC=∠DCA (两直线平行,内错角相等)∵∠1=∠2(已知)∴∠BAC -∠1=∠DCA -∠2(等式性质)1212即∠CAE=∠ACF∴AE∥CF(内错角相等,两直线平行)7.已知平角的定义∠2,∠DFE;同角的补角相等AB,EF;内错角相等,两直线平行两直线平行,内错角相等已知等量代换DE,BC;同位角相等,两直线平行两直线平行,同位角相等8.已知对顶角相等∠DGF,等量代换CE,BD;同位角相等,两直线平行∠FEC;两直线平行,同位角相等已知∠FEC;等量代换DF,AC;内错角相等,两直线平行两直线平行,内错角相等9.证明:如图∵∠1=∠ACB(已知)∴DE∥BC(同位角相等,两直线平行)∴∠2=∠DCB(两直线平行,内错角相等)∵CD⊥AB,FH⊥AB(已知)∴∠BDC=∠BHF=90°(垂直的定义)∴CD∥FH(同位角相等,两直线平行)∴∠3=∠DCB(两直线平行,同位角相等)∴∠2=∠3(等量代换)10.解:如图∵BE平分∠ABC的平分线(已知)∴∠1=∠2(角平分线的定义)∵∠E=∠1(已知)∴∠E=∠2(等量代换)∴AE∥BC(内错角相等,两直线平行)∴∠A+∠ABC =180°(两直线平行,同旁内角互补)∵∠3+∠ABC =180°(已知)∴∠3=∠A(同角的补角相等)∵∠A=70°(已知)∴∠3=70°(等量代换)几何推理初步(随堂测试)13.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,求∠DEC的度数.【参考答案】1.解:如图,DCEBADCEB A几何推理初步(习题)巩固练习1.如图,AD ∥CE ,AB ∥CD ,求证:∠A =∠C .方法一:解:如图∵AB ∥CD (已知)∴∠C =_____(__________________________)∵AD ∥CE (已知)∴∠A =_____(__________________________)∴_____=_____(等量代换)方法二:解:如图∵AD ∥CE (已知)∴∠C +_____=180° (__________________________)∵AB ∥CD (已知)∴∠D +_____=180°(__________________________)∴∠A =____(__________________________)2.已知:如图,AB ∥DE ,∠FAB =110°,求∠ACE 的度数.3.已知:如图,∠B=∠D =90°,∠C=60°,求∠A 的度数.FE AC BDDC BAEDCBA4.已知:如图,点E 在四边形ABCD 的边AD 的延长线上,∠3=∠A ,∠1=55°,求∠2的度数.5.已知:如图,BD ⊥AC ,EF ⊥AC ,垂足分别为D ,F ,G 是AB 上一点,且∠l=∠2.求证:∠AGD =∠ABC .【参考答案】 巩固练习1.方法一:解:如图∵AB ∥CD (已知)∴∠C =∠ABE (两直线平行,同位角相等)∵AD ∥CE (已知)∴∠A =∠ABE (两直线平行,内错角相等)∴∠A =∠C (等量代换)方法二:解:如图∵AD ∥CE (已知)∴∠C +∠D =180°(两直线平行,同旁内角互补)∵AB ∥CD (已知)∴∠D +∠A =180°(两直线平行,同旁内角互补)∴∠A =∠C (同角的补角相等)2.解:如图2E D13CBA GF EDCBA 21∵AB∥DE(已知)∴∠FAB=∠ACD(两直线平行,同位角相等)∵∠FAB=110°(已知)∴∠ACD=110°(等量代换)∴∠ACE=180°-∠ACD=180°-110°=70°(平角的定义)3.解:如图∵∠B=∠D=90°(已知)∴∠B+∠D=90°+90°=180°(等式的性质)∴AB∥CD(同旁内角互补,两直线平行)∴∠A+∠C=180°(两直线平行,同旁内角互补)∵∠C=60°(已知)∴∠A=180°-∠C=180°-60°=120°(等式的性质)4.解:如图∵∠3=∠A(已知)∴AB∥CD(同位角相等,两直线平行)∴∠1=∠2(两直线平行,内错角相等)∵∠1=55°(已知)∴∠2=55°(等量代换)5.证明:如图,∵BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°(垂直的定义)∴BD∥EF(同位角相等,两直线平行)∴∠2=∠DBC(两直线平行,同位角相等)∵∠l=∠2(已知)∴∠1=∠DBC(等量代换)∴GD∥BC(内错角相等,两直线平行)∴∠AGD=∠ABC(两直线平行,同位角相等)平方根和立方根(讲义)课前预习1.填空:(_____)2=0;(_____)2=4;(_____)2=9;(_____)2=16.由上述运算可知:①零的平方是______;任何非零数的平方都是______;任何数的平方都是_______;_______(填“存在”或“不存在”)某个数的平方是负数.②互为相反数的两个数的平方________.知识点睛1.平方根:_____________________________________________________________________________,也叫做____________,记作________,读作“____________”.2.一个正数有_____个平方根,它们____________;0有____个平方根,是________;负数________平方根.3.算术平方根:_______________________________________________________________________________,记作_______,读作“________”.0的算术平方根是______.4.求一个数a 的平方根的运算,叫做_____,其中a 叫做_______.5.立方根:_______________________________________________________________________________,也叫做__________,记作________,读作“____________”.6.正数的立方根是______;0的立方根是______;负数的立方根是______.7.求一个数a 的立方根的运算叫做______,其中a 叫做_______.精讲精练1.的平方根是_________;2的算术平方根是_______.2.的值为______的平方根为______;的算术平方根是______的平方根是______.3.____________;______;若x 2=(-7)2,则x =__________.4.下列各式中,正确的是( )AB .412114⎛⎫⎪⎝⎭-2+==2==0.6=±C D 13=6=±5.下列各式中,正确的是()A .-(-7)=7B .=1C D6.下列说法正确的是( )A .-2是-4的平方根B .2是(-2)2的算术平方根C .(-2)2的平方根是2D .8的平方根是47.下列说法正确的是( )A .-81的平方根是±9B .任何数的平方是非负数,因而任何数的平方根也是非负数C .任何一个非负数的算术平方根都不大于这个数D .2是4的平方根8.一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是__________.9.,则2x+5的平方根是______;若2m +2的平方根是±4,3m +n +1的算术平方根是5,则m +2n 的值是_____.10.____;____________.11.一个正数的平方根是a +2与2a -5,求这个正数.12.=,,其中正确的有()个.A .1B .2C .3D .413._________;_________;________;_________.14.下列说法正确的是( )A .-4没有立方根B .1的立方根是C .的立方根是D .-5的立方根是15.下列说法错误的是()A .2是8的立方根B .±4是64的立方根41221332244=+=0.1=±2=2=2===340.1=10=27=-====1±3616135-C .是的立方根D .(-4)3的立方根是-416.________;_________;_________;_________.17.下列说法正确的是()A .一个有理数的平方根有两个,它们互为相反数B .一个有理数的立方根,不是正数就是负数C .如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1中的一个D .如果一个数的平方根是这个数本身,那么这个数一定是1或者018.的平方根是________的立方根是________.19.若a 2=1,则=______.20.若x=,则=________.21.若x <0,则=________,=________.【参考答案】 课前预习1.0;;;①0;正数;非负数;不存在②相等知识点睛1.一般地,如果一个数的平方等于a ,那么这个数就叫做a 的平方根二次方根;a 2.两,互为相反数;一,0本身;没有3.一般地,如果一个正数的平方等于a ,那么这个正数x 就叫做a 的算术平方根a ;04.开平方,被开方数5.一般地,如果一个数的立方等于a ,那么这个数就叫做a 的立方根13-127-3=3===3a 32x 33x 2±3±4±a 6.正数;0;负数7.开立方,被开方数精讲精练1.;2.2;;3.8;0;;4.C5.B6.B7.D8.9.;1310.a ;-a ;;11.912.B13.3;-10;-5;14.D 15.B16.a ;-a ;a ;-a 17.C 18.;219.20.221.-x ,x211±142±147±3±a a 162±1±平方根和立方根(随堂测试)1.下列说法正确的是( )A .的算术平方根是±6B的平方根是±6C .5是25的算术平方根D .25的立方根是±52.______________.3.=_______.4.一个正数的平方根是和,求这个正数.【参考答案】1.C2.3.8,24.这个正数是252(6)-3(++27a -4a +平方根和立方根(习题)例题示范例1:一个正数的平方根是a +1与-2a +1,求这个正数.解:∵一个正数的平方根是a +1与-2a +1∴a +1+(-2a +1)=0∴a =2∴a +1=3,-2a +1=-3∵(±3)2=9∴这个正数是9例2的平方根是__________.思路分析数学符号语言与文字语言同时出现,分两步运算,先开立方,再开平方.=4,标注在旁边;第二步:转化为“4的平方根是_____”,4的平方根是±2.的平方根是±2.巩固练习1.下列说法错误的是()A BC .2的平方根是D .-81的平方根是2.下列说法正确的是()A .-0.064的立方根是0.4B .-9的平方根是C .16D .0.01的立方根是0.000 0013.下列说法正确的是( )A .7是49的算术平方根,即B .7是的算术平方根,即C .是49的平方根,即D .是49的平方根,即4.若和都有意义,则满足的条件是()1=1=-9±3±749±=2)7(-7)7(2=-7±749=±7±749±=a a -aA .B .C .D .5.一个正数的两个平方根的和是________,商是___________.6.若一个实数的算术平方根等于它的立方根,则该数是______.7.算术平方根等于它本身的数是______________,立方根等于它本身的数是______________.8._______________;______________;=_______.9.若一个数的平方根是,则这个数的立方根是_________.10._______;的算术平方根是_________.11.=________.12.若=__________.13.当m _________有意义.14.有意义,则a 能取得的最小整数为________.思考小结1.请根据平方根和立方根的定义回答下列问题:①一个数的平方等于它本身,这个数是_______.②平方根等于它本身的数是_________.③算术平方根等于它本身的数是__________.④立方根等于它本身的数是_________.⑤一个数的立方等于它本身,这个数是_______.2.对于任意数a a吗?一定等于a 吗?①当a ≥0,当a <0=____a .a ≥0a ≤0=a 0a ≠====28±2(9)-0a ≥3+2②对于,a 作为被开方数,所以a _____0,因为乘方和开方互为_________,所以_______a .【参考答案】巩固练习1.D 2.C 3.B 4.C 5.0,-16.1或07.1,0;±1,08.0.3;0.3;;4;-6;1969.410.;911.4;12.013.≤314.1 思考小结1.①0,1;②0;③0,1;④-1,0,1;⑤-1,0,12.①,,≠②≥,逆运算,=223414a a -实数综合应用(讲义)知识点睛1.________________________________叫做无理数.无理数的和、差、积、商________是无理数.2.________________________________统称为实数.实数和数轴上的点是一一对应的.3.数a 的相反数是________.一个正实数的绝对值是_______;一个负实数的绝对值是__________;0的绝对值是_______.4.无理数的整数部分与小数部分的整数部分与小数部分.解:∵,∴<2,的整数部分为1,小数部分为.5.比较大小的方法:估值法,作差法,乘方法.精讲精练1.已知:,,,,3.141 59,-1,0.202 002 000 2…(相邻两个2之间0的个数逐次加1).其中,是有理数的有___________________________________,是无理数的有_______________________________________.2.下列说法正确的是( )A .无限小数都是无理数B .实数都能用数轴上的点表示C .带根号的数都是无理数D .无理数的和都是无理数3.下列说法中:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数.其中正确的是( )A .②③B .②③④C .①②④D .①②4.计算:11-11)12--=-122π∙7.3227-(1); (2(3; (4; (5;(6.5.的值()A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间6.a 和b之间,即a b ,则a+b =______.7.若的整数部分是a ,小数部分是b ,则a=______,b =______.8.若和a 和b ,则a +b =____.9.用适当的方法比较下列各组数的大小.(1)与;(2)7;+2--++2-937+387-3+(3;(4;(5;(6)与. 10.已知实数a ,b ,c 在数轴上的位置如图所示,11.已知实数a ,b ,c 在数轴上的位置如图所示,0.58-5335+12.自由下落物体的高度h (m)与下落时间t (s)的关系是h =4.9t 2.有一学生不慎让一个玻璃杯从19.6米高的楼上自由下落,则玻璃杯到达地面需要多长时间?13.一个正方体木块的体积为1 000 cm 3,现要把它锯成8块同样大小的正方体小木块,则小木块的棱长是多少?【参考答案】知识点睛1.不循环小数,不一定2.有理数和无理数 3.-a ;它本身;它的相反数;0精讲精练1.属于有理数的是,,,3.141 59,-1属于无理数的是,0.202 002 000 2…2.B 3.C 4.(1;(2;(3);(4)4;(5)13;(6)12 3.7∙227-2π21155。
人教版初一数学下册同步精编讲义

第1讲相交线知识点1 直线交点个数1. 两条直线交于一点,我们称这两条直线相交,相对的,我们称这两条直线为相交线.2. n条直线两两相交,最多有1+2+3+…+(n﹣1)=()12n n-个交点,最少有1个交点.【典例】1.观察下列平面图形:第一个图2条直线相交,最多有1个交点;第二个图3条直线相交最多有3个交点;第三个图4条直线相交;最多有6个交点,…,像这样,则30条直线相交,最多交点的个数是_____________.【方法总结】根据2条,3条,4条直线相交时最多的交点个数发现规律,根据规律,写出n条相交线交点最多的个数的表达式:1+2+3+4+5+…+(n﹣1),因为1+2+3+4+5+…+(n﹣1)=,所以n条相交线交点最多的个数为,令n=30即可求出答案.一般地:n条直线两两相交,最多有()12n n-个交点,最少有1个交点.【随堂练习】1.在平面内,若两条直线的最多交点数记为a1,三条直线的最多交点数记为a2,四条直线的最多交点数记为a3,…,依此类推,则.2.平面上有10条直线,其中4条直线交于一点,另有4条直线互相平行,这10条直线最多有几个交点?它们最多能把平面分成多少个部分?知识点2 邻补角与对顶角邻补角1. 邻补角:两个角有一条公共边,他们的另一边互为反向延长线,具有这种关系的两个角互为邻补角.2. 邻补角的模型:∠1和∠3是邻补角,∠1和∠4是邻补角,∠2和∠3是邻补角,∠2和∠4是邻补角,特点:①成对出现;②两个角有公共的顶点;③两个角有一条公共边,另一边互为反向延长线.3. 邻补角的性质:两个角的和为180°.对顶角1. 对顶角的模型:∠1和∠2是对顶角,∠3和∠4是对顶角.特点:①成对出现;②两个角有公共的顶点;③每个角的两边互为另一个角的反向延长线.2. 对顶角的性质:对顶角相等.【典例】1.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角:__________,∠EOB的邻补角:______________; (2)若∠AOC=70°且∠BOE:∠EOD=2:3,求∠AOE的度数.【方法总结】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出∠BOD的度数,再根据∠BOE:∠EOD=2:3求出∠BOE的度数,然后利用互为邻补角的两个角的和等于180°即可求出∠AOE的度数.本题主要考查了对顶角和邻补角的定义,牢记“对顶角相等”和“互为邻补角的两个角的和等于180°”是解题的关键.【随堂练习】1.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE∠EOC(1)求∠AOE的度数;(2)将射线OE绕点O逆时针旋转α°(0°<α<360°)到OF.①如图2,当OF平分∠BOE时,求∠DOF的度数;②若∠AOF=120°时,直接写出α的度数.2.如图,直线CD与EF相交于点O,∠COE=60°,将一直角三角尺AOB的直角顶点与O重合,OA平分∠COE.(1)求∠BOD的度数;(2)将三角尺AOB以每秒3°的速度绕点O顺时针旋转,同时直线EF也以每秒9°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤40).①当t为何值时,直线EF平分∠AOB;②若直线EF平分∠BOD,直接写出t的值.知识点3 垂线垂线1. 两直线相交所形成的角中,当有一个角等于90°时,这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,他们的交点叫做垂足.2. 垂直的模型:说法:①直线a是直线b的垂线(或直线b是直线a的垂线),垂足为O.②直线a垂直于直线b于点O(或直线b垂直于直线a于点O).结论:两垂直直线形成的四个角都是直角,均为90°.3. 在同一平面内,过一点有且只有一条直线与已知直线垂直.垂线段1. 过直线外一点作直线的垂线,以这个点和垂足为端点的线段叫做这个点到直线的垂线段.2. 垂线段模型:线段AB是点A到直线a的垂线段.3. 连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.4. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.注意:距离是长度,不是线段.【典例】1.如图,点O在直线AB上,点M,N在直线AB外,若MO⊥AB,NO⊥AB,垂足均为O,则可得点N在直线MO上,其理由是______________.2.如图,直线AB与CD相交于O,OE⊥AB,OF⊥CD.(1)①图中与∠AOF互余的角是___________;②与∠COE互补的角是___________.(把符合条件的角都写出来)(2)如果∠AOC比∠EOF的小6°,求∠BOD的度数.【方法总结】结论:在同一平面内,已知直线AB,若MO⊥AB,NO⊥AB且垂足为O,则M,O,N 在同一条直线上.方法:求一个角的度数时,若涉及多个有关联的未知角,用方程的思想解题比较简单明了.设所求角度数为x,用x表示出题目中有关联的各个角,根据等量关系列出方程,解方程,进而求得答案.3.如图,AC⊥CB于C,CD⊥AB于D,下列关系中一定成立的是_________(填序号)(1)AD>CD;(2)CD>BD;(3)BC>BD;(4)AC>AD.4.如图,BC⊥AC,BC=3,AC=4,AB=5,则点C到线段AB的距离是________.【方法总结】注意:垂线段是一条线段,距离是长度,即一个有长度单位的一个数值.点到直线的距离即垂线段的长度.一定要分清两者的联系与区别.结论:已知直角三角形的两直角边分别为a,b,斜边为c,则斜边上的高为,即直角顶点到斜边的距离.【随堂练习】1.如图,OA⊥OB,引射线OC(点C在∠AOB外),OD平分∠BOC,OE平分∠AOD.(1)若∠BOC=40°,请依题意补全图,并求∠BOE的度数;(2)若∠BOC=α(0°<α<90°),请直接写出∠BOE的度数(用含α的代数式表示).2.根据要求画图,并回答问题.已知:直线AB,CD相交于点O,且OE⊥AB.(1)过点O画直线MN⊥CD;(2)若点F是(1)中所画直线MN上任意一点(O点除外),若∠AOC=35°,求∠EOF的度数.知识点4 同位角、内错角、同旁内角模型:1. 同位角:两条直线被第三条直线所截形成的角中,若两个角分别在两直线的同一方,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.如∠1与∠8,∠2与∠5.2. 内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两侧,则这样一对角叫做内错角.如∠1与∠6,∠4与∠5.3. 同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的同一旁,则这样一对角叫做同旁内角.如∠1与∠5,∠4与∠6.4. 三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U” 形.【典例】1.如图,与∠α构成同旁内角的角有________个.2.如图,用数字标出的八个角中,同位角、内错角、同旁内角分别有哪些?请把它们全部写出来.【方法总结】判断一对角是不是同位角、内错角或同旁内角有两种方法:①按定义判断,找到截线(两个角的公共边所在的直线)与被截线,判断两个角的位置关系;②按两个角构成的形状判断,若构成“F”形,则为同位角;若构成“Z”形,则为内错角;若构成“U”形,则为同旁内角.数角的对数的时候,要认真仔细,做到不重不漏.【随堂练习】1.已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1﹣同旁内角→∠9﹣内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6﹣同位角→∠10﹣同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?2.如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.综合运用1.如图,2条直线两两相交最多能有1个交点,3条直线两两相交最多能有3个交点,4条直线两两相交最多能有6个交点,5条直线两两相交最多能有_________个交点,…,n条直线两两相交最多能有___________个交点(用含有n的代数式表示)2.如图所示,直线AB,CD相交于点O,∠AOF=∠DOE.(1)图中的对顶角有___对,它们是_____________________;(2)∠COB的邻补角是___________,∠COE的补角是___________;(3)若∠AOC=70°,∠DOE=32°,那么∠BOE=_____,∠DOF=______.3.如图所示,某自来水厂计划把河流AB中的水引到蓄水池C中,问从河岸AB的何处开渠,才能使所开的渠道最短?画图表示,并说明设计的理由.4.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA,OB的垂线,分别交BO 的延长线于M、N,线段_______的长表示点P到直线BO的距离;线段_____的长表示点M到直线AO的距离;线段ON的长表示点O到直线______的距离;点P到直线OA的距离为______.5.如图,点A表示小雨家,点B表示小樱家,点C表示小丽家,她们三家恰好组成一个直角三角形,其中AC⊥BC,AC=900米,BC=1200米,AB=1500米.(1)试说出小雨家到街道BC的距离以及小樱家到街道AC的距离.(2)画出表示小丽家到街道AB距离的线段.6.如图,已知直线a,b被直线c,d所截,直线a,c,d相交于点O,按要求完成下列各小题.(1)在图中的∠1~∠9这9个角中,同位角共有多少对?请你全部写出来;(2)∠4和∠5是什么位置关系的角?∠6和∠8之间的位置关系与∠4和∠5的相同吗?7.如图,∠1和∠4,∠2和∠5,∠3和∠5,∠3和∠4分别是哪两条直线被哪一条直线多截成的?它们各是什么角?8.如图所示,a、b两条直线交于一点,生成∠9,探索∠9与原有角的位置关系.(1)直线b、c被直线a所截,∠9与∠4是_______.(2)∠9与∠5是直线_______被直线_______所截形成的_______.(3)图中共有几对同旁内角?9.已知直线AB和CD相交于O点,CO⊥OE,OF平分∠AOE,∠COF=34°,求∠BOD的度数.第2讲平行线知识点1 平行公理及推论1. 在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.直线a与直线b不相交时,直线a与b互相平行,记作a∥b.2. 平行公理:经过直线外一点,有且只有一条直线与已知直线平行.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 【典例】1.如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与(1)中所作的直线平行吗?【方法总结】本题考查了平行公理及其推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.在公理中,要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论是判定两直线平行的一种常用方法,要牢固掌握.【随堂练习】1.下列四种说法:①过一点有且只有一条直线与已知直线平行;②在同一平面内,两条不相交的线段是平行线段;③相等的角是对顶角;④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.其中,错误的是_____(填序号).2.下列说法中:①同位角相等;②过一个点有且只有一条直线与已知直线垂直;③两直线相交成的四个角中相邻两角的角平分线互相垂直;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c;⑥若a⊥b,b⊥c,则a ⊥c.其中正确的说法是____.知识点2 平行线的判定1. 平行线的判定方法:判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.如图1,∵∠4=∠2,∴a∥b.判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.如图2,∵∠4=∠5,∴a∥b.判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.如图3,∵∠4+∠1=180°,∴a∥b.2. 重要结论:在同一平面内,垂直于同一条直线的两条直线互相平行.注意:条件“同一平面”不能缺少,否则结论不成立.【典例】1.如图,BE平分∠ABD,DE平分∠BDC,且∠E为直角,AB与CD平行吗?试说明理由.【方法总结】首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2(∠α+∠β).由∠E为直角可得∠α+∠β=90°,进而得到∠ABD+∠BDC=180°,然后根据“同旁内角互补,两直线平行”可得答案.此题主要考查了平行线的判定,关键是掌握角平分线的定义和平行线的判定方法.【随堂练习】1.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.2.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.知识点3 平行线的性质平行线的性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.如图1,∵a∥b,∴∠4=∠2.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.如图2,∵a∥b,∴∠4=∠5.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:同旁内角互补,两直线平行.如图3,∵a∥b,∴∠4+∠1=180°.【典例】1.如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,并说明理由.【方法总结】依据点P为A,B在直线MN上的反射点,即可得到∠APM=∠BPQ,再根据平行线的性质,即可得到∠PAB=∠PBA,经过等量代换可得∠PBA=∠QBG,所以点B是P,Q在直线HG 上的反射点.本题是新定义题,正确理解“反射点”的概念和特征,并熟练应用平行线的性质是解题的关键.【随堂练习】1.如图,已知AM∥BN,∠A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D.(1)求∠CBD的度数;(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.2.如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.(1)求证:∠ABD=∠C;(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,①求证:∠ABF=∠AFB;②求∠CBE的度数.3.已知直线l1∥l2,直线l3与l1、l2分别交于C、D两点,点P是直线l3上的一动点,如图①,若动点P在线段CD之间运动(不与C、D两点重合),问在点P的运动过程中是否始终具有∠3+∠1=∠2这一相等关系?试说明理由;如图②,当动点P在线段CD之外且在CD的上方运动(不与C、D两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由.知识点4 平行线的判定与性质的综合运用两直线平行⇔同位角相等.两直线平行⇔内错角相等.同旁内角互补⇔两直线平行.“⇔”叫做“等价于”,即由左边能推出右边,由右边也能推出左边.【典例】1.如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.2.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=____________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?(3)已知:如图3,三角形ABC,试说明:∠A+∠B+∠C=180°.【方法总结】平行线的判定是由角的关系得到两直线平行,平形线的性质是由两直线平行得到角之间的关系,他们都可以作为说理的依据.其他常见的说理依据有:已知、等量代换、对顶角相等、等角的余角相等、等角的补角相等、平行于同一条直线的两条直线互相平行、三角形的内角和等于180°等.【随堂练习】1.阅读下列材料:已知:如图1,直线AB∥CD,点E是AB、CD之间的一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D.小冰是这样做的:证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.图1即∠BED=∠B+∠D.请利用材料中的结论,完成下面的问题:已知:直线AB∥CD,直线MN分别与AB、CD交于点E、F.(1)如图2,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;(2)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2.求证:∠FG1E+∠G2=180°.2.先阅读下面的解题过程,再解答问题:如图①,已知AB∥CD,∠B=40°,∠D=30°,求∠BED的度数.解:过点E作EF∥AB,则AB∥CD∥EF,因为EF∥AB,所以∠1=∠B=40°又因为CD∥EF,所以∠2=∠D=30°所以∠BED=∠1+∠2=40°+30°=70°.如图②是小军设计的智力拼图玩具的一部分,现在小军遇到两个问题,请你帮他解决:(1)如图②∠B=45°,∠BED=75°,为了保证AB∥CD,∠D必须是多少度?请写出理由.(2)如图②,当∠G、∠GFP、∠P满足什么关系时,GH∥PQ,请直接写出满足关系的式子,并在如图②中画出需要添加的辅助线.知识点5 命题、定理、证明1. 命题:判断一件事情的语句叫做命题.数学中的命题常可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.2. 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.3. 定理:经过推理证实的真命题叫做定理.判断一个命题正确性的推理过程叫做证明.4. 判断一个命题是真命题,需要进行证明;判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.【典例】1.判断下列命题是真命题还是假命题.如果是真命题,请证明,如果是假命题,请举出反例.(1)两个锐角的和是钝角;(2)在同一平面内,垂直于同一条直线的两条直线互相平行.【方法总结】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.(1)任意找两个锐角,使它们的和为锐角或直角即可;(2)写出已知、求证,作出图形,利用平行线的判定即可证明命题为真命题.【随堂练习】1.如图,给出三个论断:①∠A=∠B;②AB∥CD;③∠BCD=∠DCE,试回答下列问题:(1)请用其中的两个论断作为条件,另一个作为结论,写出所有的真命题(用序号写出命题,如:如果*、*,那么*);(2)选择(1)中你写出的任一命题,说明理由.2.如图,直线AB,CD被直线AE所截,直线AM,EN被MN所截.请你从以下三个条件:①AB∥CD;②AM∥EN;③∠BAM=∠CEN中选出两个作为已知条件,另一个作为结论,得出一个正确的命题.(1)请按照:“∵_______,_______;∴___________”的形式,写出所有正确的命题;(2)在(1)所写的命题中选择一个加以证明,写出推理过程.综合运用1.“垂直于同一直线的两直线平行”的题设:_______________________________________,结论:___________________________.2.如图,已知长方形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C',若∠ADC'=24°,则∠BDC的度数为______________.3.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)所示.以上说法谁对谁错?为什么?4.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?5.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?6.判断下列命题是真命题还是假命题;如果是假命题,请举一个反例.(1)两个锐角的和是锐角;(2)若a>b,则a2>b2;7.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE 平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.8.如图,已知:AB∥CD,∠1=∠2,∠3=∠4,求证:(1)∠4=∠DAC;(2)AD∥BE.第3讲平移知识点1 平移的性质1.平移:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移.平移不改变图形的形状和大小,也不会改变图形的方向,但改变图形的位置;2.图形平移的三要素:原位置、平移方向、平移距离.3.平移的性质:(1)对应点的连线平行(或共线)且相等;(2)对应线段平行(或共线)且相等;(3)对应角相等,对应角两边分别平行,且方向一致.【典例】1.已知小正方形的边长为2厘米,大正方形的边长为4厘米,起始状态如图所示,大正方形固定不动,把小正方形以1厘米∕秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.完成下列问题:(1)当t=1.5秒时,S=_______平方厘米;(2)当S=2时,小正方形平移的时间为_______秒.2.如图,已知△ABC的面积为16,BC的长为8,现将△ABC沿BC向右平移m个单位到△A′B′C′的位置.若四边形ABB′A′的面积为32,求m的值.3.已知,如图,CB∥OA,∠C=∠OAB=120°,E、F在CB上,且满足∠FOB=∠FBO,OE 平分∠COF,(1)求∠EOB的度数;(2)若向右平行移动AB,其他条件不变,那么∠OBC:∠OFC的值是否发生变化?若变化,找出其中的规律,若不变,求出这个比值;(3)若向右平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,请直接写出∠OBA的度数,若不存在,说明理由.【方法总结】典例1小正方形平移后与大正方形的重叠部分随着时间的变化而变化,其变化趋势是先变大后变小,最大的面积就是小正方形的面积;已知面积求运动时间就需要分类讨论.典例2三角形沿着某一边移动,一组对应边和两条对应顶点的连线组成的四边形是平行四边形,该平行四边形与原三角形有相同的高;过三角形的一个顶点作对边的平行线,当对边不动,该顶点在做好的平行线上移动时,新三角形的面积不变(同底等高原理).典例3考查平移与平行线综合,求不同角之间的关系,利用平行线的性质(内错角相等、同旁内角互补)将已知角转化成所求角(或所求角的部分),进而求二者之间的关系.【随堂练习】1.如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,DE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.2.如图,已知直线l1∥l2,点A、B在直线l1上,点C、D在直线l2上,点C在点D的右侧,∠ADC=80°,∠ABC=n°,BE平分∠ABC,DE平分∠ADC,直线BE、DE交于点E.(1)写出∠EDC的度数_____;(2)试求∠BED的度数(用含n的代数式表示);(3)将线段BC向右平行移动,其他条件不变,请直接写出∠BED的度数(用含n的代数式表示)3.如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.知识点2 平移作图1.平移作图的方法:平行线法、对应点连线法、全等图形法2.平移作图的步骤:(1)找关键点;(2)过每个关键点作平移方向的平行线,截取与之相等的距离,标出对应点;(3)连接对应点,将各个对应点按照原图的顺序相连,即得到平移后的图形.【典例】1.如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.【方法总结】图形上的某一点移动的轨迹同整个图形的移动轨迹是一致的,可以通过已知点的运动轨迹求出图形上所有点的运动轨迹;网格图上求一个图形的面积除了运用已知图形的面积公式以外,还可以用割补法,转化为大的长方形的面积减去其余部分的面积.【随堂练习】1.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC 向左平移2格,再向上平移3格,得到△A′B′C′.(1)请在图中画出平移后的△A′B′C′;(2)画出平移后的△A′B′C′的中线B′D′(3)若连接BB′,CC′,则这两条线段的关系是_________________(4)△ABC在整个平移过程中线段AB扫过的面积为____(5)若△ABC与△ABE面积相等,则图中满足条件且异于点C的格点E共有____个(注:格点指网格线的交点)2.如图,在方格纸中,已知格点△ABC及其外一点D,平移△ABC,使点A移动到点D.完成下列作图:(1)画出平移后的三角形;(2)画一条直线l,将△ABC分成面积相等的两部分.知识点3 平移的运用【典例】1.如图是一块长方形ABCD的场地,长AB=(3a+2)米,宽AD为(a+1)米,从A、B 两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为_______平方米.2.比较图甲中折线A→D→E→F→…→C与线段AB+BC的长,如果AB=20米,BC=12米.(1)已知在△ABC中,∠B=90°,你能求出折线A→D→E→…→C的长吗?(2)你能比较图乙中,中间的小正方形的周长和与大正方形周长的大小吗?【方法总结】当矩形被中间互相平行的一组或两组平行的直线或曲线分割后,求剩余部分的面积的方法如下:(1)当分割线能够通过平移组成矩形(或矩形的部分)时,可以平移分割线,求剩余的矩形面积;(2)当分割线不能组成规则图形时,可以平移分割线以外的部分,组成新的图形.【随堂练习】1.(1)如图,它的周长是____cm.(2)已知:|a|=2,|b|=5,且a>b,求a+b的值.。
初中七年级下册数学讲义第2讲-实数的表示与开方(上体馆)

1对3辅导讲义学员姓名: 学科教师: 年 级: 辅导科目: 授课日期时 间主 题第2讲-实数的表示与开方学习目标1.进一步理解无理数、实数、平方根等概念; 2.理解立方根和开立方运算以及开n 次方运算; 3. 会进行简单的实数运算;4. 掌握实数大小比较的方法,会根据情况灵活选择方法进行实数大小比较。
教学内容1. -0.064的立方根是_________,4的立方根是__________. -0.4, 342. 若,则___________. 1±3. 为最大的负整数,则a 的值为___________. 4±4、若一个数的立方根就是它本身,则这个数是________。
0、1、-1知识点一、立方根与开立方问题:什么是立方根?什么是开立方运算?x 21=x 3=回顾:立方根和开立方的性质有哪些?1.正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零;2.任意实数都有立方根,且只有一个立方根; 可以用具体的例子引导学生总结3. ()33a a =,33a a =.(注意与平方根和开平方相应性质的对比)4.33a a -=-.例1. 下面说法正确的是( )A .一个数的立方根有两个,它们互为相反数B .负数没有立方根C .如果一个数有立方根,那么它一定有平方根D .一个数的立方根与被开方数同号 例2.33(2)-的值是 .例3. 立方根等于本身的数是 ,平方根等于本身的数是 . 答案:D ; -2; 0,1,-1; 0,1; 试一试:1.64的平方根是 ,64的立方根是 .2.16的平方根是 ,64的立方根是 .3.已知()38210x -+=,则x = .答案:1. 8,4±; 2. 2,2±; 3. 32; 【例题精讲】 例4.填表:a0.0000010.001 1 1000 10000003a教法指导:建议让学生观察并讨论本题的解题思路。
参考答案:0.01 0.1 1 10 100例5.根据上表总结规律:被开方数的小数点每向 移动 位,则立方根的小数点相应地向 移动 位. 教法指导:这个结论让学生多观察总结,还可以再举例让学生理解 参考答案:右,3,右,1 【试一试】已知35.25 1.738=,35258.067=,则30.000525-=( )A . 17.38-B . 0.01738-C . 806.7-D . 0.08067- 参考答案:D知识点二、立方根运算 【例题精讲】 例6. 计算:(1)38515; (2)327102--- ; (3)3387)(- ; (4)6356)(-; (5)312564-38+1001 ; (6)3125.0-1613+23)871(-.教法指导:建议让学生独立完成,可以设置为相互PK 的形式。
七年级数学下 第八章 幂的运算讲义全

泛 美 教 育 个 性 化 教 学 专 用 教 案学生姓名:科目:数学 七年级 备课时间: 年 月 日讲次:第 讲 授课教师:章老师 授课时间: 年 月 日 至 上课后,学生签字: 年 月 日 教学类型: ■强化基础型 □引导思路型 □错题讲析型 ■督导训练型■效率提升型 □单元测评型 □综合测评型 □应试指导型□专题总结型 □其它:第一讲:幂的运算教学目标:1.学会应用同底数幂的乘法; 2.学会应用同底数幂的除法; 3.掌握幂的乘方; 4. 理解积的乘方。
教学重难点:1. 学会应用同底数幂的乘法;2. 学会应用同底数幂的除法;3. 掌握幂的乘方。
教学内容 :一、同底数幂的乘法(重点)1.运算法则:同底数幂相乘,底数不变,指数相加。
用式子表示为: n m n m a a a +=⋅(m 、n 是正整数)2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.【典型例题】1.计算(-2)2007+(-2)2008的结果是( )A .22015B .22007C .-2D .-220082.当a<0,n 为正整数时,(-a )5·(-a )2n 的值为( )A .正数B .负数C .非正数D .非负数3.(一题多解题)计算:(a -b )2m -1·(b -a )2m ·(a -b )2m+1,其中m 为正整数.4.(一题多变题)(1)已知x m =3,x n =5,求x m+n . (2)一变:已知x m =3,x n =5,求x 2m+n ;(3)二变:已知x m =3,x n =15,求x n .二、同底数幂的除法(重点)1、同底数幂的除法同底数幂相除,底数不变,指数相减.公式表示为:()0,m n m n a a a a m n m n -÷=≠>、是正整数,且.2、零指数幂的意义任何不等于0的数的0次幂都等于1.用公式表示为:()010a a =≠.3、负整数指数幂的意义任何不等于0的数的-n(n 是正整数)次幂,等于这个数的n 次幂的倒数,用公式表示为()10,n n a a n a-=≠是正整数 4、绝对值小于1的数的科学计数法对于一个小于1且大于0的正数,也可以表示成10n a ⨯的形式,其中110,a n ≤<是负整数.注意点:(1) 底数a 不能为0,若a 为0,则除数为0,除法就没有意义了;(2) ()0,a m n m n ≠>、是正整数,且是法则的一部分,不要漏掉. (3) 只要底数不为0,则任何数的零次方都等于1.【典型例题】一、选择 1.在下列运算中,正确的是( )A .a 2÷a=a 2B .(-a )6÷a 2=(-a )3=-a 3C .a 2÷a 2=a 2-2=0 D .(-a )3÷a 2=-a 2.在下列运算中,错误的是( )A .a 2m ÷a m ÷a 3=a m -3B .a m+n ÷b n =a mC .(-a 2)3÷(-a 3)2=-1D .a m+2÷a 3=a m -1 二、填空题1.(-x 2)3÷(-x )3=_____. 2.[(y 2)n ] 3÷[(y 3)n ] 2=______.3.104÷03÷102=_______. 4.(π-3.14)0=_____.三、解答1.(一题多解题)计算:(a -b )6÷(b -a )3. 2.(巧题妙解题)计算:2-1+2-2+2-3+…+2-2008.3、已知a m =6,a n =2,求a 2m-3n 的值.4.(科外交叉题)某种植物的花粉的直径约为3.5×10-5米,用小数把它表示出来.三、幂的乘方(重点)幂的乘方,底数不变,指数相乘.公式表示为:()()nm mn a a m n =、都是正整数. 注意点:(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数.(2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开.【典型例题】1.计算(-a 2)5+(-a 5)2的结果是( )A .0B .2a 10C .-2a 10D .2a 72.下列各式成立的是( )A .(a 3)x =(a x )3B .(a n )3=a n+3C .(a+b )3=a 2+b 2D .(-a )m =-a m3.如果(9n )2=312,则n 的值是( )A .4B .3C .2D .14.已知x2+3x+5的值为7,那么3x2+9x-2的值是( )A .0B .2C .4D .66.计算:(1)233342)(a a a a a +⋅+⋅ (2)22442)()(2a a a ⋅+⋅补充:同底数幂的乘法与幂的乘方性质比较:幂的运算 指数运算种类 同底数幂乘法乘法 加法 幂的乘方 乘方 乘法四、积的乘方运算法则:两底数积的乘方等于各自的乘方之积。
第1讲 幂的运算-七年级下册数学同步精品讲义

第1讲 幂的运算1. 掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.知识点01同底数幂的乘法+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m nm n a a a +=⋅(,m n 都是正整数).【知识拓展1】计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【即学即练1】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);知识精讲目标导航(3)232(2)(2)n⨯-⋅-(n 为正整数).【即学即练2】计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【知识拓展2】已知2220x +=,求2x 的值.知识点02幂的乘方()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n a aa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识拓展1】计算:(1)2()m a ; (2)34[()]m -; (3)32()m a-.【即学即练1】计算:(1)23[()]a b --; (2)32235()()2y y y y +-;(3)22412()()m m x x -+⋅; (4)3234()()x x ⋅.【知识拓展2】已知25mx =,求6155m x -的值.【即学即练1】已知2a x =,3b x =.求32a bx +的值.【即学即练2】已知84=m ,85=n ,求328+m n的值.【即学即练3】已知435,25ab m n ==,请用含m 、n 的代数式表示43625a b +.【即学即练4】已知2139324n n ++=,求n 的值;【即学即练5】已知322,3m m a b ==,则()()()36322mm m ma b a b b +-⋅= .知识点03积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识拓展1】指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【即学即练1】计算:(1)24(2)xy - (2)24333[()]a a b -⋅-【即学即练2】下列等式正确的个数是( ). ①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个【知识拓展2】计算:1718191(3)(2)6⎛⎫-⨯-⨯- ⎪⎝⎭.知识点04 同底数幂的除法同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【知识拓展1】计算:(1)83x x ÷; (2)3()a a -÷; (3)52(2)(2)xy xy ÷; (4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【即学即练1】计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【知识拓展2】已知32m =,34n =,求129m n+-的值.【即学即练1】已知2552m m⨯=⨯,求m 的值.1.已知(-x )a +2⋅ x 2a ⋅ (-x )3= x 32 , a 是正整数,求a 的值.2.已知n 为正整数,化简: (-x 2 )n+ (-x n )2.3.已知: 3x +1 ⋅ 2x - 3x ⋅ 2x +1 = 216 ,试求 x 的值.能力拓展4.已知35m =,45381m n -=,求201620151n n ⎛⎫-⋅ ⎪⎝⎭的值.5.如果整数x y z 、、满足151627168910xy z⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求2x y z y +-的值.6.已知()231x x +-=,求整数x .题组A 基础过关练一、单选题1.(2022·全国·七年级)化简1x y +-()的结果是( )A .11x y --+B .1xy C .11x y+D .1x y+ 2.(2022·全国·七年级)计算52x x ÷结果正确的是( ). A .3B .3xC .10xD .25x3.(2021·甘肃白银·七年级期末)花粉的质量很小,一粒某种植物花粉的质量约为0.000036mg ,那么0.000036mg 用科学记数法表示为( ) A .53.610mg -⨯ B .63.610mg -⨯C .73.610mg -⨯D .83.610mg -⨯二、填空题4.(2022·黑龙江杜尔伯特·七年级期末)若am =10,an =6,则am +n =_____.分层提分5.(2022·全国·七年级)计算34x x x ⋅+的结果等于________. 6.(2022·黑龙江杜尔伯特·七年级期末)22013•(12)2012=_____. 7.(2021·上海虹口·七年级期末)计算:23(3)a =_______.8.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 9.(2022·全国·七年级)计算:0113()22-⨯+-=______.三、解答题10.(2022·全国·七年级)计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .11.(2018·全国·七年级课时练习)1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量,据估计地壳里含1×1010千克镭,试问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量?12.(2020·浙江杭州·模拟预测)计算题(结果用幂的形式表示):(1)2322⨯ (2)()32x (3)()()322533-⋅13.(2021·上海普陀·七年级期末)计算:2110213(2020)34π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭.题组B 能力提升练1.(2022·全国·七年级)计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.2.(2021·上海市民办新竹园中学七年级期中)计算:121432413()()()922x z y z y x------÷-⋅-3.(2022·全国·七年级)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”,一般地,把n aa a a a÷÷÷÷个(a ≠0)记作an ,读作“a 的n 次商”.【初步探究】(1)直接写出计算结果:23= ,(﹣3)4= ; (2)关于除方,下列说法错误的是 ;A .任何非零数的2次商都等于1;B .对于任何正整数n ,(﹣1)n =﹣1;C .34=43;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭.(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式.(﹣3)4= ;517⎛⎫⎪⎝⎭= .(4)想一想:将一个非零有理数a 的n 次方商an 写成幂的形式等于 . (5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .4.(2021·江苏·苏州市工业园区第一中学七年级阶段练习)已知10×102=1000=103, 102×102=10000=104, 102×103=100000=105.(1)猜想106×104= ,10m ×10n = .(m ,n 均为正整数) (2)运用上述猜想计算下列式子:①(1.5×104)×(1.2×105); ②(﹣6.4×103)×(2×106).5.(2022·全国·七年级)阅读,学习和解题. (1)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题: 比较34040,43030,52020的大小. (2)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题:已知am =2,an =3,求a 2m +3n 的值.(3)计算:(-16)505×(-0.5)2021.题组C 培优拔尖练一、单选题1.(2021·江苏·宜兴市实验中学七年级期中)计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( ) A .25033333⋅⋅⋅个 B .26033333⋅⋅⋅个 C .27033333⋅⋅⋅个 D .28033333⋅⋅⋅个2.(2022·全国·七年级)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2二、填空题3.(2019·浙江·温州市第二十三中学七年级期中)已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.4.(2021·北京八十中七年级期中)已知一列数:-2,4,-8,16,-32,64,-128,……,将这列数按如右图所示的规律排成一个数阵,其中,4在第一个拐弯处,-8在第二个拐弯处,-32在第三个拐弯处,-128在第四个拐弯处,……,则第六个拐弯处的数是________,第一百个拐弯处的数是___________.三、解答题5.(2019·甘肃·甘州中学七年级阶段练习)已知(﹣13xyz )2M =13x 2n+2y n+3z 4÷5x 2n ﹣1y n+1z ,自然数x ,z 满足123x z -⋅=72,且x =z ,求M 的值.6.(2021·全国·七年级专题练习)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Napier ,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler ,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(0,1)x a N a a =≠>,则x 叫做以a 为底N 的对数,记作log a x N =.比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2525=.我们根据对数的定义可得到对数的一个性质:a log(?)log M N M =+log (0,a 1,0,N 0)a N a M ≠>>>.理由如下:设a log M m =,a log N n =,所以m M a =,n N a =,所以m n m n MN a a a +==,由对数的定义得a log ()m n M N +=+,又因为a log log a m n M N +=+,所以log ()log log a a a MN M N =+.解决以下问题: (1)将指数35125=转化为对数式: .(2)仿照上面的材料,试证明:log log -log (0,1,0,0)a a a M M N a a M N N=≠>>> (3)拓展运用:计算333log 2log 18-log 4+= .7.(2019·江苏·汇文实验初中七年级阶段练习)(1)填空:21﹣20=______=2(_____)22﹣21=_____=2(______)23﹣22=______=2(______)…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+ (22019)8.(2021·全国·七年级专题练习)观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______; (3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.9.(2021·全国·七年级课时练习)探究:22﹣21=2×21﹣1×21=2( )23﹣22= =2( ),24﹣23= =2( ),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.10.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)。
七年级下册知识点讲解数学

七年级下册知识点讲解数学
中学数学是学习数学的基础,对于初中生来说,掌握好七年级
下册数学知识点是非常关键的。
本文将从数学基础、代数、几何、实数四个方面,为大家详细讲解七年级下册知识点。
一、数学基础
1. 整数:正整数、零、负整数及其在数轴上的表示。
2. 分数:分数的基本概念和性质,分数的互化、加减乘除以及
数量关系。
3. 小数:小数的读法、写法和数位的意义,小数的应用。
4. 比例:比例的含义、性质和应用。
二、代数
1. 代数式:代数式的含义、构成和基本性质。
2. 一元一次方程:方程的基本概念、解的概念、解的方法和应用。
3. 简单的三角方程:三角函数的概念和单位圆。
三、几何
1. 基本概念:点、直线、面以及它们之间的联系与分类。
2. 角与直线:角的基本概念、度量和分类;直线的性质及相关定理。
3. 曲线与图形:曲线的概念和分类;平面封闭图形的性质及相关定理。
4. 三角形:三角形的分类、性质及相关定理;三角形的构造和应用。
四、实数
1. 实数的概念:实数的类型、大小关系和四则运算。
2. 平方根:正数的平方根和负数的平方根,以及平方根的性质及应用。
3. 立方根:立方根的概念、性质和应用。
4. 数轴上的实数:实数在数轴上的表示、大小关系和坐标。
以上就是七年级下册数学知识点的详细讲解,希望能对大家学习和掌握数学有所帮助。
数学是一门需要反复练习的学科,只有通过多做练习题,才能更好地理解和掌握知识,提高自己的数学水平。
七年级数学下册知识点精讲

七年级数学下册知识点精讲数学是一门需要认真学习和掌握的科目。
在七年级下学期,学生将接触到更加深入的数学知识,如代数、几何等。
本文将为大家介绍七年级数学下册的知识点精讲,希望能够帮助同学们更好地理解和掌握这些知识点。
一、有理数的四则运算有理数是指可表示为分数形式的数,包括正数、负数和零。
在数学中,对有理数的四则运算是非常重要的,掌握了这些运算,对学生在后面的学习中将有很大的帮助。
1. 加法:同号两数相加,异号两数相减,保留符号取绝对值相加,结果的符号和被减数相同。
2. 减法:减去一个数相当于加上这个数的相反数。
3. 乘法:同号两数相乘得正,异号两数相乘得负。
4. 除法:两个非零有理数相除,可以变为分数,再化简。
二、图形的相似与全等在几何中,图形的相似和全等是两个极其重要的概念。
相似是指两个图形形状相似,但大小不同,而全等则是指两个图形既形状相似,且大小相等。
1. 相似:两个形状相同但大小不同的图形相似。
2. 全等:两个形状完全相同且大小相等的图形全等。
三、代数代数是数学的一个分支,它研究未知数和它们之间的关系。
在学习代数之前,需要先掌握一些基本概念和符号。
1. 代数式:用数、字母及其组合表示数或数之间关系的式子,称为代数式。
2. 变量:在代数式中,用字母表示未知数,称为变量。
3. 常数:在代数式中,所用的已知数称为常数。
4. 方程:等号两边各含有一个代数式,且它们的值相等的式子称为方程。
四、三角形三角形是几何中经常出现的图形之一,它的三边和三角都具有一定的性质和特点。
1. 等边三角形:三边相等的三角形称为等边三角形。
2. 等腰三角形:两边相等的三角形称为等腰三角形。
3. 直角三角形:其中一个角度为90度的三角形称为直角三角形。
五、绝对值绝对值是一个数的大小,与这个数是正数还是负数无关。
在数学中,绝对值是一项非常重要的基本概念。
1. 定义:一个实数a的绝对值,表示为|a|,定义为:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=-a。
第3讲 平方差公式七年级数学下册同步精品讲义

第3讲 平方差公式1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯.知识点公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式. 因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【知识拓展1】平方差公式1.运用乘法公式计算(4+x )(x ﹣4)的结果是( ) A .x 2﹣16B .x 2+16C .16﹣x 2D .﹣x 2﹣162.已知x +y =12,x ﹣y =6,则x 2﹣y 2= . 3.下列算式中不能利用平方差公式计算的是( ) A .(x +y )(x ﹣y ) B .(x ﹣y )(﹣x ﹣y )C .(x ﹣y )(﹣x +y )D .(x +y )(y ﹣x )4.计算(x +y )(x ﹣y )+16= . 5.(8x 2+4x )(﹣8x 2+4x )= . 6.若x 2﹣y 2=16,x +y =8,则x ﹣y = . 7.若x +y =5,x ﹣y =1,则x 2﹣y 2= .知识精讲目标导航8.若a=20170,b=2015×2017﹣20162,c=(﹣)2016×()2017,比较a,b,c大小(用“<”连接):.9.(3y+2x)(2x﹣3y)=.10.化简:(a+2)(a2+4)(a4+16)(a﹣2)=.11.下列各式,不能用平方差公式计算的是()A.(a+b﹣1)(a﹣b+1)B.(﹣a﹣b)(﹣a+b)C.(a+b2)(b2﹣a)D.(2x+y)(﹣2x﹣y)12.若a2﹣b2=10,a﹣b=2,则a+b的值为()A.5B.2C.10D.无法计算13.若a2﹣b2=﹣,a+b=﹣,则a﹣b的值为.14.若a2﹣b2=18,a+b=6,则a﹣b=.15.若m2﹣n2=10,且m﹣n=2,则m+n=.16.计算:(3x+2)(3x﹣2)+x(x﹣2).17.化简:(2x﹣y)(y+2x)﹣y(x﹣y)﹣(2x)2.18.观察:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,据此规律,当(x﹣1)(x5+x4+x3+x2+x+1)=0时,代数式x2021﹣1的值为()A.1B.0C.1或﹣1D.0或﹣2【知识拓展2】平方差公式的几何背景19.从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.b(a﹣b)=ab﹣b2D.a2﹣b2=(a+b)(a﹣b)20.探究下面的问题:(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是(用式子表示),即乘法公式中的公式.(2)运用你所得到的公式计算:①10.3×9.7;②(x+2y﹣3z)(x﹣2y﹣3z).21.如图,在边长分别为a,b的两个正方形组成的图形中,剪去一个边长为(a﹣b)的正方形,通过用两种不同的方法计算剪去的正方形的面积,可以验证的乘法公式是()A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b222.如图,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼的方式形成新的图形,给出四种割拼方法,其中能够验证平方差公式的有()个.A.1B.2C.3D.423.为庆祝中国共产党的百年华诞,某校要进行美化校园,各班同学设计热爱祖国的板报.八年一班学生在设计板报时,在黑板中间画一个半径为R的大圆,然后挖去半径为r的四个小圆,分别作为热爱中国共产党、热爱人民、认同中华文化和继承革命传统四个学习区域.请计算当R=7.8cm,r=1.1cm时剩余部分的面积.(结果保留π)24.将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2),解答下列问题:(1)设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,请用含a,b的式子表示:S1=,S2=;(不必化简)(2)由(1)中的结果可以验证的乘法公式是;(3)利用(2)中得到的公式,计算:20212﹣2020×2022.25.如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)写出根据上述操作利用阴影部分的面积关系得到的等式:.(2)请应用(1)中的等式,解答下列问题:①已知4a2﹣b2=24,2a+b=6,则2a﹣b=;②计算:2002﹣1992+1982﹣1972+…+42﹣32+22﹣12.26.数学中,常对同一个量用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”[探究一]如图1,在边长为a的正方形纸片上剪去一个边长为b(b<a)的正方形,你能表示图中阴影部分的面积吗?阴影部分的面积是;如图2,也可以把阴影部分沿着虚线AB剪开,分成两个梯形,阴影部分的面积是;用两种不同的方法计算同一个阴影部分的面积,可以得到等式.[探究二]如图3,一条直线上有n个点,请你数一数共有多少条线段呢?方法1:一路往右数,不回头数.以A1为端点的线段有A1A2、A1A3、A1A4、A1A5、…、A1A n,共有(n﹣1)条;以A2为端点的线段有A2A3、A2A4、A2A5、…、A2A n,共有(n﹣2)条;以A3为端点的线段有A3A4、A3A5、…、A3A n,共有(n﹣3)条;…以A n﹣1为端点的线段有A n﹣1A n,共有1条;图中线段的总条数是;方法2:每一个点都能和除它以外的(n﹣1)个点形成线段,共有n个点,共可形成n(n﹣1)条线段,但所有线段都数了两遍,所以线段的总条数是;用两种不同的方法数线段,可以得到等式.[应用]运用探究一、探究二中得到的等式解决问题.计算:992﹣982+972﹣962+952﹣942+…+32﹣22+12.[迁移]某篮球队共有8名实力相当的队员,现要随机派3名队员参加联队比赛,共有种不同的选择方案.能力拓展类型一、公式法——平方差公式例1、分解因式:(1)2()4x y +-; (2)2216()25()a b a b --+; (3)22(2)(21)x x +--.【变式】将下列各式分解因式:(1)()()22259a b a b +--; (2)()22234x y x --(3)33x y xy -+; (4)32436x xy -;例2、分解因式: (1)2128x -+; (2)33a b ab -; (3)516x x -; (4)2(1)(1)a b a -+-【变式】先化简,再求值:(2a+3b )2﹣(2a ﹣3b )2,其中a=.类型二、平方差公式的应用例3、2222211111111......1123420112012⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭例4、阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1) =(22﹣1)(22+1)(24+1)=(24﹣1)(24+1) =(28﹣1).根据上式的计算方法,请计算: (1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.分层提分题组A 基础过关练一.选择题(共4小题)1.已知a+b=﹣3,a﹣b=1,则a2﹣b2的值是()A.8B.3C.﹣3D.102.下列各式中,能用平方差公式计算的是()A.(a+b)(﹣a﹣b)B.(a+b)(a﹣b)C.(a+b)(a﹣d)D.(a+b)(2a﹣b)3.下列运算正确的是()A.(5﹣m)(5+m)=m2﹣25B.(1﹣3m)(1+3m)=1﹣3m2C.(﹣4﹣3n)(﹣4+3n)=﹣9n2+16D.(2ab﹣n)(2ab+n)=4ab2﹣n24.如图,从边长为acm的正方形纸片中剪去一个边长为(a﹣3)cm的正方形(a>3),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为()A.6a cm2B.(6a+9)cm2C.(6a﹣9)cm2D.(a2﹣6a+9)cm2二.填空题(共4小题)5.已知x+y=12,x﹣y=6,则x2﹣y2=.6.已知m﹣n=3,则m2﹣n2﹣6n的值.7.若(2m+5)(2m﹣5)=15,则m2=.8.已知m2﹣n2=24,m比n大8,则m+n=.三.解答题(共5小题)9.化简:(a﹣b)(a+b)﹣a(a+b).10.计算:(1)(a+9)(a+1);(2)20192﹣2017×2021.11.若(x﹣2)(x2+ax﹣8b)的展开式中不含x的二次项和一次项.(1)求b a的值;(2)求(a+1)(a2+1)(a4+1)…(a32+1)+1的值.12.请阅读以下材料:[材料]若x=12349×12346,y=12348×12347,试比较x,y的大小.解:设12348=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2,y=a(a﹣1)=a2﹣a.因为x﹣y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0,所以x<y.我们把这种方法叫做换元法.请仿照例题比较下列两数大小:x=997657×997655,y=997653×997659.13.如图,从边长为(a+4)cm的正方形纸中减去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙).(1)拼成的长方形的周长是多少?(2)拼成的长方形的面积是多少?题组B 能力提升练一.选择题(共5小题)1.化简(2+1)(22+1)(24+1)(28+1)(216+1)的结果是()A.232﹣1B.232+1C.(216+1)2D.(216﹣1)22.如果一个正整数能表示为两个正整数的平方差,那么这个正整数就称为“智慧数”,例如:5=32﹣22,5就是一个智慧数,则下列各数不是智慧数的是()A.2020B.2021C.2022D.20233.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32.即8,16均为“和谐数”),在不超过200的正整数中,所有的“和谐数”之和为()A.2700B.2701C.2601D.26004.下列各数中,可以写成两个连续奇数的平方差的()A.520B.502C.250D.2055.在下列计算中,不能用平方差公式计算的是()A.(m﹣n)(﹣m+n)B.(x3﹣y3)(x3+y3)C.(﹣a﹣b)(a﹣b)D.(c2﹣d2)(d2+c2)二.填空题(共5小题)6.小丽在计算3×(4+1)×(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式进行计算.用类似方法计算:(1+)×(1+)×(1+)×(1+)+=.7.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,…根据规律可得:(x﹣1)(x2021+x2020+…+x+1)=.8.计算:20212﹣2020×2022=.9.若m2﹣n2=40,且m﹣n=5.则m+n=.10.如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是.三.解答题(共4小题)11.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,根据规律(x﹣1)(x n﹣1+x n﹣2+…+x2+x+1)=.(其中n为正整数);(1)计算:(﹣2)2019+(﹣2)2018+(﹣2)2017+…+(﹣2)3+(﹣2)2+(﹣2)1+1;(2)计算:22018+22016+22014+…+24+22+2.12.如图1所示,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a和b的代数式表示S1=,S2=;写出利用图形的面积关系所得到的公式:(用式子表达).(2)应用公式计算:.(3)应用公式计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)+1.13.在化简整式(x﹣2)■(x+2)+▲中,“■”表示运算符号“﹣”“×”中的某一个,“▲”表示一个整式.(1)计算(x﹣2)﹣(x+2)+(﹣2+y);(2)若(x﹣2)(x+2)+▲=3x2+4,求出整式▲;(3)已知(x﹣2)■(x+2)+▲的计算结果是二次单项式,当▲是常数项时,直接写出■表示的符号及▲的值.14.观察下列各式(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(1)(x﹣1)(x n﹣1+x n﹣2+…+x+1)=(其中n为正整数);(2)(2﹣1)•(299+298+…+2+1)=;(3)计算:350+349+348+…+32+3+1的值.题组C 培优拔尖练一.选择题(共1小题)1.(2020秋•鼓楼区校级期中)如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255024B.255054C.255064D.250554二.填空题(共6小题)2.(2017春•张掖月考)乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是(写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式(用式子表达)小题4:应用所得的公式计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)3.已知a﹣b=3,a2﹣b2=9,则a=,b=.4.如图,小刚家有一块“L”形的菜地,要把这块菜地按图示那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是xm,下底都是ym,高都是(y﹣x)m,请你帮小刚家算一算菜地的面积是平方米.当x=20m,y=30m时,面积是平方米.5.计算:(5+1)(52+1)(54+1)(58+1)(516+1)+=.6.小明在计算时,找不到计算器,去向小华借,小华看了看题说根本不用计算器,而且很快说出了答案.你知道答案是多少吗,请将答案填在横线上.7.(2021春•锦江区校级期中)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”.例如,16=52﹣32,16就是一个智慧数.在正整数中,从1开始,第2021个智慧数是.三.解答题(共6小题)8.(2021春•鼓楼区期中)有些同学会想当然地认为(x﹣y)3=x3﹣y3.(1)举出反例说明该式不一定成立;(2)计算(x﹣y)3;(3)直接写出当x、y满足什么条件时,该式成立.9.(2021春•婺城区校级期末)乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)公式1:公式2:(4)运用你所得到的公式计算:10.3×9.7.10.(2021春•淮北期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).11.(2021春•罗湖区校级期中)已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.12.(2019春•漳浦县期中)你能化简(a﹣1)(a99+a98+a97+…+a2+a+1)吗?我们不妨先从简单情况入手,发现规律,归纳结论.(1)先填空:(a﹣1)(a+1)=;(a﹣1)(a2+a+1)=;(a﹣1)(a3+a2+a+1)=;…由此猜想:(a﹣1)(a99+a98+a97+…+a2+a+1)=(2)利用这个结论,你能解决下面两个问题吗?①求2199+2198+2197+…+22+2+1的值;②若a5+a4+a3+a2+a+1=0,则a6等于多少?13.(2018秋•沙坪坝区期末)一个个位不为零的四位自然数n,如果千位与十位上的数字之和等于百位与个位上的数字之和,则称n为“隐等数”,将这个“隐等数“反序排列(即千位与个位对调,百位与十位对调)得到一个新数m,记D(n)=.(1)请任意写出一个“隐等数”n,并计算D(n)的值;(2)若某个“隐等数“n的千位与十位上的数字之和为6,D(n)为正数,且D(n)能表示为两个连续偶数的平方差,求满足条件的所有“隐等数”n.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲:重点:对顶角、邻补角、垂线,方程思想求角度;探究:相交线规律。
第2讲:重点:平行线的判定,运用等量代换证明;探究:折线形。
第3讲:重点:平行线的性质,折线形;探究:双角平分线形
第4讲:重点:实数相关的概念,开方、解方程;探究:反证法。
第5讲:重点:读点、描点,用坐标表示平移;探究:用坐标求面积。
第6讲:重点:消元法,同解方程组;探究:解特殊方程组。
第7讲:重点:计算题复习,作图、画图题复习;探究:平行线的几何推理。
第8讲:重点:和差倍分(比例)问题,整数解;探究:重叠、包含数量关系。
第9讲:重点:总量和问题,方案问题;探究:牛顿问题。
第10讲:重点:一元一次不等式的解法,一元一次不等式的应用;探究:作差比较法。
第11讲:重点:一元一次不等式组的解法,含参数的讨论;探究:解特殊不等式组。
第12讲:重点:盈不足问题,方案问题;探究:方程组、不等式组结合问题
第13讲:重点:统计调查,统计图;探究:样本估计总体。
第14讲:重点:计算题复习,含参数讨论;探究:应用题
第15讲:重点:平面直角坐标系复习,几何解答题;探究:综合题
能力目标
1、几何图形初步:在已有知识和经验的基础上为学习在平面直角坐标系中确定点的坐标打下基础,探究两条直线所成角的情况得出平行的判定与性质,初步接触到严格的逻辑证明。
2、实数:从典型问题引出开方运算,把运算法则,相反数,绝对值等概念扩充到实数。
3、函数:平面直角坐标系有关的概念和点与坐标的对应关系,突出数形结合思想,既是函数关系的基础又是解决几何问题的工具。
4、方程与不等式:对方程已有认识基础上的发展,做好从一元到二元、三元以及多元的过渡,消元法体现数学化归思想。
5、方程与不等式:不等式(组)是讨论不等关系的数学工具。
通过类比,从方程(组)进行知识迁移。
6、统计:统计来源于生活,它通过对数据的收集、整理、描述和分析,来帮助人们解决问题。
通过数据发现事物发展规律是统计的基本思想。
其他能力目标
第1讲:分类讨论思想
第2讲:演绎推理
第3讲:一题多解
第4讲:知识迁移
第5讲:数学建模思想
第6讲:消元思想
第7讲:错题管理
第8讲:数学建模思想
第9讲:数学建模思想
第10讲:类比思想
第11讲:数形结合思想
第12讲:数学建模思想
第13讲:数学建模思想
第14讲:知识梳理
第15讲:错题管理。