高中数学限时训练

合集下载

高中数学必修2课后限时训练28 圆的一般方程

高中数学必修2课后限时训练28 圆的一般方程

高中数学必修2课后限时训练28 圆的一般方程一、选择题1.两圆x 2+y 2-4x +6y =0和x 2+y 2-6x =0的圆心连线方程为( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0答案:C解析:两圆的圆心分别为(2,-3)、(3,0),直线方程为y =0+33-2(x -3)即3x -y -9=0,故选C. 2.圆C :x 2+y 2+x -6y +3=0上有两个点P 和Q 关于直线kx -y +4=0对称,则k =( )A .2B .-32C .±32D .不存在 答案:A解析:由题意得直线kx -y =4=0经过圆心C (-12,3),所以-k 2-3+4=0,解得k =2.故选A. 3.当a 取不同的实数时,由方程x 2+y 2+2ax +2ay -1=0可以得到不同的圆,则( )A .这些圆的圆心都在直线y =x 上B .这些圆的圆心都在直线y =-x 上C .这些圆的圆心都在直线y =x 或y =-x 上D .这些圆的圆心不在同一条直线上答案:A解析:圆的方程可化为(x +a )2+(y +a )2=2a 2+1,圆心为(-a ,-a ),在直线y =x 上.4.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:D解析:圆x 2+y 2-2ax +3by =0的圆心为(a ,-32b ), 则a <0,b >0.直线y =-1a x -b a ,其斜率k =-1a >0,在y 轴上的截距为-b a>0,所以直线不经过第四象限,故选D.5.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面只为( )A .5 2B .102C .15 2D .202答案:B解析:圆x 2+y 2-2x -6y =0化成标准方程为(x -1)2+(y -3)2=10,则圆心坐标为M (1,3),半径长为10.由圆的几何性质可知:过点E 的最长弦AC 为点E 所在的直径,则|AC |=210.BD 是过点E 的最短弦,则点E 为线段BD 的中点,且AC ⊥BD ,E 为AC 与BD 的交点,则由垂径定理可是|BD |=2|BM |2-|ME |2=210-[(1-0)2+(3-1)2]=2 5.从而四边形ABCD 的面积为12|AC ||BD |=12×210×25=10 2. 6.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π答案:B解析:设点P 的坐标为(x ,y ),则(x +2)2+y 2=4[(x -1)2+y 2],即(x -2)2+y 2=4,所以点P 的轨迹是以(2,0)为圆心,2为半径长的圆,故面积为π×22=4π.二、填空题7.圆心是(-3,4),经过点M (5,1)的圆的一般方程为________.答案:x 2+y 2+6x -8y -48=0解析:只要求出圆的半径即得圆的标准方程,再展开化为一般式方程.8.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是________. 答案:x 2+y 2-4x +2y +1=0解析:设M (x ,y ),A (2,-1),则P (2x -2,2y +1),将P 代入圆方程得:(2x -2)2+(2y +1)2-4(2x -2)+2(2y +1)-11=0,即为:x 2+y 2-4x +2y +1=0.9.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________.答案:-2解析:由题意可知直线l :x -y +2=0过圆心,∴-1+a 2+2=0,∴a =-2. 三、解答题10.判断方程x 2+y 2-4mx +2my +20m -20=0能否表示圆,若能表示圆,求出圆心和半径.解析:解法一:由方程x 2+y 2-4mx +2my +20m -20=0,可知D =-4m ,E =2m ,F =20m -20,∴D 2+E 2-4F =16m 2+4m 2-80m +80=20(m -2)2,因此,当m =2时,D 2+E 2-4F =0,它表示一个点,当m ≠2时,D 2+E 2-4F >0,原方程表示圆的方程,此时,圆的圆心为(2m ,-m ),半径为r =12D 2+E 2-4F =5|m -2|.解法二:原方程可化为(x -2m )2+(y +m )2=5(m -2)2,因此,当m =2时,它表示一个点,当m ≠2时,原方程表示圆的方程.此时,圆的圆心为(2m ,-m ),半径为r =5|m -2|.[点评] (1)形如x 2+y 2+Dx +Ey +F =0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D 2+E 2-4F 是否为正.若D 2+E 2-F >0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r =5(m -2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.11.自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.解析:方法1:(直接法)设P (x ,y ),连接OP ,则OP ⊥BC ,当x ≠0时,k OP ·k AP =-1,即y x ·y x -4=-1, 即x 2+y 2-4x =0. ①当x =0时,P 点坐标(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内的部分).方法2:(定义法)由方法1知OP ⊥AP ,取OA 中点M ,则M (2,0),|PM |=12|OA |=2, 由圆的定义知,P 的轨迹方程是(x -2)2+y 2=4(在已知圆内的部分).12.已知圆经过点(4,2)和(-2,-6),该圆与两坐标轴的四个截距之和为-2,求圆的方程.解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0.∵圆经过点(4,2)和(-2,-6),代入圆的一般方程,得⎩⎪⎨⎪⎧4D +2E +F +20=0, ①2D +6E -F -40=0. ②设圆在x 轴上的截距为x 1、x 2,它们是方程x 2+Dx +F =0的两个根,得x 1+x 2=-D .设圆在y 轴上的截距为y 1、y 2,它们是方程y 2+Ey +F =0的两个根,得y 1+y 2=-E .由已知,得-D +(-E )=-2,即D +E -2=0. ③由①②③联立解得D =-2,E =4,F =-20.∴所求圆的方程为x 2+y 2-2x +4y -20=0.。

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。

高中数学小题限时训练(适合基础薄弱学生)(20份附答案)

高中数学小题限时训练(适合基础薄弱学生)(20份附答案)
【详解】
由题可得: , ,
所以 ,又 ,
所以利润与年号的回归方程为: ,
当 时, ,
故选C.
【点睛】
本题主要考查了线性回归方程及其应用,考查计算能力,属于基础题.
5.B
【解析】
【分析】
分成甲单独到 县和甲与另一人一同到 县两种情况进行分类讨论,由此求得甲被派遣到 县的分法数.
【详解】
如果甲单独到 县,则方法数有 种.
高二下学期数学小题限时训练1
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知 为虚数单位,复数 满足 ,则 的共轭复数为()
A. B. C. D.
2.曲线 在点 处的切线与 轴、 轴围成的封闭图形的面积为()
A.1B. C. D.
【解析】
【分析】

【详解】
解:因为 ,
所以 ,
所以其共轭复数为
故选:C
【点睛】
本题考查复数的除法运算,共轭复数的概念,是基础题.
2.B
【解析】
【分析】
【详解】
由 ,则直线方程为 ,当 时, ;当 时, . ,故选B.
3.C
【解析】
随机变量 服从正态分布 , .
4.C
【解】
【分析】
利用表中数据求出 , ,即可求得 ,从而求得 ,从而求得利润与年号的线性回归方程为 ,问题得解.
C.在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别无关”
5.学校组织同学参加社会调查,某小组共有5名男同学,4名女同学。现从该小组中选出3位同学分别到 , , 三地进行社会调查,若选出的同学中男女均有,则不同安排方法有()

高中数学必修4课后限时训练30 三角函数的积化和差、和差化积

高中数学必修4课后限时训练30 三角函数的积化和差、和差化积

高中数学必修4课后限时训练30 三角函数的积化和差、和差化积题组1:基础巩固一、选择题1.sin75°-sin15°的值为( )A .12B .22C .32D .-12 答案:B 解析:sin75°-sin 15=2cos 75°+15°2sin 75°-15°2=2×22×12=22.故选B. 2.已知cos(α+β)cos(α-β)=13,则cos 2α-sin 2β的值为( ) A .-23 B .-13C .13D .23答案:C解析:由已知得cos 2αcos 2β-sin 2αsin 2β=13, ∴cos 2α(1-sin 2β)-sin 2αsin 2β=13, 即cos 2α-sin 2β=13. 3.化简cos α-cos3αsin3α-sin α的结果为( ) A .tan α B .tan2αC .cot αD .cot2α答案:B解析:原式=-2sin2αsin (-α)2cos2αsin α=2sin2αsin α2cos2αsin α=tan2α.4.已知cos 2α-cos 2β=m ,那么sin(α+β)sin(α-β)等于( )A .-mB .mC .-m 2D .m 2答案:A解析:sin(α+β)sin(α-β)=(sin αcos β+cos αsin β)(sin αcos β-cos αsin β)=sin 2αcos 2β-cos 2αsin 2β=(1-cos 2α)cos 2β-cos 2α(1-cos 2β)=cos 2β-cos 2αcos 2β-cos 2α+cos 2αcos 2β=cos 2β-cos 2α=-m .5.计算sin105°cos75°的值是( ) A .12 B .14C .-14D .-12 答案:B解析:sin105°cos75°=12(sin180°+sin30°)=14.6.sin10°+sin50°sin35°·sin55°=( ) A .14B .12C .2D .4答案:B 解析:sin10°+sin50°sin35°sin55°=2sin30°cos20°-12(cos90°-cos20°) =14cos20°12cos20°=12. 二、填空题7.在△ABC 中,已知sin B sin C =cos 2A 2,则此三角形是________三角形. 答案:等腰解析:sin B sin C =cos 2A 2=1+cos A 2, ∴2sin B sin C =1-cos(B +C )=1-cos B cos C +sin B sin C ,∴cos B cos C +sin B sin C =1,即cos(B -C )=1又-π<A <B <π,∴A -B =0,∴A =B .故△ABC 是等腰三角形.8.cos40°+cos60°+cos80°+cos160°=________.答案:12解析:原式=cos40°+cos80°+cos60°-cos20°=2cos60°·cos(-20°)+cos60°-cos20°=cos60°=12. 三、解答题9.求证:sin(α+β)cos α-12[sin(2α+β)-sin β]=sin β. 解析:解法一:左边=sin(α+β)cos α-12[sin 〔(α+β)+α〕-sin β] =sin(α+β)cos α-12[sin(α+β)cos α+cos(α+β)sin α]+12sin β=12[sin(α+β)cos α-cos(α+β)sin α]+12sin β =12sin[(α+β)-α]+12sin β=sin β=右边. 解法二:左边=sin(α+β)cos α-12⎝ ⎛⎭⎪⎫2cos 2α+β+β2sin 2α+β-β2 =sin(α+β)cos α-cos(α+β)sin α=sin[(α+β)-α]=sin β=右边.题组2:能力提升一、选择题1.已知sin(α-β)·cos α-cos(α-β)·sin α=m ,且β为第三象限角,则cos β等于( )A .1-m 2B .-1-m 2C .1+m 2D .-m 2-1答案:B解析:sin(α-β)cos α-cos(α-β)sin α=sin(-β)=-sin β,∴sin β=-m .又β为第三象限角,∴cos β=-1-m 2.2.若sin α+sin β=33(cos β-cos α)且α∈(0,π),β∈(0,π),则α-β等于( ) A .-2π3 B .-π3C .π3D .2π3 答案:D解析:∵α、β∈(0,π),∴sin α+sin β>0.∴cos β-cos α>0,∴cos β>cos α,又在(0,π)上,y =cos x 是减函数.∴β<α∴0<α-β<π,由原式可知:2sin α+β2·cos α-β2=33⎝ ⎛⎭⎪⎫-2sin α+β2·sin β-α2, ∴tan α-β2=3∴α-β2=π3∴α-β=2π3. 3.在△ABC 中,若B =30°,则cos A sin C 的取值范围是( )A .[-1,1]B .[-12,12] C .[-14,34] D .[-34,14] 答案:C解析:cos A sin C =12[sin(A +C )-sin(A -C )]=14-12sin(A -C ),∵-1≤sin(A -C )≤1, ∴cos A sin C ∈⎣⎡⎦⎤-14,34. 4.tan70°cos10°(3tan20°-1)等于( )A .1B .-1C .12D .-12答案:B解析:原式=cot20°cos10°(3tan20°-1) =cot20°cos10°3sin20°-cos20°cos20°=cot20°cos10°2sin (20°-30°)cos20°=-2sin10°cos10°cot20°cos20°=-1. 二、填空题 5.sin 220°+cos 280°+3sin20°·cos80°=________.答案:14 解析:原式=1-cos40°2+1+cos160°2+32sin100°-32sin60° =14-12cos40°-12cos20°+32sin100° =14-12×2cos30°cos10°+32cos10° =14-32cos10°+32cos10°=14.6.计算1tan10°-4cos10°=________. 答案:3解析:1tan10°-4cos10°=cos10°-2sin20°sin10°=cos10°+2sin (30°-10°)sin10°=2cos30°sin10°sin10= 3. 三、解答题7.求函数y =sin 4x +23sin x cos x -cos 4x 的最小正周期和最小值;并写出该函数在[0,π]上的递增区间. 解析:y =sin 4x +23sin x cos x -cos 4x=(sin 2x +cos 2x )(sin 2x -cos 2x )+3sin2x=3sin2x -cos2x =2sin ⎝⎛⎭⎫2x -π6. 故该函数的最小正周期是π;最小值是-2.递增区间为⎣⎡⎦⎤0,π3,⎣⎡⎦⎤56π,π. 8.在△ABC 中,求证:(1)sin 2A +sin 2B -sin 2C =2sin A sin B cos C ;(2)sin A +sin B -sin C =4sin A 2sin B 2cos C 2. 解析:(1)左边=sin 2A +1-cos2B 2-1-cos2C 2=sin 2A +12(cos2C -cos2B ) =sin 2(B +C )+sin(B +C )sin(B -C )=sin(B +C )[sin(B +C )+sin(B -C )]=sin(B +C )2sin B cos C =2sin A sin B cos C =右边, ∴等式成立.(2)左边=sin(B +C )+2sin B -C 2cos B +C 2=2sin B +C 2cos B +C 2+2sin B -C 2cos B +C 2=2cos B +C 2⎝ ⎛⎭⎪⎫sin B +C 2+sin B -C 2 =4sin A 2sin B 2cos C 2=右边,∴原等式成立. 9.讨论函数f (x )=12cos(2x -2α)+cos 2α-2cos(x -α)·cos x ·cos α的周期、最值、奇偶性及单调区间. 解析:f (x )=12cos(2x -2α)+1+cos2α2-2cos(x -α)cos x ·cos α =12+12[cos(2x -2α)+cos2α]-[2cos(x -α)·cos α]cos x =12+cos x ·cos(x -2α)-cos x [cos x +cos(x -2α)] =12-cos 2x =12-1+cos2x 2=-12cos2x . ∴函数的最小正周期T =2π2=π. f (x )max =12,此时cos2x =-1,即2x =2k π+π,k ∈Z ,x =k π+π2,k ∈Z ; f (x )min =-12,此时cos2x =1, 即2x =2k π,k ∈Z ,x =k π,k ∈Z .f (-x )=f (x ),∴f (x )为偶函数.由2k π≤2x ≤2k π+π,k ∈Z ,即k π≤x ≤k π+π2,k ∈Z . ∴函数f (x )的增区间为[k π,k π+π2](k ∈Z ). 由2k π+π≤2x ≤2k π+2π,k ∈Z ,即k π+π2≤x ≤k π+π,k ∈Z . ∴函数f (x )的单调减区间为[k π+π2,k π+π],k ∈Z .。

高中数学经典试题解析版-限时规范训练(二十四)

高中数学经典试题解析版-限时规范训练(二十四)

限时规范训练(二十四)A级基础落实练1.与-2023°终边相同的最小正角是()A.137°B.133°C.57°D.43°解析:A因为-2023°=-360°×6+137°,所以与-2023°终边相同的最小正角是137°.2.下列与角9π4的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+9π4(k∈Z)C.k·360°-315°(k∈Z)D.kπ+5π4(k∈Z)解析:C对于A,B,2kπ+45°(k∈Z),k·360°+9π4(k∈Z)中角度和弧度混用,不正确;对于C,因为9π4=2π+π4与-315°是终边相同的角,故与角9π4的终边相同的角可表示为k·360°-315°(k∈Z),C正确;对于D,kπ+5π4(k∈Z),不妨取k=0,则表示的角5π4与9π4终边不相同,D错误.3.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上一点,且sinθ=-31010,则y=()A.3B.-3C.1D.-1解析:B因为sinθ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010,解得y=-3(正值舍去).4.(2024·鹰潭期中)点A(sin1240°,cos1240°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D1240°=3×360°+160°,160°是第二象限角,所以sin1240°>0,cos1240°<0,P点在第四象限.5.(2023·河东一模)在面积为4的扇形中,其周长最小时半径的值为()A.4B.22C.2D.1解析:C设扇形的半径为R(R>0),圆心角为α,则12αR2=4,所以α=8R2,则扇形的周长为2R+αR=2R+8R≥22R·8R=8,当且仅当2R=8 R,即R=2时,取等号,此时α=2,所以周长最小时半径的值为2.6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角一定是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的序号是()A.②④⑤B.③⑤C.③D.①③⑤解析:C①由于120°是第二象限角,390°是第一象限角,故第二象限角大于第一象限角不正确,即①不正确;②直角不属于任何一个象限,故三角形的内角是第一象限角或第二象限角错误,即②不正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,即③正确;④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,即④不正确;⑤若cosθ<0,则θ是第二象限角或第三象限角或θ的终边落在x轴的负半轴上,即⑤不正确.其中正确命题的序号是③,故选C.7.(多选)已知角α的顶点为坐标原点,始边为x轴的非负半轴,终边上有一点P(1,2sinα),且|α|<π2,则角α的可能取值为()A.-π3B.0C.π6D.π3解析:ABD因为角α的终边上有一点P(1,2sinα),所以tanα=2sinα,所以sinαcosα=2sinα,①若α=0,则sinαcosα=2sinα成立;②若α≠0,则cosα=12,因为|α|<π2,所以α=π3或α=-π3.8.已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为.解析:因为r=64m2+9,所以cosα=-8m64m2+9=-45,所以4m264m2+9=125,因为m>0,解得m=12.答案:1 29.α为第二象限角,且|cosα2|=-cosα2,则α2在象限.解析:∵α为第二象限角,∴α2为第一或第三象限角,又|cos α2|=-cos α2,∴cos α2<0,∴α2在第三象限.答案:第三10.若角α的终边与函数5x +12y =0(x <0)的图象重合,则2cos α+sin α=.解析:∵角α的终边与函数5x +12y =0(x <0)的图象重合,∴α为第二象限角,且tan α=-512,即sin α=-512cos α.∴sin 2α+cos 2α=(-512cos α)2+cos 2α=1,解得cos α=-1213.∴sin α=-512cos α=-512×(-1213)=513.∴2cos α+sin α=2×(-1213)+513=-1913.答案:-191311.用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是.解析:由题图,终边OB 对应角为2k π-π6且k ∈Z ,终边OA 对应角为2k π+3π4且k ∈Z ,所以阴影部分角θ的集合是[2k π-π6,2k π+3π4],k ∈Z .答案:[2k π-π6,2k π+3π4],k ∈Z12.已知扇形的圆心角为23π,扇形的面积为3π,则该扇形的周长为.解析:设扇形的半径为R,利用扇形面积计算公式S=12×23πR2=3π,可得R=3,所以该扇形的弧长为l=23π×3=2π,所以周长为l+2R=6+2π.答案:6+2πB级能力提升练13.(多选)在平面直角坐标系xOy中,角α以Ox为始边,终边经过点P(-1,m)(m>0),则下列各式的值一定为负的是()A.sinα+cosαB.sinα-cosαC.sinαcosαD.sinαtanα解析:CD因为角α终边经过点P(-1,m)(m>0),所以α在第二象限,所以sinα>0,cosα<0,tanα<0,如果α=23π,所以sinα+cosα=32-12>0,所以选项A不满足题意;sinα-cosα>0;sinαcosα<0;sinαtanα<0,故CD正确.14.(2023·长治模拟)水滴是刘慈欣的科幻小说《三体Ⅱ·黑暗森林》中提到的由三体文明使用强相互作用力(SIM)材料所制成的宇宙探测器,因为其外形与水滴相似,所以被人类称为水滴.如图所示,水滴是由线段AB,AC和圆的优弧BC围成,其中AB,AC恰好与圆弧相切.若圆弧所在圆的半径为1,点A到圆弧所在圆的圆心的距离为2,则该封闭图形的面积为()A.3+2π3 B.23+2π3C.23+π3D.3+π3解析:A 如图,设圆弧所在圆的圆心为O ,连接OA ,OB ,OC ,依题意得OB ⊥AB ,OC ⊥AC ,且OB =OC =1,OA =2,则AB =AC =3,∠BAC =π3,所以∠BOC =2π3,所以该封闭图形的面积为2×12×3×1+12×(2π-2π3)×12=3+2π3.15.(2024·牡丹江模拟)在平面直角坐标系xOy 中,已知点A (35,45),将线段OA绕原点顺时针旋转π3得到线段OB ,则点B 的横坐标为.解析:易知A (35,45)在单位圆上,记终边在射线OA 上的角为α,如图所示,根据三角函数定义可知,cos α=35,sin α=45;OA 绕原点顺时针旋转π3得到线段OB ,则终边在射线OB 上的角为α-π3,所以点B 的横坐标为cos(α-π3)=cos αcos π3+sin αsin π3=3+4310.答案:3+431016.若点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是.解析:由题意可得α-cos α>0,α>0,∈[0,2π),α>0,∈[0,2π),可得α∈(0,π2)或α∈(π,3π2),当α∈(0,π2),即α为第一象限角,则sin α>0,cos α>0,∵sin α-cos α>0,则tan α>1,∴α∈(π4,π2);当α∈(π,3π2),即α为第三象限角,则sin α<0,cos α<0,∵sin α-cos α>0,则0<tan α<1,∴α∈(π,5π4);综上所述,α∈(π4,π2∪(π,5π4).答案:(π4,π2)∪(π,5π4)。

高二数学限时训练(单调性、极值、最值)

高二数学限时训练(单调性、极值、最值)

高二数学限时训练〔单调性、极值、最值〕1、函数xx y 142+=的单调递增区间是________________________________ 2、假设函数123+++=mx x x y 是R 上的单调函数,那么实数m 的取值范围是_______________ 3、函数3223y x x a =-+的极大值是6,那么实数a 等于___________________4、函数322()3f x x mx nx m =+++在1x =-时有极值0,那么m =_______;n =_______.5、设函数2()ln(1)f x x a x =++有两个极值点,那么实数a 的取值范围是______________.6、函数3223125y x x x =--+在区间[0,3]上最大值与最小值分别是____________、_______________7、函数32()39f x x x x a =-+++〔a 为常数〕,在区间[2,2]-上有最大值20,那么此函数在区间[2,2]-上的最小值为_________________8、函数()2cos f x x x =+,02x π≤≤的最大值为__________.9、设函数()(0)kx f x xe k =≠.〔1〕求曲线()y f x =在点(0,(0))f 处的切线方程;〔2〕求函数()f x 的单调区间; 〔3〕假设函数()f x 在区间(1,1)-内单调递增,求k 的取值范围.10、设1x =与2x =是函数2()ln f x a x bx x =++的两个极值点.〔1〕求a 、b 的值;〔2〕判断1x =,2x =是函数()f x 的极大值还是极小值,并说明理由.11、函数2()ln(1)1xf x a x b x =+-++的图象与直线20x y +-=相切于点(0,)c . 〔1〕求a 的值;〔2〕求函数()f x 的单调区间和极小值12、设函数xe x xf 221)(=,假设当]2,2[-∈x 时,不等式恒m x f <)(成立,求实数m 的取值范围.。

高中数学限时训练(含解析)

高中数学限时训练(含解析)

限时作业练(含答案)突破高考建议用时:50分钟一、选择1.若A ={x|2<2x <16,x ∈Z},B ={x|x 2-2x -3<0},则A∩B 中元素个数为 ( ). A .0 B .1 C .2 D .3解析 因为A ={x|2<2x <16,x ∈Z}={x|1<x <4,x ∈Z}={2,3},B ={x|x 2-2x -3<0}={x|-1<x <3},所以A∩B={2}. 答案 B2.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|= ( ). A.12+i B . 5 C.52 D .54解析 因为(1+2ai)i =1-bi ,所以-2a +i =1-bi ,a =-12,b =-1,|a +bi|=|-12-i|=52.答案 C3.我校要从4名男生和2名女生中选出2人担任H 7N 9禽流感防御宣传工作,则在选出的宣传者中男、女都有的概率为 ( ). A.815 B .12 C.25 D .415解析 从4名男生和2名女生中选出2人担任H 7N 9禽流感防御宣传工作,总的方法数为C 04C 22+C 14C 12+C 24C 02=15,其中选出的宣传者中男、女都有的方法数为C 14C 12=8,所以,所求概率为815.答案 A4.等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是 ( ). A .21 B .24 C .28 D .7解析 ∵a 2+a 4+a 6=3a 4=12, ∴a 4=4, ∴S 7=a 1+a 72×7=7a 4=28. 答案 C5.设a ,b ∈R ,则“(a-b)·a 2<0”是“a<b”的 ( ). A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件解析 由(a -b)·a 2<0得,a≠0且a <b ;反之,由a <b ,不能推出(a -b)·a 2<0,即“(a-b)·a 2<0”是“a<b”的充分非必要条件. 答案 A6.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是 ( ).A.12 B .32 C .1 D . 3解析 抛物线y 2=4x 的焦点为(1,0),双曲线x 2-y 23=1的渐近线为x±33y =0,所以抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是|1±33×0|1+332=32. 答案 B7.已知a 为执行如图所示的程序框图输出的结果,则二项式⎝⎛⎭⎪⎫a x -1x 6的展开式中含x 2项的系数是( ).A .192B .32C .96D .-192解析 由程序框图可知,a 计算的结果依次为2,-1,12,2,…,成周期性变化,周期为3;当i =2 011时运行结束,2 011=3×670+1,所以a =2. 所以,⎝⎛⎭⎪⎫a x -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6, T r +1=C r6(2x)6-r⎝ ⎛⎭⎪⎫-1x r=(-1)r C r 6·26-r x 3-r, 令3-r =2,得r =1,所以,含x 2项的系数是(-1)C 1625=-192. 答案 D8.已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象如图所示,则f(x)的解析式为( ).A .f(x)=sin ⎝ ⎛⎭⎪⎫2x +π3B .f(x)=sin ⎝ ⎛⎭⎪⎫2x -π3C .f(x)=sin ⎝⎛⎭⎪⎫2x +π6 D .f(x)=sin ⎝⎛⎭⎪⎫2x -π6 解析 由图象可知A =1,且14T =14×2πω=7π12-π3=π4,∴ω=2,f(x)=sin (2x +φ).把⎝ ⎛⎭⎪⎫7π12,-1代入得:-1=sin ⎝ ⎛⎭⎪⎫2×7π12+φ, 又∵|φ|<π2,∴7π6+φ=3π2,∴φ=π3, ∴f(x)=sin (2x +π3). 答案 A9.已知O 是坐标原点,点A(-2,1),若点M(x ,y)为平面区域⎩⎨⎧x +y≥2,x≤1,y≤2上的一个动点,则O A →·O M →的取值范围是 ( ). A .[-1,0] B .[-1,2] C .[0,1] D .[0,2]解析 ∵A(-2,1),M(x ,y),∴z =O A →·O M →=-2x +y ,作出不等式组对应的平面区域及直线-2x +y =0,如图所示.平移直线-2x +y =0,由图象可知当直线经过点N(1,1)时,z min =-2+1= -1;经过点M(0,2)时,z max =2. 答案 B10.如图F 1,F 2是双曲线C 1:x 2-y 23=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1F 2|=|F 1A|,则C 2的离心率是( ).A.13 B .23 C.15 D .25解析 由题意知,|F 1F 2|=|F 1A|=4,∵|F 1A|-|F 2A|=2,∴|F 2A|=2,∴|F 1A|+|F 2A|=6,∵|F 1F 2|=4,∴C 2的离心率是46=23.答案 B11.已知某几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形正视图为直角梯形,则此几何体的体积V 为 ( ).A.323 B .403 C.163D .40 解析 观察三视图可知,该几何体为四棱锥,底面为直角梯形,两个侧面与底面垂直,棱锥的高为4,由图中数据得该几何体的体积为13×4+12×4×4=403.答案 B12.已知定义在R 上的函数f(x)是奇函数且满足f ⎝ ⎛⎭⎪⎫32-x =f(x),f(-2)=-3,数列{a n }满足a 1=-1,且S n n =2×a nn +1(其中S n 为{a n }的前n 项和),则f(a 5)+f(a 6)= ( ).A .-3B .-2C .3D .2解析 ∵函数f(x)是奇函数,∴f(-x)=-f(x),∵f(32-x)=f(x),∴f(32-x)=-f(-x),∴f(3+x)=f(x),∴f(x)是以3为周期的周期函数. ∵S n n =2×a nn+1, ∴S n =2a n +n ,S n -1=2a n -1+(n -1)(n≥2). 两式相减并整理得出a n =2a n -1-1, 即a n -1=2(a n -1-1),∴数列{a n -1}是以2为公比的等比数列,首项为 a 1-1=-2,∴a n -1=-2·2n -1=-2n ,a n =-2n +1, ∴a 5=-31,a 6=-63.∴f(a 5)+f(a 6)=f(-31)+f(-63)=f(2)+f(0)=f(2)=-f(-2)=3. 答案 C 二、填空题13.已知向量p =(2,-1),q =(x,2),且p ⊥q ,则|p +λq|的最小值为__________.解析 ∵p·q=2x -2=0,∴x =1, ∴p +λq =(2+λ,2λ-1),∴|p +λq|= 2+λ 2+ 2λ-1 2=5λ2+5≥ 5. 答案514.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由sin B +cos B =2得,2sin ⎝ ⎛⎭⎪⎫B +π4=2,sin ⎝ ⎛⎭⎪⎫B +π4=1,而B ∈(0,π),所以B =π4. 由正弦定理得,sin A =asin B b =12,又A +B +C =π,A ∈⎝⎛⎭⎪⎫0,3π4,∴A =π6. 答案π615.若曲线y =x 在点(m ,m )处的切线与两坐标轴围成三角形的面积为18,则m =________. 解析 由y =x,得y′=-12x,所以,曲线y =x 在点(m ,m)处的切线方程为y -m =-12m(x -m),由已知,得12×32m×3m=18(m >0),m =64.答案 6416.已知a >0,b >0,方程为x 2+y 2-4x +2y =0的曲线关于直线ax -by -1=0对称,则3a +2bab的最小值为________. 解析 该曲线表示圆心为(2,-1)的圆,直线ax -by -1=0经过圆心,则2a +b -1=0,即2a +b =1,所以3a +2b ab =3b +2a =(3b +2a )(2a +b)=6a b +2ba+7≥26a b ·2ba+7=7+43(当且仅当a =2-3,b =23-3时等号成立).答案7+4 3。

高三数学题限时练习题

高三数学题限时练习题

高三数学题限时练习题第一题:已知函数f(f)=ff^2+ff+f,其中f,f,f为常数,且f≠0。

已知当f=2时,f(f)=3;当f=1时,f(f)=1。

请回答以下问题:1. 根据已知条件,列出函数f(f)的方程式。

2. 求函数f(f)的导函数f′(f)。

3. 若函数f(f)的极值点为f=−1,求函数f(f)在f=−1处的极值。

解答:1. 假设函数f(f)的方程式为f(f)=ff^2+ff+f。

由已知条件可以得到如下方程组:3 = 4f+2f+f (1)1 = f+f+f (2)解方程组 (1) 和 (2),可以得到f=1,f=-1,f=3。

因此,函数f(f)的方程式为f(f)=f^2−f+3。

2. 函数f(f)的导函数f′(f)可以通过求函数f(f)的变化率来得到。

根据导数的定义,有:f′(f) = lim(f→0) (f(f+f)−f(f))/f对函数f(f)=f^2−f+3进行求导,得到:f′(f) = 2f−1所以,函数f(f)的导函数f′(f)为2f−1。

3. 函数f(f)的极值点为f=−1,可以通过求导数为0的点来求得。

令f′(f)=0,有:2f−1 = 0解方程得到f = 1/2。

即函数f(f)在f=−1处的极值为f=1/2。

第二题:已知函数f(f)=f^3+ff^2+ff+f,其中f,f,f为常数。

请回答以下问题:1. 当f=2时,f(f)=1;当f=1时,f′(f)=2。

根据已知条件,列出函数f(f)的方程式以及函数f(f)的导函数f′(f)的方程式。

2. 求函数f(f)的导函数f′(f)的导函数f′′(f)。

3. 若函数f(f)的极值点为f=−1,求函数f(f)在f=−1处的极值。

解答:1. 假设函数f(f)的方程式为f(f)=f^3+ff^2+ff+f。

根据已知条件可以得到如下方程组:1=8+4f+2f+f (1)2=3+2f+f (2)解方程组 (1) 和 (2),可以得到f=-2,f=3,f=-4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学限时训练(十)
命题人 审题人
一、选择题
1.已知直线l 过点(2,1)P ),且与x 轴y 轴的正半轴分别交于,A B 两点,O 为坐标原点,则OAB ∆面积的最小值为( )
A. 22
B. 24
C. 4
D. 3
2.经过两直线x +3y -10=0和3x -y =0的交点,且和原点相距为1的直线的条数为( ). A .0 B .1 C .2 D .3
3.直线062
=++y a x 和直线023)2(=++-a ay x a 没有公共点,则a 的值是( )
A 、1
B 、0
C 、-1
D 、0或-1
4.若点A 是点B (1,2,3)关于x 轴对称的点,点C 是点D (2,-2,5)关于y 轴对称的点,则|AC |=( )
A .5 B.13 C .10
D.10
5.若直线y =kx +1与圆x 2+y 2=1相交于P 、Q 两点,且∠POQ =120°(其中O 为坐标原点),则k 的值为( )
A. 3
B. 2
C.3或- 3
D.2和- 2
6.与圆O 1:x 2+y 2+4x -4y +7=0和圆O 2:x 2+y 2-4x -10y +13=0都相切的直线条数是( ) A .4 B .3 C .2
D .1
7. 设直线2x -y -3=0与y 轴的交点为P ,点P 把圆(x +1)2
+y 2
=25的直径分为两段,则这两段之比为( )
A .73或37
B .74或47
C .75或57
D .76或67
8.直线l :ax -y +b =0,圆M :x 2+y 2
-2ax +2by =0,则l 与M 在同一坐标系中的图形可能是(
)
9.过圆x 2
+y 2
-4x =0外一点(m ,n )作圆的两条切线,当这两条切线相互垂直时,m 、n 满足的关系式是( )
A .(m -2)2+n 2=4
B .(m +2)2+n 2=4
C .(m -2)2+n 2=8
D .(m +2)2+n 2=8 10.根据下边框图,对大于2的整数n,输出的数列的通项公式是( )
A.a n =2n
B.a n =2(n-1)
C.a n =2n
D.a n =2n-1
11..阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是(
)
A.S<8
B.S<9
C.S<10
D.S<11
12.使用秦九韶算法求P (x )=a n x n +a n -1x n -
1+…+a 1x +a 0在x =x 0时的值可减少运算次数,做加法和乘法的次数分别是( )
A .n ,n
B .n ,n (n +1)2
C .n,2n +1
D .2n +1,n (n +1)
2
13.阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为( )
A.2*2S i =-
B.2*1S i =-
C.2*S i =
D.2*4S i =+
14.某校高中三个年级,其中高三有学生1000人,现用分层抽样法抽取一个容量为185的样本,已知在高一抽取
了75人,高二抽取了60人,则高中部共有学生( )人. A .3700 B .2700 C .1500 D .1200 15.为了从甲乙两人中选一人参加数学竞赛,老师将二人最近6次数学测试的分数进行统计,甲乙两人的平均成绩分别是x 甲、x 乙,则下列说法正确的是( ) A. x 甲>x 乙,乙比甲成绩稳定,应选乙参加比赛 B. x 甲>x 乙,甲比乙成绩稳定,应选甲参加比赛 C. x 甲<x 乙,甲比乙成绩稳定,应选甲参加比赛 D. x 甲<x 乙,乙比甲成绩稳定,应选乙参加比赛
16. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )
A.众数
B.平均数
C.中位数
D.标准差
17.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为( )
A.13
B.110
C.25
D.3
10
18.有四个游戏盘,将它们水平放稳后,在上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增
加中奖机会,应选择的游戏盘是(
)
19.如图的矩形长为5、宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为( )
A.235
B.2350
C. 10
D .不能估计
20.在5件产品中,有3件一等品和2件二等品,从中任取2
件,以7
10
为概率的事件是( )
A .恰有1件一等品
B .至少有一件一等品
C .至多有一件一等品
D .都不是一等品
21.如果在一次实验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是( )
A.y ^
=x +1.9 B.y ^
=1.04x +1.9 C.y ^
=0.95x +1.04 D.y ^
=1.05x -0.9 22.现要完成下列3项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查.
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.
③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )
A .①简单随机抽样,②系统抽样,③分层抽样
B .①简单随机抽样,②分层抽样,③系统抽样
C .①系统抽样,②简单随机抽样,③分层抽样
D .①分层抽样,②系统抽样,③简单随机抽样 23.方程4-x 2
=lg x 的根的个数是( )
A .0
B .1
C .2
D .无法确定
二、填空题:
24.直线y =x +b 与曲线x =1-y 2有且只有1个公共点,则b 的取值范围是__________.
25.直线l 和两条直线l 1:x -3y +10=0,及l 2:2x +y -8=0都相交,且这两个交点所成的线段的中点是P (0,1),则直线l 的方程是__________. 26.已知正数x ,y 满足⎩⎨
⎧≥+-≤-0
530
2y x y x ,则y 2x z +=的最大值是
27.三个数72、120、168的最大公约数是________.
28.如图,在直角坐标系中,射线OA :0(0)x y x -=≥,OB :330(0)x y x +=≥, 过点)0,1(P 作直线分别交射线OA 、OB 于A 、B 点. (1)当AB 的中点为P 时,求直线AB 的方程; (2)当AB 的中点在直线x y 2
1
=上时,求直线AB 的方程.
29.已知曲线C :x 2+y 2+2kx +(4k +10)y +10k +20=0,其中k ≠-1.
(1)求证:曲线C 表示圆,并且这些圆心都在同一条直线上; (2)证明曲线C 过定点;
(3)若曲线C 与x 轴相切,求k 的值.
30.某工厂有工人1 000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人).现用分层抽样方法(按A 类,B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(1)A 类工人中和B 类工人中各抽查多少工人?
(2)从A 类工人中的抽查结果和从B 类工人中的抽查结果分别如下表1和表2. 表1
生产能
力分组
[100,110) [110,120) [120,130) [130,140) [140,150)
人数
4 8 x
5 3 表2
生产能 力分组
[110,120)
[120,130)
[130,140)
[140,150)
人数
6 y 36 18 ①先确定x ,B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
图1 A 类工人生产能力的频率分布直方图 图2 B 类工人生产能力的频率分布直方图
②分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).
31.水池的容积是20m 3,向水池注水的水龙头A 和水龙头B 的流速都是1m 3/h ,它们在一昼夜内随机开放(0~24小时),求水池不溢出水的概率.(精确到0.01)。

相关文档
最新文档