(线性代数)矩阵秩的8大性质、重要定理以及关系

合集下载

线性代数:矩阵秩的求法

线性代数:矩阵秩的求法
齐次线性方程组 Ax=0 总是有解的,x=0 就是一个解, 称为零解。 所以我们更关心的是它是否有非零解.
6/44
定理 Ax=0 的解的情况:
1.Ax=0 有非零解 r(A)<n 只有零解 r(A)=n
2.若A是方阵,Ax 0有非零解 A 0 只有零解 A 0
3.Ax 0,若m n,则一定有非零解。 m :方程个数 n :未知量个数
k
2
1 2
0
3 2
1
.
其中k1
,
k
为任意常数。
2
12/44
定理 3 线性方程组 Ax=b 有解 r(A)=r(Ab)
定理 4 设线性方程组 Ax=b 有解。 若A为方阵,
如果 r(A)=n,则它有唯一解; A 0,唯一解
如果
r(A)<n,则它有无穷多解。
A
0,无穷解
13/44
x1 x2 a1
a4
x5 x1 a5
RA RB
5
ai 0
i 1
15/44
5
方程组有解的充要条件是 ai 0.
i 1
x1 x2 a1
由于原方程组等价于方程组
x2 x3
x3 x4
a2 a3
例4
证明方
程组
x2 x3
x3 x4
a2 a3
x4
x5
a4
x5 x1 a5
有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
求出它的一切解.
解证 对增广矩阵B进行初等变换, 方程组的增广矩阵为
14/44
1 1 0 0 0 a1
0 1 1 0 0 a2
第十-十一次

《线性代数》知识点-归纳整理

《线性代数》知识点-归纳整理

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 .................................................................. 2-02、主对角线............................................................................ 2-03、转置行列式.......................................................................... 2-04、行列式的性质........................................................................ 3-05、计算行列式.......................................................................... 3-06、矩阵中未写出的元素 .................................................................. 4-07、几类特殊的方阵...................................................................... 4-08、矩阵的运算规则...................................................................... 4-09、矩阵多项式.......................................................................... 6-10、对称矩阵............................................................................ 6-11、矩阵的分块.......................................................................... 6-12、矩阵的初等变换...................................................................... 6-13、矩阵等价............................................................................ 6-14、初等矩阵............................................................................ 7-15、行阶梯形矩阵与行最简形矩阵......................................................... 7-16、逆矩阵 ............................................................................. 7-17、充分性与必要性的证明题 .............................................................. 8-18、伴随矩阵............................................................................ 8-19、矩阵的标准形:........................................................................ 9-20、矩阵的秩:........................................................................... 9-21、矩阵的秩的一些定理、推论............................................................. 9-22、线性方程组概念..................................................................... 10-23、齐次线性方程组与非齐次线性方程组(不含向量) .......................................... 10-24、行向量、列向量、零向量、负向量的概念................................................ 11-25、线性方程组的向量形式 ............................................................... 11-26、线性相关与线性无关的概念......................................................... 12-27、向量个数大于向量维数的向量组必然线性相关 ........................................... 12-28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题................. 12-29、线性表示与线性组合的概念......................................................... 12-30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题........................... 12-31、线性相关(无关)与线性表示的3个定理................................................ 12-32、最大线性无关组与向量组的秩.......................................................... 12-33、线性方程组解的结构…………………………………………………………………………………………12-01、余子式与代数余子式(1)设三阶行列式, 则①元素an,ai,au的余子式分别为:对Mi的解释:划掉第1行、第1列,剩下的就是一个二阶行列式,这个行列式即元素au的余子式Mi。

线性代数 矩阵的秩与逆矩阵

线性代数 矩阵的秩与逆矩阵

BP1 P2
Ps = X
AP1 P2
Ps = E
3. AXC = B, A, C可逆。 解法I : X = A BC
解法II : AX = BC
−1
−1
−1
−1
XC = A B
求解矩阵方程时,一定要记住:先化简,再求解。
1 .已知 A, 且 AB = A − B , 求 B .
−1 ⇒ B = ( A + E ) A ⇒ AB + B = A ⇒ ( A + E ) B = A
⎛1 − 1 − 1 ⎜ → ⎜0 −1 − 2 ⎜0 0 −1 ⎝
⎛1 0 0 ⎜ → ⎜0 1 0 ⎜0 0 1 ⎝ 2
1 0 0⎞ ⎟ 3 1 0⎟ 4 2 1⎟ ⎠
1 ⎞ ⎟ 5 3 2⎟ − 4 − 2 − 1⎟ ⎠ 1
∴A
−1
=
1 1 ⎞ ⎛ 2 ⎜ ⎟ 3 2⎟ ⎜ 5 ⎜ − 4 − 2 − 1⎟ ⎝ ⎠
⎛2 ⎛1 − 1 ⎞ 3 . C = ⎜ 2.B = ⎜ ⎟ ⎜0 ⎜1 − 2 ⎟ ⎝ ⎝ ⎠
− 2⎞ ⎟ ⎟ 1 ⎠
⎛2 1 ⎛ 1 1⎞ −1 2. B = ⎜ = ⎜ ⎟ ⎜ ⎟ ⎜1 3 ⎝ − 2 1⎠ ⎝
− 1⎞ −1 1 ⎛ 1 2 ⎞ ⎜ ⎟ = C 3 . ⎟ ⎜ ⎟ ⎟ 0 2 2 − 1⎠ ⎝ ⎠
?? ⎛ 1 − 1 − 1⎞ ⎜ ⎟ 的逆怎样求? ? A = ⎜− 3 2 1 ⎟
⎜ 2 ⎝ 0 1 ⎟ ⎠
逆阵的性质
1 (i ) A可逆 ⇒ A = ; A (ii ) A可逆 ⇒ A−1可逆, ( A−1 ) −1 = A;
−1
(iii ) AB = E (or BA = E ) ⇒ B = A ;

线性代数 矩阵的秩

线性代数 矩阵的秩

小结. 求m × n 矩阵A 的秩r(A), 可用以下方法: 1. 对于比较简单的矩阵, 直接用秩的定义 直接用秩的定义. .

1 0 0 0
0 1 0 4
0 1 0 −1 0 0 5 0
2. 用有限次初等变换, 用有限次初等变换, 将矩阵A变为它的等价 标准形 , 则 r = r( A ) . O O 3. 用有限次行初等变换, 用有限次行初等变换,将矩阵A变为梯矩阵, 则 r(A)等于该梯矩阵的非零行的行数 等于该梯矩阵的非零行的行数. (方法2 与方法3 相比, 方法3 较为简单.)
例1 求下列矩阵的秩: 求下列矩阵的秩:
(1) A = 2 2
1 1
2 4 8 (2) B = 1 2 1
(3) C = 2
1 2 4 1 4 8 2 3 6 2 0
.
解 (1)因为
1 1 a = 1 ≠ 0 而 det A = 1 1 = 0 A= 11 , 2 2 2 2 故 r ( A) = 1
又B 并无3阶子式, 阶子式,故 r (B) =2.
8 2 2 0
故, 矩阵C 的秩不小于2.
= −3 ≠ 0
另外, 因为矩阵 C 不存在高于3阶的子式, 可知r (C) ≤ 3. 又因矩阵C 的第1, 2行元是对应成比例的, 行元是对应成比例的, 故C 的任一 3阶 子式皆等于零. 子式皆等于零.因此
0 0 1 0
4 3 −3 4
1 0 B= 0 0
0 1 0 0
−1 −1 2 0
0 0 1 0
4 3 −3 4
1 0 (2) 每个台阶只有一行, 每个台阶只有一行,台阶 A = 0 数即是非零行的行数, ,阶梯 数即是非零行的行数 0 线的竖线后面的第一个元素

线性代数§3.3矩阵的秩

线性代数§3.3矩阵的秩

设A为n阶可逆方阵. 因为| A | 0, 所以, A的最高阶非零子式为| A |, 则R(A)=n.
故, 可逆方阵A的标准形为单位阵E, 即A E. 即可逆矩阵的秩等于阶数. 故又称可逆(非奇异)矩 阵为满秩矩阵, 奇异矩阵又称为降秩矩阵. 1 2 2 1 1 2 4 8 0 2 , b , 例5:设 A 2 4 2 3 3 3 6 0 6 4 求矩阵A和矩阵B=(A | b)的秩. 分析: 设矩阵B的行阶梯形矩阵为B=(A| b), 则A就是A的行阶梯形矩阵. 因此可以从B=(A| b)中同时考察出R(A)及R(B).
性质6: R(A + B) R(A) + R(B). 证明: 设A, B为mn矩阵, 对矩阵(A+B ¦ B)作列变 换: ci – cn+i (i =1,2, · · · , n)得, (A+B ¦ B) (A+O ¦ B) B) R(A) + R(B). 于是, R(A+B) R(A+B ¦ B) =R(A+O ¦ 性质7: R(AB) min{R(A), R(B)}. 性质8: 若AmnBnl =O, 则R(A)+R(B) n . 这两条性质将在后面给出证明. 例7: 设A为n阶方阵, 证明R(A+E)+R(A–E) n . 证明: 因为(A+E)+(E–A)=2E, 由性质6知, R(A+E)+R(E–A)R(2E)=n, 而R(E–A)=R(A–E), 所以 R(A+E)+R(A–E) n .
§3.3 矩阵的秩
一、矩阵秩的概念
由上节讨论知: 任何矩阵Amn, 总可以经过有限次 初等行变换把它们变为行阶梯形矩阵和标准形矩阵. 行阶梯形矩阵中非零行的行数, 也就是标准形矩阵中 的数字r 是唯一确定的. 它是矩阵理论中非常重要的数 量关系之一——矩阵的秩. 定义: 在mn矩阵A中任取 k 行 k 列( km, kn ), 位于这 k 行 k 列交叉处的 k2个元素, 不改变它们在A 中所处的位置次序而得到的 k 阶行列式, 被称为矩阵A 的k阶子式. k C k 个. mn矩阵A的k阶子式共有 C m n

线性代数-矩阵的秩

线性代数-矩阵的秩

ri rj
ri k
当 A ~ B 或 A ~ B 时,
在 B 中总能找到与 D 相对应的 r 阶子式 D1 . 由于D1 = D 或 D1 = -D 或 D1 = kD,因此 D1 ≠ 0 ,从而 R(B) ≥r .
ri krj
r1 kr2
当 A ~ B 时,只需考虑 A ~ B这一特殊情形.
a11 a12 a13 a21 a22 a23 a31 a32 a33
与元素a12相对应的余子式
M12

a21 a31
a23 a33
相应的代数余子式
A12

(1)12 M12


a21 a31
a23 a33
a11 a12 a13 a14

a21
a22
a23
a24

a31 a32 a33 a34
矩阵 A 的秩就是 A 中非零子式的最高阶数.
显然, 若矩阵 A 中有某个 s 阶子式不等于零,则 R(A) ≥ s ;
若矩阵 A 中所有 t 阶子式等于零,则 R(A) < t . 若 A 为 n 阶矩阵,则 A 的 n 阶子式只有一个,即|A| .
当|A|≠0 时, R(A) = n ; 可逆矩阵(非奇异矩阵)又称为满秩矩阵.
0
4
3
1
1

2 0 1 5 3 0 0 0 4 8
1
6
4 1
4 0
0
0
0
0
行阶梯形矩阵有 3 个非零行,故R(A) = 3 .
第二步求 A 的最高阶非零子式.选取行阶梯形矩阵中非零行
的第一个非零元,所与在之的对列应的是选取矩阵 A 的第一、

第一章 第五讲 矩阵的秩

第一章 第五讲  矩阵的秩

第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定线性方程组是否有解,向量组的线性相关性,求矩阵的特征向量以及在多项式、空间几何等多个方面都有广泛的应用。

本讲我们主要了解矩阵秩的概念及其与方程组各类型解的关系。

5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等行(列)变换定义了矩阵的行(列)阶梯形、矩阵的行(列)最简形以及矩阵的标准形。

其中矩阵行(列)阶梯形与矩阵行(列)最简形可以不唯一,但矩阵的标准形唯一。

因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。

定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。

其中, r E 是r 阶单位矩阵;其余都是零矩阵。

注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。

(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。

当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。

解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫⎪−−−→ ⎪ ⎪⎝⎭()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫ ⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()TR A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵)性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()(|)()+()R A R B R A B R A R B ≤≤;特别地,当B 为列矩阵时,有max {}(),()(|)()+1R A R B R A B R A ≤≤;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵且()R A r =,则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结篇1第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断线性代数知识点总结篇2行列式一、行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档