高等数学第四章4-4
高等数学第4章

• 式(4-10)称为分部积分公式。这个公式把积分∫udv转化成了积分∫vdu, 如图4-5所示,当积分∫udv不易计算,而积分∫vdu比较容易计算时, 就可以使用这个公式。
• 例4-46 求∫xsinxdx。 • 解 设u=x,dv=sinxdx=d(-cosx),则 • ∫xsinxdx=∫xd(-cosx)=-xcosx-∫(-cosx)dx • =-xcosx+∫cosxdx • =-xcosx+sinx+C • 当运算比较熟练以后,可以不写出u和dv,而直接应用分部积分
•
=∫f1(x)dx+∫f2(x)dx+…+∫fn(x)dx
• 4.1.4 基本积分运算
• 因为求不定积分的运算是求导数的逆运算,所以,导数公式表中的 每个公式反转过来就得到表4-1的不定积分公式。
表4-1 基本积分公式
1。∫0dx=C
2。∫1dx43;C
6。∫sinxdx=-cosx+C
• 换元积分法包括:第一类换元积分法(凑微分法)和第二类换元积分法。
• 4.2.1 第一类换元积分法(凑微分法) • 定理 如果∫f(x)dx=F(x)+C,则
• ∫f(u)du=F(u)+C • 其中u=φ(x)是x的任一个可微函数。 • 上述定理表明:可以将基本积分公式中的积分变量换成任一可微函数,
(把u还原为φ(x))
• 由于积分过程中有凑微分(φ'(x)dx=d(φ(x)))的步骤,因此第一类换元积 分法又称为凑微分法。
• 用第一类换元积分法求不定积分的过程是:凑微分、换元、积分、回 代。
• 4.2.2 第二类换元积分法
• 第一类换元积分法是通过变量代换u=φ(x),将积分∫f(φ(x))φ'(x)dx化 为∫f(u)du。计算中常常遇到与第一类换元积分法相反的情形,即 ∫f(x)dx不易求出,但适当选择变量代换x=φ(t)后,得 ∫f(x)dx=∫f(φ(t))φ'(t)dt,而新的被积函数f(φ(t))φ'(t)的原函数容易求出。 设
高等数学_第四章习题课

四种类型分式的不定积分
1. x A adx Aln xaC;2. (x A a)d nx (1n)A x (a)n1C ;
3. x2M pxN xqdxM 2lnx2pxq
NM2parctx anp2 C;
qp24
qp24
4 .( x 2 M p N q x ) x n d M x 2( x ( 2 2 x p p ) d q x ) n x ( x 2 N p M 2 q x ) n p d
即:连续函数一定有原函数.
2、不定积分
(1) 定义
在区间 I内, 函数f(x)的带 有任意 常数项 的 原函 数称 为f(x)在区间 I 内的 不定积 分, 记
为f(x)dx.
f(x)d xF (x)C
函 数 f(x )的 原 函 数 的 图 形 称 为 f(x )的 积 分 曲 线 .
(1)3axdx lan
ln 3 2
dt t2 1
2l1n3(t
1 1 t
1 )dt 1 lnt1C 1 2(ln 3ln2) t1
2
1
3x2x
ln C.
2(l3 nln2) 3x2x
例2 求ex1(1csoixsnx)dx.
ex(12sinxcosx)
解 原式
2 2 dx 2co2sx
2
(ex 1 extanx)dx
高等数学_第四章习题课
1、原函数
定义 如果在区间I内,可导函数F(x)的导函数为 f(x) ,即xI ,都有F(x) f(x) 或 dF(x) f(x)dx,那么函数F(x)就称为f(x)或 f(x)dx在区间I内原函数. 原函数存在定理 如 果 函 数 f(x)在 区 间 I 内 连 续 , 那 么 在 区 间 I内 存 在 可 导 函 数 F (x), 使 x I, 都 有 F (x)f(x).
高等数学第四章课件-初等矩阵

类似地, 类似地, ⎛ A ⎞ P −1 ⋯ P −1 P −1 ⎜E ⎟ l 2 1 ⎝ n⎠ ⎛ APl −1 ⋯ P2 −1 P1−1 ⎞ =⎜ E n Pl −1 ⋯ P2 −1 P1−1 ⎟ ⎝ ⎠ ⎛ En ⎞ = ⎜ −1 ⎟ ⎝A ⎠
A 施 行 初 等列 变 换 , 即 对 2n × n 矩 阵 E −1 当把 A 变成 E 时,原来的 E 就变成 A .
R( A) = R( B ).
⎛ 1 0 −1 ⎞ 例2 将可逆矩阵 A = ⎜ −2 1 3 ⎟ 表成若干初等 ⎜ 3 −1 2 ⎟ ⎝ ⎠ 矩阵的乘积. 矩阵的乘积. ⎛ 1 0 −1 ⎞ 左乘P (2,1(2)) ⎛ 1 0 −1 ⎞ → 解: A = ⎜ −2 1 3 ⎟ ⎯⎯⎯⎯⎯ ⎜ 0 1 1 ⎟ ⎜ 3 −1 2 ⎟ ⎜ 3 −1 2 ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 1 0 −1 ⎞ 右乘P (1,3(1)) ⎛ 1 0 0 ⎞ 左乘P (3,1( −3)) ⎯⎯⎯⎯⎯ ⎜ 0 1 1 ⎟ ⎯⎯⎯⎯⎯ ⎜ 0 1 1 ⎟ → → ⎜ 0 −1 5 ⎟ ⎜ 0 −1 5 ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 1 0 0 ⎞ 右乘P (2,3( −1)) ⎛ 1 0 0 ⎞ 左乘P (3,2(1)) ⎯⎯⎯⎯⎯ ⎜ 0 1 1 ⎟ ⎯⎯⎯⎯⎯ ⎜ 0 1 0 ⎟ → → ⎜ 0 0 6⎟ ⎜ 0 0 6⎟ ⎝ ⎠ ⎝ ⎠ 1 ⎛ 1 0 0⎞ 左乘P (3( )) 6 ⎯⎯⎯⎯→ ⎜ 0 1 0 ⎟ ⎜0 0 1⎟ ⎝ ⎠
⎛1 ⎞ ⎜ ⋱ ⎟ 1 ⎜ ⎟ P ( i ( c )) = ⎜ ⎟ c ⎜ ⎟ 1 ⎜ ⋱ ⎟ ⎜ 1⎟ ⎝ ⎠
←第i 行
第i列
倍法矩阵 (倍法矩阵 倍法矩阵)
( 3 )以 数 k 乘 某 行 ( 列 )加 到 另 一 行 ( 列 )上 去 以 k 乘 E 的第 j 行加到第 i 行上 ( krj + ri ) 以 k 乘 E 的第 i 列加到第 j 列上 ( kci + c j ),
高等数学第四章不定积分教案

第四章 不定积分知识结构图: ⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧分部积分法第二换元积分法第一换元积分法直接积分法求不定积分基本公式性质几何意义定义不定积分原函数教学目的要求:1.理解原函数与不定积分的概念,理解两者的关系,理解不定积分与导数的关系;掌握不定积分的几何意义与基本性质。
2.理解与掌握积分的基本公式,掌握不定积分的基本运算,会熟练地用直接积分法、第一类换元积分法、第二换元积分法(代数换元)、分部积分法求不定积分。
3.了解不定积分在经济问题中的应用。
教学重点:1.原函数与不定积分的概念2.不定积分的性质与基本积分公式 3.直接积分法 4.换元积分法 5.分部积分法 教学难点:1.不定积分的几何意义2.凑微分法、分部积分法求不定积分第一节 不定积分的概念与基本公式【教学内容】原函数与不定积分的概念、不定积分的几何意义、不定积分的基本性质、不定积分的基本公式。
直接积分法求函数的不定积分。
【教学目的】理解原函数与不定积分的概念,理解不定积分的几何意义;理解并掌握不定积分的基本性质;熟练掌握用直接积分法计算一些简单函数的不定积分。
【教学重点】1.原函的概念;2.不定积分的概念;3.不定积分的几何意义;4.不定积分的基本性质;5.不定积分的基本公式;6.直接积分法计算不定积分。
【教学难点】1.理解不定积分的几何意义;2.记忆不定积分公式。
【教学时数】2学时 【教学进程】一、原函数与不定积分的概念(一)原函数的概念前面我们所学的知识是:已知一个函数,求这个函数的导数;在现实生活中往往有:已知一个函数的导数,求原来这个函数的问题,如:①已知曲线上任意一点p(x,y)处的切线斜率为x k 2=,求此曲线的方程。
②已知某产品的边际成本MC ,要求该产品总成本的变化规律()C C q =. 1.原函数定义定义4.1 设)(x f 是定义在区间I 内的已知函数.如果存在可导函数)(x F ,使对于任意的I x ∈,都有)()(x f x F ='或dx x f x dF )()(=则称函数)(x F 是函数)(x f 的一个原函数。
高等数学第四章 第四节 不定积分 课件

例3
解
计算由 y 2 2 x 和 y x 4所围图形的面积.
选 y 为积分变量
y x4
y2 2 x
y2 dA( y ) ( y 4) dy, y [2, 4] 2
4
A
4
2
dA( y )
2
y (y 4 )d y 18. 2 2
与 y 0 所围成的图形分别绕 x 轴、y 轴旋转构成旋转 体的体积.
解 绕 x 轴旋转的旋转体体积
y( x )
a
Vx
2a
0
y 2dx
2a
a 2 (1 cost )2 d[a( t sint )]
0
2
5 2a 3 .
20/31
例 4
求摆线 x a( t sin t ) , y a(1 cos t ) 的一拱
a 4 2 0 3 π ab
方法2 利用椭圆参数方程
y O
b
x
ax
则
V 2 π y 2 dx 2 π ab 2 sin 3t d t
0
a
2 2 π ab 1 3 4 π ab 2 3
2
4 3 特别当b = a 时, 就得半径为a 的球体的体积 π a . 3
a xxdx
b x
例 2
计算由曲线 y x 3 6 x 和 y x 2 所围成
的图形的面积.
解
A f1 ( x) f 2 ( x) dx
a
b
y x3 6x
两曲线的交点
y x 6x 2 y x
3
y x2
同济大学(高等数学)_第四章_不定积分

第四章 不定积分前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及基本的积分方法.第1节 不定积分的概念与性质1.1 不定积分的概念在微分学中,我们讨论了求一个已知函数的导数(或微分)的问题,例如,变速直线运动中已知位移函数为()s s t =,则质点在时刻t 的瞬时速度表示为()v s t '=.实际上,在运动学中常常遇到相反的问题,即已知变速直线运动的质点在时刻t 的瞬时速度()v v t =,求出质点的位移函数()s s t =.即已知函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.1。
1。
1原函数定义1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数.例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1(ln )'(0),x x x=>所以ln x 是1x在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件.定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有()()'=F x f x .简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数.定理1的证明,将在后面章节给出。
关于原函数,不难得到下面的结论:若()()'=F x f x ,则对于任意常数C ,()+F x C 都是()f x 的原函数.也就是说,一个函数如果存在原函数,则有无穷多个.假设()F x 和()φx 都是()f x 的原函数,则[()()]0'-≡F x x φ,必有()()φ-F x x =C ,即一个函数的任意两个原函数之间相差一个常数.因此我们有如下的定理:定理2 若()F x 和()φx 都是()f x 的原函数,则()()-=F x x C φ(C 为任意常数). 若()()'=F x f x ,则()+F x C (C 为任意常数)表示()f x 的所有原函数.我们称集合{}()|F x C C +-∞<<+∞为()f x 的原函数族.由此,我们引入下面的定义.1。
高等数学(上)第四章不定积分

第四章 不定积分内容:不定积分的概念和性质、换元积分法、分部积分法、几种特殊类型函数的积分、简单无理函数的积分、积分表的使用。
要求:理解不定积分的概念和性质,掌握不定积分的基本公式、换积分法和分部积分法,理解有理函数的积分,了解简单无理函数的积分重点:不定积分的概念和性质;不定积分的基本公式;换元积分法、分部积分法、 难点:凑微分、三角代换法、分部积分法到目前为止,我们已经学会了对函数作如下运算:四则、复合、求导. 在四则运算中, 加减法互为逆运算, 积商也互为逆运算; 我们能将简单函数复合, 也能将复合函数分解. 于是, 我们自然会想到这点: 既然我们能求得任一函数的导数, 我们当然也想知道谁的导数是一个任意给定的函数呢? 即研究求导的逆运算.例: 对于变速直线运动, 若已知位移函数)(t s s =, 则即时速度)(t s v '=, 反之, 若已知)(t v v =, 能否求得位移函数?§1. 不定积分的概念与性质一、原函数与不定积分的概念1. 原函数定义: 设)(),(x F x f 在区间I 上有定义, 若∀x ∈I, 有)()(x f x F =' (或dx x f x dF )()(=)则称)(x F 为)(x f 在I 上的原函数.例: -sinx 是cosx 的原函数, x ln 是x1的原函数. 我们自然会提出三个问题:(1) 是不是任一函数都有有原函数. (2) 一个函数的原函数是否唯一.(3) 若不唯一, 不同的原函数间的关系. 逐一回答:(1) 定理: 若)(x f 在I 上连续, 则存在)(x F , 使得)()(x f x F ='. (2) 常数的导数为0. 若)()(x f x F =', 则())()(x f C x F ='+. (3) 若)()()(x G x f x F '==', 则()0)()(='-x F x G . 回忆中值定理得到的重要结果, 可得:Cx F x G Cx F x G +==-)()()()(综合(2), (3), 得出结论: 若)(x F 是)(x f 的一个原函数, 则 1°所有的)(x F +C 也是)(x f 的原函数. 2°)(x f 的任一原函数也写成)(x F +C.即})({C x F +(C 为任意常数)是)(x f 的所有原函数的集合. 命名之. 2. 不定积分定义: 函数)(x f 的全体原函数称为)(x f 的不定积分, 记作⎰dx x f )(.若)()(x f x F =', 则⎰dx x f )(=)(x F +C.⎰: 积分符号; )(x f 被积函数; dx x f )(被积表达式;x : 积分变量; C: 积分常量. 例1.C x xdx C x dx x +=+=⎰⎰sin cos ,4143例2. 证明:C x dx x +=⎰ln 1.证一: ⎩⎨⎧<->=0)ln(0ln ln x x x xx()⎪⎪⎩⎪⎪⎨⎧<-->='0101ln x xx x x证二: 2ln ln x x =为简便, 记C x dx +=⎰ln 1.(曲线族中任意一条曲线都可由另一条曲线经过上下平移而得到, 表现在图形上, 即: 所有平行于y 轴的虚线被相同的两条积分曲线所截得的长度都相同.)3. 不定积分与导数、微分的关系()()Cx F x dF C x F dx x F dxx f dx x f dx f dx x f +=+='=='⎰⎰⎰⎰)()(,)()()2()()(),()()1(不定积分与导数、微分互为逆运算. 注2: 导数是一个函数, 不定积分是一族函数.二、基本积分公式由导数公式,可直接得出积分公式Caa dx a C e dx e C x xdx x C x xdx x C x xdx dx x C x xdx dx x Cx xdx C x xdx Cx dx x Cx dx x Cx dx x C x dx x C kx kdx xxx x +=+=+-=⋅+=⋅+-==+==+-=+=+=-+=++=-≠++=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+ln )13()12(csc cot csc )11(sec tan sec )10(cot csc sin 1)9(tan sec cos 1)8(cos sin )7(sin cos )6(arcsin 11)5(arctan 11)4(ln 1)3()1(11)2()1(2222221μμμμ三、不定积分的运算法则[]⎰⎰⎰⎰⎰⎰±±±=±±±=dxx f dx x f dx x f dx x f x f x f dxx f k dx x kf n n )()()()()()()2()()()1(2121.例1.⎰⎰+--+dxx x xdxx e x )213114()2()cos 52()1(2 例2.()⎰⎰-=dx x xdx 1sec tan22例3. ⎰⎰+-+=+dt t t dt t t 22221111例4. ⎰⎰+=dt xx x x dt x x 222222cos sin cos sin cos sin 1§2. 换元积分法积分的许多方法都是来源于求导(微分)公式,凑微分法来源于复合函数求导公式,或者说是一阶微分形式不变性.一、第一类换元法(凑微分法)(){}()⎰⎰⎰=='=='⇒'=⋅'=+='⇒'⋅='⋅='⋅'='duu f dx x x f du u F dx x F x F d C x F dx x x f x x f u u f u u F x F x u x x u f u F xx u x)()()]([)()]([)]([)]([()()]([)()]([)()()]([)()()()(ϕϕϕϕϕϕϕϕϕϕϕϕ定理 设)(u f 有原函数,)(x u ϕ=可导,则)()()()]([)()]([x u duu f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='此定理的实质是将对变量x 的积分转化为对x 的函数)(x ϕ的积分.1. b ax x +=)(ϕ例1.⎰xdx 2sin 2不能对⎰xdx 2sin 直接积分, 但若令u=2x, 则可对⎰udu sin 直接积分, 只需将原积分中的“dx ”转化为“du ”即“d(2x)”.Cx C u udu x xd xdx xu +-=+-===⎰⎰⎰=2cos cos sin )2(2sin 2sin 22 熟练后可省略例2. []⎰⎰⋅++=+21)12()12sin()12sin(x d x dx x 例3. ⎰-dx x 100)45(, ⎰-dx x 23)45(若是二或三次方, 或许可以考虑二项展开, 但对于100次或是非正整数次方显然不适用.例4.⎰⎰+→+dx x dx x a 222111例5.⎰⎰-→-dx xdx xa 222111一般地, ⎰⎰++=+)()(1)(b ax d b ax f a dx b ax f . 2.b ax x +=2)(ϕ例6. ⎰dx xe x 22 例7.⎰-dx x a x2一般地,⎰⎰++=+)()(21)(222b ax d b ax f adx b ax xf . 利用1111+++=μμμμdx x dx x , 我们常用的凑微分法有: ⎰⎰⎰⎰⎰⎰⋅=⋅⋅-=⋅⋅=⋅xd f dx x fxd f dx x f dx f dx f x 2131232例8.⎰dx x x 1tan 122例9.⎰dx xe x33. 其它类型例10. ⎰⎰=dx xxxdx cos sin tan , ⎰xdx cot 例11.⎰+dx x x 21arctan把对x 积分转化为对)(x ϕ积分,即)()(x d f dx f x ϕϕ⋅→⋅',这实际上也是一个积分过程,只是这个积分较为直接明了,因此,所有积分公式都可以被考虑用于凑微分.如:⎰⎰⋅=⋅x d f dx f x ln 14. 综合性凑微分(先变形, 再凑) ① 代数变形例12. ⎰-dx x x2例13. C ax ax a dx x a C a x ax a dx a x +-+=-++-=-⎰⎰ln 211,ln 2112222例14.⎰⎰++=++dx x dx x x 2)3(1116122例15.⎰⎰-+=--dx x x dx x x )1)(3(12312总之: ⎰⎪⎩⎪⎨⎧→→→++arctanln12不可分解因式可分解因式dx c bx ax 例16.⎰⎰+-=--dx x dx xx 22)1(21211例17.⎰⎰+=dx x xdx 212cos cos 2例18. C x x x dx x xdx +++=⎪⎭⎫ ⎝⎛+=⎰⎰832sin 414sin 321212cos cos 24例19. ⎰⎰--=x d x xdx cos )cos 1(sin 23例20. ⎰⎰--=x xd x xdx x cos cos )cos 1(cos sin2223例21.⎰⎰+=dx xx xdx x 22sin 8sin 3cos 5sin总结之:⎰⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⋅⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++积分化和差公式平方和公式并换元倍角公式降次dx Bx Ax Bx Ax Bx Ax dx x x dx x x n n n ncos cos sin sin cos sin )3(cos sin )2(cos sin )1(121222例22.⎰xdx csc()Cx x xx C x x C x x C x x x d x dx xx dx x xdx ++-=+-=+-+-=+-+-=++-=--===⎰⎰⎰⎰)cot ln(csc sin cos 1ln cos 1cos 1ln 21cos 1cos 1ln 211cos 1cos ln 21cos cos 11sin sin sin 1csc 2222 Cx x xdx C x x xdx ++-=++=⎰⎰)cot ln(csc csc )tan ln(sec sec 总结: 三角函数微分、积分公式记忆: (1) 弦函数↔ 弦函数; 切函数↔ 割函数 (2) 正函数→ 正号; 余函数→ 负号例23.⎰⎰⎰-=--=+dx x xdx x x dx x 22cos sin 1sin 1sin 1sin 11在积分过程中, 分母中的正减号是积分的障碍.二、第二类换元法(变量置换法)定理 设)(t x ψ=是单调且可导的函数,0)(≠'t ψ. 又设)()]([)(t t f t g ψψ'=有原函数, 则[]⎰⎰-='=)(1)()]([)(x t dt t t f dx x f ψψψ.事实上:[]C t G dt t g dt t t f t d t f dxx f x t t x +=='=⋅=⎰⎰⎰⎰-==)()(1)()()()]([)]([)]([)(ψψψψψψ第二类换元的实质是将f (x )复杂式变简单或将明显不可积变为可积. 1. 三角代换例1.⎰+dx x 112Ct t tdt t t d t dxx t x ++=⋅==+⎰⎰⎰=)tan ln(sec sec sec 1)(tan sec 1112tan 2不定积分是被积变量的函数, 故需写成x 的函数. 而用反函数代入的方法显然很繁琐.1tan tan x t t x =⇒=, 即在直角三角形中, t 是一个锐角, x 是其对边, 1是其邻边.⎰⎰+++=++++=++==C x a x dx a x C x x dx x x t t )ln(1)1ln(1111cos 1sec 2222222例2.⎰-dx ax 221xCa x x C aa x a x C t t tdtt t t a d t a dxax xa t ta x +-+=+-+=++=⋅==-==⎰⎰⎰)ln()ln()tan ln(sec tan sec tan 1)sec (tan 12222cos sec 22积分公式:⎰++±=±C x a x dx a x )ln(12222例3.⎰-dx x a 2C ax a a x a x a C t t t a dt t a tdtat td adx x a ax t t a x +-⋅+=++=+===-⎰⎰⎰⎰==)(arcsin 2)cos sin (2)2cos 1(2cossin cos 22222222sin sin 2三角代换的实质:用六角形公式消去根式(或分母)中平方和、平方差.2. 根式代换例4.⎰++dx x 1211Cx x C t t dt t t t d t dxx t x t x +++-+=++-=+-+=-+=++⎰⎰⎰=+-=)121ln(12)1ln(11121111211212212例5.⎰+xx dx)1(322a x -xCt t dt t t dt t t xx t x tx +-=+-+=+=+⎰⎰⎰==arctan 661116)1(1)1(22632366例3.dx xx⎰-+11 (选讲、习题课) 法一:()dt t t t td t xxt t x ⎰⎰+=+-==-++-=2222111114)121(22 法二:()⎰⎰⎰⎰⎰+=--=-=--=--==dt t dt tt dt t t dx x x dx x x t x )sin 1(sin 1sin 1sin 1cos 111122sin 222法三:()()⎰⎰⎰⎰-+-=-+=-+=2222221121111111x d x dx xdx xx dx x x§3.分部积分法由导数的乘法公式:())()()()()()(x g x f x g x f x g x f '+'=',可知)()(x g x f 是)()()()(x g x f x g x f '+'的一个原函数,即[])()()()()()()()()()()()()()()()()()(x df x g x g x f x dg x f dx x g x f x g x f dx x g x f C x g x f dx x g x f x g x f ⎰⎰⎰⎰⎰-=⇔'-='⇒+='+' 其实质是将被积函数看作两个函数的乘积,将其中一个函数先凑到d 的后面(做一部分积分),从而变形为求另一个函数的积分.简言之,将被积表达式写成d 前面一部分,d 后面一部分,再交换前后两部分的位置.分部积分公式:⎰⎰⎰⎰'-=-=='dx u v uv vdu uv udv dx v u 例1.⎰xdx x sinx,sinx 都可以放到d 的后面去,但是,变形后的结果截然不同:前者变形为求⎰xdx xsin 2,后者变形为求⎰xdx cos ,显然选择后者.注: 选择u,v(d 前函数,d 后函数)的原则: (1)v 明显可求(2)简单比v u u v ''(即新得到的积分比原积分简单) 例2.⎰dx xe x例3. ⎰dx e x x 2例4.⎰xdx x ln 2例5. ⎰xdx ln , ⎰xdx 2ln例6. ⎰xdx arcsin例7. ⎰xdx e xsin例8. ⎰=xdx x I sec tan 2(选讲)⎰⎰⎰⎰⎰⎰⎰--=+-=-=-==⋅==xdxI x x xdx x x x xdx x x x xd x x xxd xdx x x xdxx I sec sec tan sec )1(tan sec tan sec sec tan tan sec sec tan sec tan sec tan tan sec tan 232 注2.分部积分法主要类型:dxe ax ax x e ax ax d x dxe ax ax x ax n ax n ax n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⎰⎰⎰-sin cos sin cos cos sin )1(1\函数类型不变求导后积分后降次求导dx x ax ax x n ⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅类型趋同求导后类型不变积分后ln arctan arcsin )2(dx x d x ax ax n ⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→+幂函数1ln arctan arcsin方程二次分部积分函数类型不变求导后积分→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧→⎭⎬⎫⎩⎨⎧⋅⎰⎰⎰⎰dx bx bx e dx bx bx e e d bx bx dxbx bx e ax ax ax ax cos sin sin cos cos sin cos sin )3(\例9.⎰dx ex例10. dx xexdx e xx⎰⎰-=22cos 1sin 2例11. dx xe dx x e xx ⎰⎰=22sin cos sin 例12. ()dx x x xdx x ⎰⎰-=1sec tan 22 例13. ⎰=dx x I )sin(ln例14.⎰+++dx xx x 221)11ln(不定积分小结一积分公式(分类分组) 1.幂函数类⎪⎩⎪⎨⎧-≠⎰⎰dx xdx x 11(μμ ⎪⎪⎩⎪⎪⎨⎧-+⎰⎰dx ax dx ax 222211⎪⎪⎩⎪⎪⎨⎧±-⎰⎰dx a x dx x a 222211 2.指数函数类⎪⎩⎪⎨⎧⎰⎰dx a dxe xx3.三角函数类⎪⎩⎪⎨⎧⎰⎰xdx xdx cos sin⎪⎩⎪⎨⎧⎰⎰x d x x d x s e c t a n⎪⎩⎪⎨⎧⎰⎰x d x x d x c s c c o t⎪⎩⎪⎨⎧⎰⎰xdx xdx 22csc sec⎪⎩⎪⎨⎧⎰⎰x d x x x d x x c s c c o t s e c t a n 二、凑微分法)()()()]([)()]([x u duu f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='常用的凑微分法有:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅⋅-=⋅⋅=⋅⋅=⋅+⋅=⋅xd f dx x fx d f dx x f dx f dx f x dx f dx xf b ax d f a dx f 213121)(12322⎰⎰⎰⎰⎰⎰⋅=⋅⋅⋅-=⋅⋅⋅=⋅xxdef dx f e x d f dx f x x d f dx xfcos sin ln 二、变量置换法[])()(1)()]([)]([)]([)(x t t x dt t t f t d t f dx x f -==⎰⎰⎰'=⋅=ψψψψψψ 常用代换:1. 三角代换⎰⎰⎰⎰⎰⎰====-=+=-tdtt t a f a dx a x f tdtt a f a dx x a f tdtt a f a dx x a f ta x ta x ta x tan sec )tan ()(sec )sec ()(cos )cos ()(22sec 22222tan 2222sin 222. 根式代换⎰⎰--=+=⋅=++dt t t t f anmdxb ax b ax f nm n m ab tx b ax t mn nmnm 1),(),( 三、分部积分法⎰⎰⎰⎰'-=-=='dx u v uv vdu uv udv dx v u分部积分法主要类型:dxe ax ax x e ax ax d x dxe ax ax x ax n ax n ax n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⎰⎰⎰-sin cos sin cos cos sin )1(1\函数类型不变求导后积分后降次求导dx xax ax x n ⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅ 类型趋同求导后类型不变积分后ln arctan arcsin )2(dx x d x ax ax n ⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→+幂函数1ln arctan arcsin方程二次分部积分函数类型不变求导后积分→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧→⎭⎬⎫⎩⎨⎧⋅⎰⎰⎰⎰dx bx bx e dx bx bx e e d bx bx dxbx bx e axax ax axcos sin sin cos cos sin cos sin )3(\ 注2:有些函数经过变形、代换后成为上述类型.注3:选择u,v(d 前函数,d 后函数)的原则:留在d 前的函数求导后变易, 进入d 的函数积分后不变难.四、特殊函数积分归类 归类1:⎰⎪⎩⎪⎨⎧→→→++arctan ln 12平方和平方差dx c bx ax 归类2:⎰⎩⎨⎧→<→>→++arcsin 0012a a dx c bx ax 三角代换 归类3:⎰⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⋅⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++积分化和差公式平方和公式并换元倍角公式降次dx Bx Ax Bx Ax Bx Ax dx x x dx x x n n n ncos cos sin sin cos sin )3(cos sin )2(cos sin )1(121222 归类4:有理函数.。
《高等数学》教学课件 第4章

〔4-3〕
例1 求 2exdx 。
解
2exdx 2 exdx 2ex C
性质2 两个函数代数和的积分等于它们积分的代数和,即
[ f (x) g(x)]dx f (x)dx g(x)dx
〔4-4〕
例2 求 (2x cos x)dx 。
解
(2x cos x)dx 2xdx cosxdx x2 sin x C
令us100
1
1
0.05 u 2du 0.1u 2 C
回代
1
0.1(s 100)2 C
又因为 Q(0) 0,得 C 1 ,故
1
Q 0.1(s 100)2 1
3
例2 求 (1 2x) dx 。
解 将dx凑成 dx 1 d(1 2x) ,则 2
(1
3
2x) dx
1 2
(1
2x)3
二、不定积分的概念
定义2 如果函数 F (x) 是 f (x) 的一个原函数,那么表达式 F (x) C
( C为任意常数)称为 f (x) 的不定积分,记为 f (x)dx ,即
f (x)dx F (x) C
其中“ ”称为积分号,x 称为积分变量,f (x) 称为被积函
数,f (x)dx 称为被积表达式, C 称为积分常数。dx
1 2a
a
1
x
dx
a
1
x
dx
1 ( ln a x ln a x ) C 2a
1 ln a x C. 2a a x
同理有
1
1 xa
dx ln
C
x2 a2 2a x a
例10 求 csc xdx 。
解
csc xdx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘潭大学数学与计算科学学院 王文强
代数基本定理
代数基本定理:对于复数域,每个次数不少于1 代数基本定理:对于复数域,每个次数不少于1的复 系数多项式在复数域中至少有一根。 系数多项式在复数域中至少有一根。 由此推出,一个 次复系数多项式在复数域内有且只 由此推出,一个n次复系数多项式在复数域内有且只 有n个根,重根按重数计算。 个根, 个根 重根按重数计算。 定理: 定理:任意次数的实系数多项式都能够分解成一次和 二次因式的乘积。 二次因式的乘积。 此定理高斯在19世纪给出了完整的证明。 此定理高斯在19世纪给出了完整的证明。 高斯 世纪给出了完整的证明
都是非负整数; 其中 m 、 n 都是非负整数; a 0 , a1 ,L , a n 及
b0 , b1 ,L , bm 都是实数,并且a 0 ≠ 0 ,b0 ≠ 0 . 都是实数,
上一页 下一页 3
湘潭大学数学与计算科学学院 王文强
多项式的除法
多项式的除法比较复杂,为简单起见, 多项式的除法比较复杂,为简单起见,我们只 研究一元多项式的除法. 研究一元多项式的除法. 像整数除法一样,一元多项式的除法, 像整数除法一样,一元多项式的除法,也有整 商式、余式的概念. 除、商式、余式的概念. 一般地,一个一元多项式f(x)除以另一个一元 一般地,一个一元多项式 除以另一个一元 多项式g(x)时,总存在一个商式 多项式 时 总存在一个商式q(x)与一个余 与一个余 成立, 式r(x),使得 ,使得f(x)=g(x)q(x)+r(x)成立,其中 成立 其中r(x) 的次数小于g(x)的次数. 的次数. 的次数小于 的次数 特别地, 能被g(x)整除. 整除. 特别地,当r(x)=0时,称f(x)能被 时 能被 整除
湘潭大学数学与计算科学学院 王文强 上一页 下一页
2 B=− 5 1 C= 5
16
1 dx . 例4 求积分 ∫ 2 x ( x − 1)
1 1 1 1 dx = ∫ + 解 ∫ 2 2 − dx x ( x − 1) x ( x − 1) x − 1
1 1 1 dx − ∫ dx = ∫ dx + ∫ 2 x ( x − 1) x −1
湘潭大学数学与计算科学学院 王文强
上一页
下一页
8
实系数多项式的因式分解
因此, 因此,实系数多项式具有标准分解式
f ( x) = an ( x − c1 )l ( x − c2 )l L( x − cs )l ( x2 + p1 x + q1 )k L( x2 + pr x + qr )k
1 2 s 1 r
1 1+
x e2
+
x e3
+
x e6
dx .
6 解 令 t = e ⇒ x = 6 ln t , dx = dt , t 1 1 6 dx = ∫ ⋅ dt ∫ 3 2 x x x 1+ t + t + t t
x 6
1+ e2 + e3 + e6 1 3 3t + 3 6 dt = ∫ − = 6∫ dt − 2 2 t (1 + t )(1 + t ) t 1+ t 1+ t
上一页 下一页 9
湘潭大学数学与计算科学学院 王文强
假定分子与分母之间没有公因式 这有理函数R(x)是真分式; 是真分式; (1) n < m , 这有理函数 这有理函数R(x)是假分式; 是假分式; ( 2) n ≥ m , 这有理函数 有理函数
相除
多项式 + 真分式
分解
若干部分分式之和
1 x3 + x + 1 . 例 = x+ 2 2 x +1 x +1
湘潭大学数学与计算科学学院 王文强 上一页 下一页 6
实系数多项式的因式分解
定理(因式定理) 定理(因式定理) 多项式f(x)有一个因式 有一个因式(x-c)的充要条件是f(c)=0 。 多项式 有一个பைடு நூலகம்式 的充要条件是
对于实系数多项式, 以下事实是基本的: 对于实系数多项式, 以下事实是基本的 如果α 是 的复根, 实系数多项式 f ( x ) 的复根 , 那么 α 的共轭数 α 也是 的根,并且 有同一重数.即实系数多项式的 f ( x ) 的根 并且α 与α 有同一重数 即实系数多项式的 非实的复数根两两成对. 非实的复数根两两成对
3 = x − 3 ln(1 + e ) − ln(1 + e ) − 3 arctan(e ) + C . 2
x 6 x 3 x 6
湘潭大学数学与计算科学学院 王文强
上一页
下一页
20
说明 将有理函数化为部分分式之和后,只出 将有理函数化为部分分式之和后, 现三类情况: 现三类情况:
A Mx + N (1) 多项式; ( 2) 多项式; ; ( 3) ; n 2 n ( x − a) ( x + px + q ) Mx + N dx , 讨论积分∫ 2 n ( x + px + q )
难点 将有理函数化为部分分式之和 将有理函数化为部分分式之和.
湘潭大学数学与计算科学学院 王文强 上一页 下一页 10
有理函数化为部分分式之和的一般规律: 有理函数化为部分分式之和的一般规律: (1)分母中若有因式 ( x − a ) ,则分解后为 )
k
A1 A2 Ak , + + L+ k k −1 ( x − a) ( x − a) x−a
湘潭大学数学与计算科学学院 王文强 上一页 下一页 13
A B C 1 , = + + 例2 2 2 x ( x − 1) x − 1 x ( x −1 )
1 = A( x − 1) 2 + Bx + Cx ( x − 1)
代入特殊值来确定系数 A, B , C 取 x = 0, ⇒ A = 1 取 x = 1, ⇒ B = 1 取 x = 2, 并将 A, B 值代入 (1) ⇒ C = −1
Q x + 3 = A( x − 3) + B( x − 2), ∴ x + 3 = ( A + B ) x − ( 3 A + 2 B ),
A + B = 1, A = −5 , ⇒ ⇒ − ( 3 A + 2 B ) = 3, B = 6 x+3 6 −5 . ∴ = + 2 x − 5x + 6 x − 2 x − 3
上一页 下一页 19
湘潭大学数学与计算科学学院 王文强
3 3t + 3 6 dt = ∫ − − 2 t 1+ t 1+ t 2 1 3 d (1 + t ) dt − 3∫ = 6 ln t − 3 ln(1 + t ) − ∫ 2 2 1+ t 2 1+ t 3 2 = 6 ln t − 3 ln(1 + t ) − ln(1 + t ) − 3 arctan t + C 2
其中 c1 ,L, cs , p1 ,L, pr , q1 ,L, qr 全是实数, 全是实数,
l1 , l2 ,L, l s , k1 ,L, kr 是正整数, 是正整数,
是不可约的, 并且 x 2 + pi x + qi ( i = 1,2,L, r ) 是不可约的, 也就是适合条件 pi2 − 4qi < 0, i = 1,2,L, r .
湘潭大学数学与计算科学学院 王文强
上一页
下一页
7
实系数多项式的因式分解
实系数多项式因式分解定理 每个次数 ≥ 1 的实系数多项式在实数域上都可以唯一地分 解成一次因式与含一对非实共轭复数根的二 次因式的乘积.实数域上不可约多项式 除一 次因式的乘积 实数域上不可约多项式,除一 实数域上不可约多项式 次多项式外,只有含非实共轭复数根的二次 次多项式外 只有含非实共轭复数根的二次 多项式. 多项式
其中 M i , N i 都是常数( i = 1,2,L , k ) .
Mx + N ; 特殊地: 特殊地:k = 1, 分解后为 2 x + px + q
上一页 下一页 12
湘潭大学数学与计算科学学院 王文强
真分式化为部分分式之和的待定系数法 真分式化为部分分式之和的待定系数法
x+3 A B x+3 例1 2 , = + = x − 5 x + 6 ( x − 2)( x − 3) x − 2 x − 3
2
整理得 1 = ( A + 2 B ) x 2 + ( B + 2C ) x + C + A,
2B A + 2B = 0, 4 2 1 B + 2C = 0, ⇒ A = , B = − , C = , 5 5 5 A + C = 1, 4 2 1 − x+ 1 ∴ = 5 + 5 25. 2 (1 + 2 x )(1 + x ) 1 + 2 x 1+ x
(1)
1 1 1 1 . ∴ = + − 2 2 x ( x − 1) x ( x − 1) x − 1
湘潭大学数学与计算科学学院 王文强 上一页 下一页 14
1 A Bx + C , + 例3 2 = 2 (1 + 2 x )(1 + x ) 1 + 2 x 1 + x