绳(杆)端速度分解模型问题的分析(无答案)
巧用极限法解答高中物理试题

巧用极限法解答高中物理试题极限法在现代数学乃至物理等学科中有广泛的应用。
由有限小到无限小,由有限多到无限多,由有限的差别到无限地接近,就达到事物的本真。
下面是小编为大家整理的关于巧用极限法解答高中物理试题,希望对您有所帮助。
欢迎大家阅读参考学习!使用极限法解答高中物理1直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.2物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.思维模板:常用的思维方法有两种:(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.3运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类:一是绳(杆)末端速度分解的问题;二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析.4抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解5圆周运动问题题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.(2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;6牛顿运动定律的综合应用问题题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.①。
模型10绳杆关联运动模型(解析版)-备战2021年高考物理模型专题突破

10绳杆关联运动模型1.(2020·辉县市第二高级中学高一月考)如图所示,AB 杆以恒定角速度ω绕A 点转动,并带动套在光滑水平杆OC 上的质量为M 的小环运动,运动开始时,AB 杆在竖直位置,则小环M 的速度将( )A .逐渐增大B .先减小后增大C .先增大后减小D .逐渐减小【答案】A 【详解】设经过时间t ,OAB t ω∠=,则AM 的长度为cos h t ω,则AB 杆上M 点绕A 点的线速度cos hv tωω=⋅.将小环M 的速度沿AB 杆方向和垂直于AB 杆方向分解,垂直于AB 杆上分速度等于M 点绕A 点的线速度v ,则小环M 的速度2cos cos v hv t tωωω==',随着时间的延长,则小环的速度的大小不断变大.故A 正确,BCD 错误. 故选A .2.(2020·浙江高一专题练习)如图所示,套在细杆上的小环沿杆匀速下滑,其在水平方向和竖直方向的分运动分别是( )A .匀速运动,匀速运动B .匀加速运动,匀加速运动C .匀速运动,匀加速运动D .匀加速运动,匀速运动【答案】A 【详解】小环沿杆匀速下滑,说明小环的合力为零,所以小环在水平方向所受合力为零,竖直方向的合力也为零,即小环在水平方向和竖直方向都做匀速直线运动,故A 正确.3.(2020·四川眉山市·高一期中)如图所示,人用轻绳通过定滑轮拉穿在光滑竖直杆上的物块A ,人以速度v 0向左匀速拉绳,某一时刻,绳与竖直杆的夹角为θ,与水平面的夹角为α,此时物块A 的速度v 1为A .10sin cos v v αθ=B .01sin sin v v αθ=C .10cos cos v v αθ=D .01cos cos v v αθ=【答案】D 【解析】对人进行速度分解,如图所示:可知:'0cos v v α=对物块A 进行速度分解,如图所示,则可知:'1cos v v v cos cos αθθ==,故选项D 正确,选项ABC 错误. 点睛:解决本题的关键会对速度进行分解,要正确找到合运动与分运动,注意两个物体沿着绳子方向的分速度相等.4.(2020·湖南娄底市·娄底一中)两根光滑的杆互相垂直地固定竖直平面内.上面分别穿有一个小球.小球a 、b 间用一细直棒相连如图.释放后两球都开始滑动.当细直棒与竖直杆夹角为α时,两小球实际速度大小之比v a ∶v b 等于A .sin α∶1B .cos α∶1C .tan α∶1D .cot α∶1【答案】C 【详解】速度的合成与分解,可知,将两球的速度分解,如图所示,则有:a v v cos α=杆 ,而b v v sin α=杆,那么两小球实际速度之比 v a :v b =sin α:cos α=tan α:1故C 正确,ABD 错误. 故选C .5.(2020·运城市景胜中学高一期末)如图所示,小球a 、b 用一细直棒相连,a 球置于水平地面,b 球靠在竖直墙面上,释放后b 球沿竖直墙面下滑,当滑至细直棒与水平面成θ角时,两小球的速度大小之比为( )A .absin v v θ= B .ab cos v v θ= C .ab tan v v θ= D .abcot v v θ= 【答案】C 【详解】如图所示,将a 球速度分解成沿着杆与垂直于杆方向,同时b 球速度也是分解成沿着杆与垂直于杆两方向。
曲线运动运动的合成与分解知识要点归纳总结

曲线运动运动的合成与分解要点归纳一、曲线运动1.曲线运动:运动轨迹是曲线的运动。
2.曲线运动速度:1)方向:沿轨迹上各点的切线方向。
2)大小:可以变化,也可以不变化。
3.运动的性质:变速运动(加速度一定不为零)4.做曲线运动的条件:⑴运动学角度说:a的方向与v的方向不在同一条直线上。
⑵从动力学角度说:F合的方向与v的方向不在同一条直线上。
①F合(a)与v的夹角0°<θ<90°时:物体做加速曲线运动;②F合(a)与v的夹角θ=90°时:物体做匀速率曲线运动;③ F合(a)与v的夹角90°<θ<180°时:物体做减速曲线运动。
5.物体做曲线运动时的受力特点:F合(a)总是指向轨迹弯曲的内(凹)侧。
二.运动的合成与分解1.合运动与分运动1)合运动:物体对地的实际运动。
2)分运动:除合运动外,物体同时参与的其它运动。
3)合运动与分运动之间:①等效性②等时性分运动与分运动之间:③独立性2.运动的合成与分解1)运动的合成:已知分运动求合运动。
即已知分运动的位移、速度、和加速度等求合运动的位移、速度、和加速度等,遵从平行四边形定则。
2)运动的分解:已知合运动求分运动。
它是运动合成的逆运算。
处理曲线问题往往是把曲线运动按实效分解成两个方向上的分运动。
3.合运动的性质和轨迹1)合运动的性质由a决定:①a=0(F合=0)时:静止或匀速直线运动;②a≠0(F合≠0)且恒定时:匀变速运动⎩⎨⎧曲线运动不共线时物体做匀变速与线运动共线时物体做匀变速直与vava③a≠0(F合≠0)且变化时:非匀变速运动⎩⎨⎧减)速曲线运动不共线时物体做变加(与)速直线运动共线时物体做变加(减与vava2)合运动的轨迹由a与v的方向决定:①两个分运动均是匀速直线运动,其合运动是匀速直线运动;②一个分运动是匀速直线运动,另一个分运动是匀变速直线运动,当它们共线时,其合运动是匀变速直线运动,当它们互成一定夹角时,它们的合运动是匀变速曲线运动;③两个互成夹角的匀变速直线运动的合运动是匀变速运动,若a与v共线其合运动是匀变速直线运动,若a与v不共线其合运动是匀变速曲线运动。
浙江高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解学案

第一节曲线运动运动的合成与分解[高考导航]12.宇宙c7797航行13.经典a力学的局限性实验:研1717究平抛运动平抛运动和圆周运动是高考考查的重点,命题频繁,万有引力与宇宙航行基本为必考内容。
着重考查的内容有:(1)平抛运动的规律及有约束条件的平抛运动;(2)圆周运动的运动学和动力学分析;(3)天体质量、密度的计算;(4)卫星运动的各物理量间的比较。
第一节曲线运动运动的合成与分解一、曲线运动答案:□1切线□2方向□3变速□4不在同一条直线上□5不在同一条直线上【基础练1】如图,乒乓球从斜面上滚下,以一定的速度沿直线运动。
在与乒乓球路径相垂直的方向上放一个纸筒(纸筒的直径略大于乒乓球的直径),当乒乓球经过筒口时,对着球横向吹气,则关于乒乓球的运动,下列说法中正确的是( )A.乒乓球将保持原有的速度继续前进B.乒乓球将偏离原有的运动路径,但不进入纸筒C.乒乓球一定能沿吹气方向进入纸筒D.只有用力吹气,乒乓球才能沿吹气方向进入纸筒解析:选B。
当乒乓球经过筒口时,对着球横向吹气,乒乓球沿着原方向做匀速直线运动的同时也会沿着吹气方向做加速运动,实际运动是两个运动的合运动;故一定不会进入纸筒,要提前吹才会进入纸筒,故A、C、D错误,B正确。
二、运动的合成与分解答案:□1实际□2平行四边形【基础练2】如图所示,这是工厂中的行车示意图,行车在水平向右匀速运动,同时悬挂工件的悬线保持在竖直方向,且工件匀速上升,则工件运动的速度( )A.大小和方向均不变B.大小不变,方向改变C.大小改变,方向不变D.大小和方向均改变解析:选A。
工件同时参与了水平向右的匀速运动和竖直方向的匀速运动,水平和竖直方向的速度都不变,根据矢量合成的平行四边形法则,合速度大小和方向均不变。
考点一物体做曲线运动的条件及轨迹分析1.曲线运动的条件:物体所受合外力(或加速度)方向与运动方向不共线。
2.曲线运动的类型(1)匀变速曲线运动:合力(加速度)恒定不变。
绳船模型中的速度和加速度关系深度分析

绳船模型中的速度和加速度关系深度分析摘要:速度合成和分解中,绳子两端绳上的点的速度沿绳子方向的分量才相等,而不是绳子两端的物体的速度沿绳子方向的分量相等。
同时,绳子两端的点的加速度沿绳子方向的分量也不是单纯意义上的相等,本文通过绳船模型定量给出速度及加速度的关系。
关键词:速度加速度分解相等绳杆端速度分解模型中,在绳子不松弛的情况下,在同一时刻必须具有相同的沿杆绳方向的分速度[1]。
这里的速度分量指,绳子两端点的速度沿绳子方向分量,而不是绳子两端物体的速度分量。
绳子两端点的速度与绳子两端物体的速度有很大的区别,如图1所示,数值方向的动滑轮模型,绳子端点C的速度是绳子两端物体(滑轮)速度的两倍。
本文将通过绳船模型详细说明速度关系。
图1在教学过程中,学生从速度关系直接类比加速度关系,绳子两端的点的加速度沿绳方向分量相等,这样的理解显然是不对的。
如图2所示,物体绕圆心o作匀速圆周运动,半径为r,速率为v,分析绳子两端的点的加速度沿绳方向分量的关系?绳子一端物体的加速度,这个加速度为物体的合加速度,此加速度沿半径方向的分量为,绳子一端圆心的加速度0,此加速度沿半径方向的分量为0,显然绳子两端的点的加速度沿绳方向的分量不相等。
本文将通过绳船模型详细说明加速度关系。
1、单绳船模型中速度关系如图3所示,人用轻质细绳通过定滑轮牵引小船靠岸,如果收绳的速度为,则在绳与水平方向夹角为的时刻,船头到滑轮的距离为,船的速度有多大[2]?分析:船在水面在直线运动,实际发生的运动就是合运动,这个合运动有两个运动效果,一是使小船沿绳拉力方向以速度运动,二是使小船随绳的一端绕滑轮做顺时针方向的圆周运动。
靠近船头绳上的速度和船的速度一样,由于绳子不松软,所以沿绳方向速度分量相等:①由①式变形得船的速度:②2、单绳船模型中加速度关系如图3所示,如果人拉绳子以恒定的加速度向前奔跑,则在绳与水平方向夹角为的时刻,船头到滑轮的距离为,船的速度有多大?错误的理解,由于绳子不松软,所以沿绳方向加速度分量相等。
速度的分解专题

2.模型分析
(1)船的实际运动是水流的运动和船相对静水的运动的合运动。 (2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度)。
21
专题二 、小船渡河模型
(3)小船渡河的两类问题、三种情景 渡河时间最短 如果v船>v水,当船头方向与上游夹角θ 满足 v船cos θ =v水时,合速度垂直河岸,渡河位移 最短,等于河宽d
d 60 m 120m 6 cos 2
最短行程, s
小船的船头与上游河岸成 600 角时,渡河的最短航程为 120m。
31
针对训练
32
解析
解析:摩托艇要想在最短时间内到达对岸,其划行方向要垂直于江岸,摩托 艇实际的运动是相对于水的划行运动和随水流的运动的合运动,垂直于江岸 方向的运动速度为v2,到达江岸所用时间t= 速v1在相同的时间内,被水冲下的距离 ;沿江岸方向的运动速度是水 ,即为登陆点距离0点距离 。
的运动也就是船的实际运动,是合运动,与船头所指方向一般情况下不共线。 (2)按实际效果分解,一般用平行四边形定则沿水流方向和船头所指方向分解。 (3)渡河时间只与船垂直河岸的分速度有关,与水流速度无关。 (4)求最短渡河位移时,根据船速v船与水流速度v水的大小情况,用三角形定则求极限的 方法处理。
29
4
1.绳端速度分解问题
【例1】(多选)如图所示,做匀速直线运动的小车A通过一根绕过定滑轮的长绳 吊起一重物B,设重物和小车速度的大小分别为vB、vA,则( )
A.vA>vB B.vA<vB C.绳的拉力等于B的重力 D.绳的拉力大于B的重力
5
解析
6
1.绳端速度分解问题
7
解析
船的速度是合速度
高考物理解题模型分类专题讲解9---杆绳速度分解(解析版)

高考物理解题模型分类专题讲解 模型 9 杆绳速度分解1.模型特点 沿绳(或杆)方向的速度分量大小相等。
2.思路与方法 合速度就是物体的实际运动速度 v 分速度 方法:v1 与 v2 的合成遵循平行四边形定则。
【典例 1】(湖北省“荆、襄、宜七校考试联盟”2017 2018 学年高一下学期期中)人 用绳子通过定滑轮拉物体 A,A 穿在光滑的竖直杆上,当以速度 v0 匀速地拉绳使物体 A 到达如图所示位置时,绳与竖直杆的夹角为 θ,则物体 A 实际运动的速率是( B )A.v0cos θv0 B.cosθC.v0sinθv0 D.sinθ【答案】B【解析】物体 A 的运动是由绳的运动和垂直绳子方向的转动合成的,如图,则 v=v0 ,故选 B。
cosθ1 / 16【变式训练 1】如图,人沿平直的河岸以速度 v 行走,且通过不可伸长的绳拖船,船 沿绳的方向行进,此过程中绳始终与水面平行。
当绳与河岸的夹角为 α 时,船的速 率为 ( )A. vsin αv cosαv B. sinαC. vcos αD.【答案】 C 【解析】如图所示,把人的速度沿绳和垂直绳的方向分解,由几何知识有 v 船=vcos α,所以 C 正确,A、B、D 错误。
【典例 2】A、B 两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体 A 以 v1 的速度向右匀速运动,当绳被拉成与水平面夹角分别为 α、β 时,如图所示。
物2 / 16体 B 的运动速度 vB 为(绳始终有拉力)( )v1 sin α A. sin βv1 cosα B. sin βv1 sin α C. cos βD.cosα cos βv1【答案】 D 【解析】A、B 两物体的速度分解如图由图可知:v 绳 A=v1cos α v 绳 B=vBcos β 由于 v 绳 A=v 绳 Bcosα 所以 vB= cos β v1 ,故 D 对 【变式训练 2】(多选)如图甲所示,将质量为 2m 的重物悬挂在轻绳的一端,轻绳的另一 端系一质量为 m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为 d。
2023年高考小专题复习学案 专题18曲线运动与运动的合成分解

专题18曲线运动与运动的合成分解【知识梳理】 一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的 。
2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是 运动。
3.运动的条件:物体所受 的方向跟它的速度方向不在同一条直线上,或它 方向与速度方向不在同一条直线上。
4.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在 方向与 方向之间,速度方向与轨迹相切,合外力方向指向轨迹的 侧。
二、运动的合成与分解 1.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循 。
2.合运动与分运动的关系(1)等时性:合运动和分运动经历的 相等,即同时开始、同时进行、同时结束。
(2)独立性:一个物体同时参与几个分运动,各分运动 ,不受其他分运动运动的影响。
(3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的 。
3.运动性质的判断⎩⎨⎧加速度(或合外力)⎩⎪⎨⎪⎧ 变化:非匀变速运动不变:匀变速运动加速度(或合外力)方向与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动4.两个直线运动的合运动性质的判断关键:看合初速度方向与合加速度方向是否共线。
三、两种模型 1.小船渡河模型2.绳(杆)端速度分解模型(1)模型特点:绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型。
(2)模型分析①合运动:绳(杆)拉物体的实际运动速度v ; ②分运动:⎩⎪⎨⎪⎧其一:沿绳(或杆)的分速度v ∥其二:与绳(或杆)垂直的分速度v ⊥ (3)解题原则:根据沿绳(杆)方向的分速度 求解。
【专题练习】 一、单项选择题1.2022年冬奥会将在中国北京举行,冰球是冬奥会的一个比赛项目.如图所示,冰球以速度1v 在水平冰面上向右运动,运动员沿冰面在垂直1v 的方向上快速击打冰球,冰球立即获得沿击打方向的分速度2v .不计冰面摩擦和空气阻力,下列图中的虚线能正确反映冰球被击打后运动轨迹的是( )A .B .C .D .2.羽毛球运动是我国的传统优势体育项目,屡屡在历届奥运会上争金夺银。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绳(杆)端速度分解模型
一、基础知识 1、模型特点
沿绳(或杆)方向的速度分量大小相等. 2、思路与方法
合运动→绳拉物体的实际运动速度v
分运动→⎩
⎪⎨⎪⎧
其一:沿绳(或杆)的速度v 1
其二:与绳(或杆)垂直的分速度v 2
方法:v 1与v 2的合成遵循平行四边形定则. 3、解决此类问题时应把握以下两点: (1)确定合速度,它应是小船的实际速度;
(2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转 动.应根据实际效果进行运动的分解. 二、练习
1、如图所示,轻绳通过定滑轮拉动物体,使其在水平面上运动.若拉绳的速度为v 0,当绳与水平方向夹角为θ时,物体的速度v 为________.若此时绳上的拉力大小为F ,物体的质量为m ,忽略地面的摩擦力,那么,此时物体的加速度为________.
2、如图所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为v ,绳AO 段与水平面的夹角为θ,OB 段与水平面的夹角为α.不计摩擦和轮的质量,则此时小船的速度多大?
3、如图所示,在水平地面上做匀速直线运动的小车,通过定滑轮用绳
子吊起一个物体,若小车和被吊的物体在同一时刻的速度分别为v 1和v 2,绳子对物体的拉力为F T ,物体所受重力为G ,则下列说法正确的是
( )
A .物体做匀速运动,且v 1=v 2
B .物体做加速运动,且v 2>v 1
C .物体做加速运动,且F T >G
D .物体做匀速运动,且F T =G
4、人用绳子通过定滑轮拉物体A ,A 穿在光滑的竖直杆上,当以速度v 0
匀速地拉绳使物体A 到达如图所示位置时,绳与竖直杆的夹角为
θ,则物体A 实际运动的速度是
( )
A .v 0sin θ B.v 0sin θ C .v 0cos θ
D.v 0cos θ
5、如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳
拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳 与河岸的夹角为α时,船的速率为
( )
A .v sin α B.v sin α
C .v cos α
D.v cos α
6、A 、B 两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A 以v 1的速度向右
匀速运动,当绳被拉成与水平面夹角分别为α、β时,如图所示.物体B 的运动速度v B 为(绳始终有拉力)
( )
A .v 1sin α/sin β
B .v 1cos α/sin β
C .v 1sin α/cos β
D .v 1cos α/cos β。