中学数学的最值问题
初中数学最值题解法小结

初中数学最值题解法小结在中学数学题中,最值题是常见题型,围绕最大〔小〕值所出的数学题是各种各样,就其解法,主要为以下几种:一. 二次函数的最值公式二次函数y ax bx c =++2〔a 、b 、c 为常数且a ≠0〕其性质中有①假设a >0当x b a =-2时,y 有最小值。
y ac b amin =-442; ②假设a <0当x b a =-2时,y 有最大值。
y ac b amax =-442。
利用二次函数的这个性质,将具有二次函数关系的两个变量建立二次函数,再利用二次函数性质进行计算,从而到达解决实际问题之目的例1. 某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x 只玩具熊猫的成本为R 〔元〕,售价每只为P 〔元〕,且R 、P 与x 的关系式分别为R x =+50030,P x =-1702。
〔1〕当日产量为多少时,每日获得的利润为1750元;〔2〕当日产量为多少时,可获得最大利润?最大利润是多少? 解:〔1〕根据题意得 1750=-Px R()()1702500301750--+=x x x整理得x x 27011250-+=解得x 125=,x 245=〔不合题意,舍去〕〔2〕由题意知,利润为Px R x x x -=-+-=--+2140500235195022()所以当x =35时,最大利润为1950元。
二. 一次函数的增减性一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大〔小〕值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大〔小〕值。
例2. 某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少? 解:设招聘甲种工种的工人为x 人,则乙种工种的工人为()150-x 人,由题意得: 1502-≥x x 所以050≤≤x设所招聘的工人共需付月工资y 元,则有:y x x x =+-=-+6001000150400150000()〔050≤≤x 〕 因为y 随x 的增大而减小所以当x =50时,y min =130000〔元〕三. 判别式法例3. 求x x x x 2211-+++的最大值与最小值。
求函数最值问题常用的10种方法

较大小,确定最值.
解析 因为f′(x)=3x2-3,所以令f′(x)=0,得x=
-1(舍正).又f(-3)=-17,f(-1)=3,f(0)=1,
比较得,f(x)的最大值为3,最小值为-17.故填3, -17. 点评 (1)利用导数法求函数最值的三个步骤:第一, 求函数在(a,b)内的极值;第二,求函数在端点的函 数值f(a)、f(b);第三,比较上述极值与端点函数值 的大小,即得函数的最值.(2)函数的最大值及最小 值点必在以下各点中取得:导数为零的点,导数不存 在的点及其端点.
三、换元法 换元法是指通过引入一个或几个新的变量,来替换 原来的某些变量(或代数式),以便使问题得以解决 的一种数学方法.在学习中,常常使用的换元法有 两类,即代数换元和三角换元,我们可以根据具体 问题及题目形式去灵活选择换元的方法,以便将复 杂的函数最值问题转化为简单函数的最值问题,从 而求出原函数的最值.如可用三角代换解决形如a2 +b2=1及部分根式函数形式的最值问题.
【例 4】设 x,y,z 为正实数,x-2y+3z=0,则 y 2 xz
的最小值为________. 分析 先利用条件将三元函数化为二元函数,再利用基 本不等式求得最值.
解析 因为x-2y+3z=0,
x+3z
y2 x2+9z2+6xz
所以y=
2
,所以 = xz
4xz
.
y2 6xz+6xz
又x,z为正实数,所以由基本不等式,得 ≥
∴Δ=(3y+3)2-4(y-1)(4y4)≥0,11
解得7≤y≤7(y≠1).综上得ymax=7,ymin=7.
点评 判别式法的应用,对转化的(y-1)x2+(3y+3)x +4y-4=0来说,应该满足二次项系数不为0,对二次 项系数为0时,要另行讨论,对本题若y-1=0,即 y=1,有(3+3)x+4-4=0,所以x=0.一般来说, 利用判别式法求函数的最值,即根据g(y)x2+h(y)x+
函数最值问题

专题:函数最值问题函数最值问题遍及中学数学各个内容的方方面面,同时在我们的生活实践中也有着广泛的应用,是中学数学的重要内容之一.由于利用中学数学的思想方法去解决函数最值问题,涉及数学许多知识与方法,要求考生要有扎实的数学基本功及良好的数学思维能力,因此,函数最值问题一直是新课标高考的一个 重要的热点问题,在新课标高考中占有极其重要的地位.下面就该问题的常用解法:一、定义法函数最值的定义:一般地,设函数)(x f y =的定义域为I ,如果存在实数M ,满足:①对任意I x ∈,都有M x f ≤)(,②存在I x ∈0,使得M x f =)(0,则称M 为函数)(x f y =的最大值; (如果存在实数N ,满足:对任意I x ∈,都有N x f ≥)(,②存在I x ∈0,使得N x f =)(0,则称N 为函数)(x f y =的最小值.)我们直接利用函数最值的定义,可以判断函数最值的相关问题.例1:设函数)(x f y =的定义域为R ,有下列三个命题:① 若存在常数M ,使得对任意R x ∈,有M x f <)(,则M 是函数)(x f y =的最大值; ② 若存在R x ∈0,使得对任意R x ∈,且0x x ≠,有)()(0x f x f <,则)(0x f 是函数)(x f y =的最大值;③ 若存在R x ∈0,使得对任意R x ∈,有)()(0x f x f ≤,则)(0x f 是函数)(x f y =的最大值. 这些命题中,真命题的个数是( ) A .0 B .1 C .2 D .3二、配方法配方法是求二次函数最值的基本方法,如c x bf x af x F ++=)()()(2的函数的最值问题,可以考虑用配方法.三、换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,我们可以根据具体问题及题目形式去灵活选择换元的方法,以便将复杂的函数最值问题转化为简单函数的最值问题,从而求出原函数的最值.四、函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种求解方法在高考中是必考的,且多在解答题中的某一问中出现.解决这类问题的重要的一步就是判断函数在给定区间上的单调性.这一点处理好了,以下的问题就容易了.一般而言,对一次函数、幂函数、指数函数、对数函数在闭区间],[n m 上的最值:若函数)(x f 在],[n m 上单调递增,则,,)()()()(max min n f x f m f x f ==;若函数)(x f 在],[n m 上单调递减,则)()(min n f x f =,)()(max m f x f =;若函数)(x f 在],[n m 上不单调,但在其分成的几个子区间上是单调的,则可以采用分段函数求最值的方法处理.五、判别式法把函数转化为x 的二次方程0),(=y x F ,通过方程有实根,判别式Δ≥0,从而求得函数的最值.判别式法多用于求形如gfx ex c bx ax y ++++=22(g a ,不同时为0)的分式函数的最值. 例5:求函数434322+++-=x x x x y 的最大值和最小值.点评:判别式法的应用,对转化的(y -1)x 2+(3y +3)x +4y -4=0来说,应该满足二次项系数不为0,对二次项系数为0时,要另行讨论,对本题若y -1=0,即y =1,有(3+3)x +4-4=0,所以x =0.一般来说,利用判别式法求函数的最值,即根据g(y)x 2+h(y)x +φ(y)=0(g(y)≠0)的判别式Δ≥0去求解,要注意验证g(y)=0时y 的值对应的x 的值是否是函数定义域内的值,若是,则使g(y)=0的y 的值在函数的值域内,否则相反.六、平方法对含根式的函数或含绝对值的函数,有时利用平方法,可以巧妙地将函数最值问题转化为我们熟知的、易于解决的函数最值问题.例6:已知函数31++-=x x y 的最大值为M ,最小值为m ,则M m 的值为 ( ) A.14B.12C.22D.32 分析:对于形如cx b cx a y ++-=的无理函数的最值问题,可以利用平方法将问题化为函数))((2)(2cx b cx a b a y +-++=的最值问题,这只需利用二次函数的最值即可求得.七、数形结合法数形结合法,是指利用函数所表示的几何意义,借助几何方法及函数的图象求函数最值的一种常用的方法.这种方法借助几何意义,以形助数,不仅可以简捷地解决问题,又可以避免诸多失误,是我们开阔思路、正确解题、提高能力的一种重要途径.因此,在学习中,我们对这种方法要细心研读,认真领会,并正确地应用到相关问题的解决之中.例7:对R b a ∈,,记⎩⎨⎧<≥=b a b b a a b a ,,},m ax {,函数R x x x x f ∈-+=},2,1max{)(的最小值是________.。
解决最值问题的三种最基本方法

解决最值问题的三种最基本方法摘要:最值问题是中学数学的重要题型之一,解决最值问题,经常用到基本不等式、消元法与换元法、导数法。
关键词:最值问题基本不等式消元法与换元法导数法。
最值问题是中学数学的重要题型之一,它的综合性较强,题型多样,解法灵活,涉及知识面广泛。
在高考中,常以一些基础题、小综合的中档题,或一些难题的形式出现,几乎每年的高考试题中都有考查。
解决最值问题,经常用到基本不等式、消元法与换元法、导数法。
本文结合两个典型例题进行分析和探讨,体会上述三种最基本方法的解题思路和解题技巧。
典型例题1:已知x>1,y>1,xy=16,求log2x·log2y的最大值?思路一分析:利用基本不等式≥ab,将log2x·log2y替换ab的位置,进而寻求最值。
解析:∵x>1,y>1,∴log2x>0,log2y>0,∴log2x+log2y≥2log2x·log2y,∵log2x+log2y=log2xy=log216=4,∴log2x·log2y≤4,当且仅当log2x=log2y,即x=y时等号成立。
∴最大值为4。
点评:利用基本不等式求最值,可以概括为“凑定和”与“凑定积”的问题,思路一灵活运用对数运算的性质,达到“凑定和”的目的。
思路二分析:先利用消元法,将y=代入,转变为一个变量的函数,再利用换元法转变为二次函数,利用二次函数的图像与性质求最值。
解析:∵xy=16,y=,∴log2x·log2y=log2x·log2=log2x·(log216-log2x)令t=log2x,∵x>1,t>0,∴原式=t·(4-t)=-t2+4t,利用二次函数图像得:t=2时,即x=4,取得最大值4。
点评:消元法是求最值问题常用的方法之一,是学生所熟悉和乐于使用的方法。
换元法中要特别注意中间变量的取值范围。
高三数学专题备考——高考中的最值问题的解题策略

高三数学专题备考——高考中的最值问题的解题策略主讲人:黄冈中学高级教师汤彩仙一、复习策略1、函数的最值问题是其他最值问题的基础之一,许多最值问题最后总是转化为函数(特别是二次函数)的最值问题.求函数最值的方法有:配方法、均值不等式法、单调性、导数法、判别式法、有界性、图象法等.2、求几类重要函数的最值方法;(1)二次函数:配方法和函数图像相结合;(2):均值不等式法和单调性加以选择;(3)多元函数:数形结合或转化为一元函数.3、三角函数、数列、解析几何中的最值问题,往往将问题转化为函数问题,利用求函数最值的方法或基本不等式法求解.4、实际应用问题中的最值问题一般有下列两种模型:直接法,目标函数法(线性规划,二次函数的最值).5、不等式恒成立问题常转化为求函数的最值问题.f(x)>m恒成立,即>m;f(x)<m恒成立,即<m.6、参数范围问题内容涉及代数和几何的多个方面,解题的关键是不等关系的建立,其途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等.解决这一类问题,常用的思想方法有:函数思想、数形结合等.二、典例剖析问题1:函数的最值问题例1、(07江苏卷)已知二次函数的导数为,,对于任意实数,都有,则的最小值为()A.3B.C.2D.解:=,依题意,有:,可得,==+1≥2+1≥2+1=2,故选(C).例2、如下图(1)所示,定义在D上的函数,如果满足:对任意,存在常数A,都有≥A成立,则称函数在D上有下界,其中A称为函数的下界. (提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)(1)(2)(Ⅰ)试判断函数在(0,+)上是否有下界?并说明理由;(Ⅱ)又如具有上右图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数在D上有上界的定义,并判断(Ⅰ)中的函数在(-,0)上是否有上界?并说明理由;(Ⅲ)已知某质点的运动方程为,要使在上的每一时刻该质点的瞬时速度是以A=为下界的函数,求实数a的取值范围.分析:利用导数判断函数的单调性,求出函数的最值,从而可以确定函数的下界或上界;或用重要不等式求最值.解:(Ⅰ)解法1:∵,由得,∵,∴x=2,∵当时,,∴函数在(0,2)上是减函数;当时,,∴函数在(2,+)上是增函数;∴是函数在区间(0,+)上的最小值点,.∴对任意,都有,即在区间(0,+)上存在常数A=32,使得对任意都有成立,∴函数在(0,+)上有下界.解法2:.当且仅当即x=2时“=”成立.∴对任意,都有,即在区间(0,+)上存在常数A=32,使得对任意都有成立,∴函数在(0,+)上有下界.(Ⅱ)类比函数有下界的定义,函数有上界可以这样定义:定义在D上的函数,如果满足:对任意,存在常数B,都有≤B 成立,则称函数在D上有上界,其中B称为函数的上界.设则,由(Ⅰ)知,对任意,都有,∴,∵函数为奇函数,∴.∴,∴.即存在常数B=-32,对任意,都有,∴函数在(-,0)上有上界.(Ⅲ)质点在上的每一时刻的瞬时速度.依题意得对任意有.对任意恒成立.令,∵函数在[0,+∞)上为减函数.∴.∴.问题2:三角函数、数列、解析几何中的最值问题将问题转化为函数问题,利用求函数最值的方法求解.例3、(05年上海)点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,PA⊥PF.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.分析:将d用点M的坐标表示出来,,然后求其最小值.解:(1)由已知可得点A(-6,0),F(0,4).设点P(x,y),则={x+6,y},={x-4,y},由已知可得,则2x2+9x-18=0,解得x=或x=-6.由于>0,只能=,于是=.∴点P的坐标是(,).(2) 直线AP的方程是x-y+6=0.设点M(m,0),则M到直线AP的距离是.于是=,又-6≤m≤6,解得m=2.椭圆上的点(x,y)到点M的距离d有,由于-6≤≤6,∴当=时,d取得最小值.例4、(05年辽宁)如图,在直径为1的圆中,作一关于圆心对称、邻边互相垂直的十字形,其中.(Ⅰ)将十字形的面积表示为的函数;(Ⅱ)为何值时,十字形的面积最大?最大面积是多少?分析:将十字型面积S用变量表示出来,转化为三角函数的极值问题,利用三角函数知识求出S的最大值.(Ⅰ)解:设S为十字形的面积,则(Ⅱ)解法一:其中当最大.所以,当最大. S的最大值为解法二:因为所以令S′=0,即可解得,所以,当时,S最大,S的最大值为例5、已知点A(-1,0),B(1,-1)和抛物线,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(I)若△POM的面积为,求向量与的夹角;(II)试探求点O到直线PQ的距离是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.分析:可先设出M与P点的坐标,再利用斜率相等求出的值,利用向量的数量积求出夹角.第二问中可用重要等式求出最值.解:(I)设点、M、A三点共线,设∠POM=α,则由此可得tanα=1.又(II)由第(I)问答案知,令,则. ∴O到PQ的距离:,即当且仅当t=16时取最大值,且最大值为.故存在最大值,且最大值为.问题3:最值的实际应用在数学应用性问题中经常遇到有关用料最省、成本最低、利润最大等问题,可考虑建立目标函数,转化为求函数的最值.例6、(06年江苏卷)请您设计一个帐篷.它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如下图所示).试问当帐篷的顶点O到底面中心O的距1离为多少时,帐篷的体积最大?分析:将帐蓬的体积用x表示(即建立目标函数),然后求其最大值.解:为,则.设OO1由题设可得正六棱锥底面边长为:,(单位:) 故底面正六边形的面积为:=,(单位:) 帐篷的体积为:(单位:)求导得.令,解得(不合题意,舍去),,当时,,为增函数;当时,,为减函数.∴当时,最大.答:当OO为2m时,帐篷的体积最大,最大体积为.1点评:本题主要考查利用导数研究函数的最值的基础知识,以及运用数学知识解决实际问题的能力.例7、(05年湖南)对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:)为0.8,要求洗完后的清洁度是0.99,有两种方案可供选择.方案甲:一次清洗;方案乙:分两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为.设用单位质量的水初次清洗后的清洁度是.用单位质量的水第二次清洗后的清洁度是,其中是该物体初次清洗后的清洁度.(1)分别求出方案甲以及时方案乙的用水量,并比较哪一种方法用水量较小.(2)若采用方案乙,当为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论取不同数值时对最少总用水量多少的影响.点拨与提示:设初次与第二次清洗的用水量分别为与,,.于是+,利用均值不等式求最值.方案甲与方案乙的用水量分别为x与z,由题设有,解得x=19,由c=0.95得方案乙初次用水量为3,第二次用水量y满足方程:,解得y=4a,故z=4a+3,即两种方案的用水量分别为19与4 a +3,因为当1≤a≤ 3时,x-z =4(4-a)>0,即x>z.故方案乙的用水量较少.(II)设初次与第二次清洗的用水量分别为与,类似(I)得,(*)于是+.当a为定值时,.当且仅当时等号成立,此时(不合题意,舍去)或.将代入(*)得,.故时用水量最少,此时第一次与第二次用水量分别为与,最少总用水量为.当1≤a≤3时,,故T(a)是增函数(也可用二次函数的单调性来判断),这说明随着a的值的增加,最少总用水量增加.问题4:恒成立问题不等式恒成立问题常转化为求函数的最值问题.f(x)>m恒成立,即>m;f(x)<m恒成立,即<m.例8、已知函数f(x)=.(Ⅰ)当时,求的最大值;(Ⅱ) 设,是图象上不同两点的连线的斜率,是否存在实数,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.分析:利用导数求出函数的单调性,再比较其极大值与端点值的大小求出的最大值.解:(Ⅰ)当-2≤<时,由=0得x1=显然-1≤x1<,<x2≤2,又=-.当≤x≤x2时,≥0,单调递增;当x<x≤2时,<0,单调递减,2=(x2)=∴max=-(Ⅱ)答:存在符合条件.解:因为=.不妨设任意不同两点,其中.则.由知:1+<1.又,故.故存在符合条件.解法二:据题意在图象上总可以找一点,使以P为切点的切线平行于图象上任意两点的连线,即存在.故存在符合条件.问题五:参数的取值范围问题参数范围的问题,内容涉及代数和几何的多个方面,综合考查学生应用数学知识解决问题的能力.在历年高考中占有较稳定的比重.解决这一类问题,常用的思想方法有:函数思想、数形结合等.例9、设直线过点P(0,3)且和椭圆顺次交于A、B两点,求的取值范围.分析:=.要求的取值范围,一是构造所求变量关于某个参数(自然的想到“直线AB的斜率k”)的函数关系式(或方程),通过求函数的值域来达到目的.二是构造关于所求量的一个不等关系,由判别式非负可以很快确定的取值范围,于是问题转化为如何将所求量与联系起来.韦达定理总是充当这种问题的桥梁,但本题无法直接应用韦达定理,原因在于不是关于的对称式.问题找到后,解决的方法自然也就有了,即我们可以构造关于的对称式:.由此出发,可得到下面的两种解法.解法1:当直线垂直于x轴时,可求得;当l与x轴不垂直时,设,直线的方程为:,代入椭圆方程,消去得.解之得由椭圆关于y轴对称,且点P在y轴上,所以只需考虑的情形.当时,,,所以===.由,解得,所以,即.解法2:设直线的方程为:,代入椭圆方程,消去得(*)则,令,则,在(*)中,由判别式可得,从而有,所以,解得.结合得.综上,.点评:范围问题不等关系的建立途径多多,诸如判别式法,均值不等式法,变量的有界性法,函数的性质法,数形结合法等等.本题也可从数形结合的角度入手,给出又一优美解法.例10、在直角坐标平面中,过点作函数的切线,其切点为;过点作函数的切线,其切点为;过点作函数的切线,其切点为;如此下去,即过点作函数的切线,其切点为;过点作函数的切线,其切点为….(1)探索与,与的关系,说明你的理由,并求,的值;(2)求数列通项公式;(3)是否存在正实数,使得对于任意的自然数,不等式恒成立?若存在,求出这样的实数的取值范围;若不存在,则说明理由.分析:利用导数先找出切线方程,从而可以确定数列与,与的关系,再分奇数项与偶数项来求出数列的通项,在第三问中可用错位相消法求出不等式左端的和,再证明其单调性来求解.解:(1)∵,∴切线的方程为,又切线过点,∴,且,∴∴.又,∴切线的方程为,而切线过点,∴,且,∴∴.(2)由(1) 可知,即,∴数列为等比数列,且首项为4,∴,即.而,故数列通项公式为(3)令∴,两式相减得∴.∴,∴数列递增.又当时,.∴,而,∴.∴对于任意的正整数和任意的实数不等式恒成立等价于,而,所以有,解得或(舍).故存在这样的正实数,其取值范围为.冲刺练习一、选择题1、若,则a的取值范围是()A.B.C.D.2、下列结论正确的是()A.当B.C.的最小值为2D.当无最大值3、在R上定义运算:.若不等式对任意实数x 成立,则()A.B.C.D.4、设a、b、c是互不相等的正数,则下列等式中不恒成立的是()A.B.C.D.5、若动点()在曲线上变化,则的最大值为()A.B.C.D.2b6、已知向量≠,||=1,对任意t∈R,恒有|-t|≥|-|,则()A.⊥B.⊥(-)C.⊥(-)D.(+)⊥(-)7、已知函数在区间上的最小值是,则的最小值等于()A.B.C.2D.38、设,对于函数,下列结论正确的是()A.有最大值而无最小值B.有最小值而无最大值C.有最大值且有最小值D.既无最大值又无最小值9、在约束条件下,当时,目标函数的最大值的变化范围是()A.B.C.D.10、已知不等式对任意正实数恒成立,则正实数的最小值为()A.2B.4C.6D.8[提示]二、填空题11、已知,则的最小值是__________.12、在△OAB中,O为坐标原点,,则△OAB的面积达到最大值时,__________.13、设实数x,y满足__________.14、在中,O为中线AM上一个动点,若AM=2,则的最小值是__________.15、已知函数在[0,1]上的最大值与最小值的和为a,则a的值为____________.[答案]三、解答题16、若函数的最大值为,试确定常数a的值.[答案]17、已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值.(1)求a、b的值与函数f(x)的单调区间.(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.[答案]18、已知函数,其中0<a<4.(Ⅰ)将的图像向右平移两个单位,得到函数,求函数的解析式;(Ⅱ)函数与函数的图像关于直线对称,求函数的解析式;(Ⅲ)设,已知的最小值是,且,求实数的取值范围.[答案]19、已知中心在原点的双曲线C的右焦点为(2,0),右顶点为.(1)求双曲线C的方程;(2)若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围.[答案]20、已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.提示:1、①当,即时,无解;②当,即时,,故选C.2、A中lgx不满足大于零,C中的最小值为2的x值取不到,D中当x=2时有最大值,选B.3、∵,∴不等式对任意实数x成立,则对任意实数x成立,即使对任意实数x成立,所以,解得,故选C.4、因为,所以(A)恒成立;在(B)两侧同时乘以得,所以(B)恒成立;(C)中,当a>b时,恒成立,a<b时,不成立;(D)中,分子有理化得恒成立,故选(C).5、由曲线方程得,=,∵-b≤y≤b,∴若即b≥4,则当y=b时,最大值为2b;若即0<b<4,则当时,最大值为.(本题也可用三角代换求解).6、由|-t|≥|-|得|-t|2≥|-|2展开并整理得,由,所以,得,即,选(C).7、,解得,选B.8、令,则函数的值域为函数的值域,又,所以是一个减函减,故选B.9、解:由,交点为,(1)当时可行域是四边形OABC,此时,.(2)当时可行域是△OA此时,.10、,∴≥9,≥4.11、12、13、14、-2 15、提示:11、表示直线=0上动点P(x,y)到点(1,1)的距离,的最小值就是点(1,1)到直线=0的距离,可求得.12、,当即时,面积最大.13、表示两点(0,0),P(x,y)的斜率,作出不等式组表示的平面区域即△ABC及其内部,由图形可得AO的斜率最大,可求得A(1,),.14、如图,即的最小值为-2.15、若a>1,与是增函数,为增函数,f(x)的最大值为f(1),最小值为f(0),所以f(1)+f(0)=a;若0<a<1,与是减函数,为减函数,f(x)的最大值为f(0),最小值为f(1),所以f(0)+f(1)=a;故+=a,解得a =.16、解:因为的最大值为的最大值为1,则所以17、解:(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b.由f′()=,f′(1)=3+2a+b=0得a=,b=-2.f′(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表:,-) -,所以函数f(x)的递增区间是(-∞,-)与(1,+∞).递减区间是(-,1).(2)f(x)=x3-x2-2x+c,x∈[-1,2],当x=-时,f(x)=+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值.要使f(x)<c2(x∈[-1,2])恒成立,只需c2>f(2)=2+c.解得c<-1或c>2.18、(Ⅰ);(Ⅱ)设点是函数上任一点,点关于的对称点是,由于函数与函数的图像关于直线对称,所以,点在函数的图像上,也即:.所以,;(Ⅲ).解法一:注意到的表达式形同,所以,可以考虑从的正负入手.(1)当,即时,是R上的增函数,此时无最小值,与题设矛盾;(2) 当,即时,.等号当且仅当,即时成立.由及,可得:,解之得:.解法二:由可得:.令,则命题可转化为:当时,恒成立.考虑关于的二次函数.因为,函数的对称轴,所以,需且只需,解之得:.此时,,故在取得最小值满足条件.19、解:(Ⅰ)设双曲线方程为由已知得故双曲线C的方程为(Ⅱ)将由直线l与双曲线交于不同的两点得即①设,则而于是②由①、②得故k的取值范围为。
最值问题-2022年中考数学考前冲刺高分突破(全国通用)

第02讲:最值问题【考点精讲】题型一:将军饮马问题1.(2021·陕西·榆林市第一中学)如图,正方形ABCD 的边长是4,点E 是DC 上一个点,且DE =1,P 点在AC 上移动,则PE +PD 的最小值是( )A .4B .4.5C .5.5D .52.(2021·广东·铁一中学九年级期中)如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,P A ⊥PB ,且P A 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( )A .3B .4C .5D .63.(2021·重庆·西南大学附中九年级开学考试)如图,矩形ABCD 中,46AB BC ==,,点P 是矩形ABCD 内一动点,且12PAB PCD S S ∆∆=,则PC PD +的最小值是( )A .3B .45C .13D .229题型二:阿氏圆问题4.(2022·安徽)如图,在Rt △ABC 中,∠ACB =90°,CB =7,AC =9,以C 为圆心、3为半径作⊙C ,P 为⊙C 上一动点,连接AP 、BP ,则13AP +BP 的最小值为( )A .7B .2C .410D .135.(2021·全国·九年级)如图,边长为4的正方形,内切圆记为⊙O ,P 是⊙O 2P A +PB 的最小值为________.6.(2021·全国·九年级)如图,在ABC V 中,90,2B AB CB ∠=︒==,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则22PA PC +的最小值是___________.题型三:胡不归问题7.(2022·湖北武汉·一模)如图,在ACE V 中,CA CE =,30CAE ∠=︒,半径为5的O e 经过点C ,CE 是圆O 的切线,且圆的直径AB 在线段AE 上,设点D 是线段AC 上任意一点(不含端点),则12OD CD +的最小值为______.8.(2021·江苏·苏州高新区实验初级中学九年级阶段练习)如图,正方形ABCD 的边长为4,点E 为边AD 上一个动点,点F 在边CD 上,且线段EF =4,点G 为线段EF 的中点,连接BG 、CG ,则BG +12CG 的最小值为 _____.9.(2022·湖北武汉·)如图,在△ACE 中,CA =CE ,∠CAE =30°,半径为5的⊙O 经过点C ,CE 是圆O 的切线,且圆的直径AB 在线段AE 上,设点D 是线段AC 上任意一点(不含端点),则OD 12+CD 的最小值为 _____.题型四:隐圆问题10.(2022·山东济南·一模)如图,在矩形ABCD 中,6AB =,8BC =,点E 、F 分别是边AB 、BC 上的动点,且4EF =,点G 是EF 的中点,AG 、CG ,则四边形AGCD 面积的最小值为______.11.(2022·广东·汕头市潮阳)如图,在△ABC 中,∠C =90°,AC =8,AB =10,D 是AC 上一点,且CD =3,E 是BC 边上一点,将△DCE 沿DE 折叠,使点C 落在点F 处,连接BF ,则BF 的最小值为_______.12.(2022·全国·九年级)如图,已知ABC V ,外心为O ,18BC =,60BAC ∠=︒,分别以AB ,AC 为腰向形外作等腰直角三角形ABD △与ACE V ,连接BE ,CD 交于点P ,则OP 的最小值是______.题型五:费马点问题13.(2022·广东广州·一模)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点P 是AB 边上一动点,作PD ⊥BC 于点D ,线段AD 上存在一点Q ,当QA +QB +QC 的值取得最小值,且AQ =2时,则PD =________.14.(2021·全国·)如图,四边形 ABCD 是菱形,A B =6,且∠ABC =60° ,M 是菱形内任一点,连接AM ,BM ,CM ,则AM +BM +CM 的最小值为________.15.(2021·全国·)如图,△ABC 中,∠BAC =30°且AB =AC ,P 是底边上的高AH 上一点.若AP +BP +CP 的最小值为2BC =_____.【专题精练】一、单选题16.(2022·广东梅州·一模)如图,在Rt ABC V 和Rt ADE V 中,90BAC DAE ∠=∠=︒,3AC AD ==,AB =AE =5.连接BD ,CE ,将△ADE 绕点A 旋转一周,在旋转的过程中当DBA ∠最大时,△ACE 的面积为( ).A .6B .62C .9D .9217.(2022·山东济南·一模)正方形ABCD 中,AB =4,点E 、F 分别是CD 、BC 边上的动点,且始终满足DE =CF ,DF 、AE 相交于点G .以AG 为斜边在AG 下方作等腰直角△AHG 使得∠AHG =90°,连接BH .则BH 的最小值为( )A .252B .25+2C 102D 10+218.(2022·安徽蚌埠·一模)如图,Rt ABC △中,AB BC ⊥,8AB =,6BC =,P 是ABC V 内部的一个动点,满足PAB PBC ∠=∠,则线段CP 长的最小值为( )A .325 B .2 C .2136 D .13419.(2021·广东广州·三模)如图1,在菱形ABCD 中,AB =6,∠BAD =120°,点E 是BC 边上的一动点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H (a ,b )是图象上的最低点,则a +b 的值为( )A .3B .633C .83D .3620.(2021·陕西·西安交通大学附属中学航天学校八年级阶段练习)如图,凸四边形ABCD 中,90,90,60,3,3A C D AD AB ∠=︒∠=︒∠=︒==,若点M 、N 分别为边,CD AD 上的动点,则BMN △的周长最小值为( )A .26B .36C .6D .321.(2021·全国·九年级课时练习)如图,△ACB 中,CA =CB =4,∠ACB =90°,点P 为CA 上的动点,连BP ,过点A 作AM ⊥BP 于M .当点P 从点C 运动到点A 时,线段BM 的中点N 运动的路径长为( )A 2B 2πC 3D .2π22.(2022·全国·九年级)如图,在Rt ABC ∆中,ACB Rt ∠=∠,8AC =cm ,3BC =cm .D 是BC 边上的一个动点,连接AD ,过点C 作CE AD ⊥于E ,连接BE ,在点D 变化的过程中,线段BE 的最小值是( )A .1B 3C .2D 523.(2020·江苏南通·中考真题)如图,在△ABC 中,AB =2,∠ABC =60°,∠ACB =45°,D 是BC 的中点,直线l 经过点D ,AE ⊥l ,BF ⊥l ,垂足分别为E ,F ,则AE +BF 的最大值为( )A6B.2C.3D.224.(2020·四川·广安友谊中学实验学校)如图,菱形ABCD边长为4,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C的最小值是()A.3B3C.72D.325.(2021·全国·九年级)如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B 点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长()A.33B.23C.33D.43二、填空题)26.(2022·湖北荆州·)如图,长方形ABCD中,23AB=BC=2,点E是DC边上的动点,现将△BEC沿直线BE 折叠,使点C落在点F处,则点D到点F的最短距离为________.27.(2022·广东·红岭中学)要在街道旁修建一个奶站,向居民区A、B提供牛奶,小聪根据实际情况,以街道旁为x轴,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是____.28.(2021·新疆·)如图,等边三角形ABC的边BC上的高为6,AD是BC边上的中线,M是线段AD上的-一个动+的最小值为_________.点,E是AC中点,则EM CM29.(2021·河南南阳·)如图,等边ABC ∆的边长为4,点E 是AC 边的中点,点P 是ABC ∆的中线AD 上的动点,则EP CP +的最小值是_____.30.(2022·广东韶关)如图所示,在ABC V 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC V 的面积为12,4BC =,则BDM V 周长的最小值是_______________.31.(2021·浙江·杭州采荷实验学校)如图,△ABC 为⊙O 的内接等边三角形,BC =12,点D 为»BC上一动点,BE ⊥OD 于E ,当点D 由点B 沿»BC运动到点C 时,线段AE 的最大值是____.32.(2021·广东·九年级)如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD=2,E是AC的中点,连接DE,则线段DE长度的最小值为______.33.(2021·江苏·南通田家炳中学)如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,当BM+MN取最小值时△BMN的周长为______.34.(2021·四川省成都市七中育才学校)如图,在平面直角坐标系中,直线l分别交x、y轴于B、C两点,点A、C的坐标分别为(3,0)、(0,﹣3),且∠OCB=60°,点P是直线l上一动点,连接AP,则3AP的最小值是______.35.(2021·全国·九年级)如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则12 PD PC−的最大值为_______.36.(2020·山东·东营市实验中学三模)如图,正方形ABCD的边长为8,点M在DC上且DM=2,N是AC上的一动点,则DN+MN的最小值是______.37.(2021·天津南开·九年级)如图,AB是半圆O的直径,点D在半圆O上,AB=13,AD=5,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H.连接BH,在点C移动的过程中,BH的最小值是___.38.(2021·四川师范大学附属中学)如图,矩形ABCD中,AB=2,BC=3,点E,F分别在边AB,边BC上运动,点G在矩形内,且DG⊥CG,EF⊥FG,FG:EF=1:2,则线段GF的最小值为_______.39.(2022·江苏·宜兴市实验中学)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为______.40.(2021·浙江金华·)在综合实践课上,小明把边长为2cm的正方形纸片沿着对角线AC剪开,如图l所示.然后固定纸片△ABC,把纸片△ADC沿AC的方向平移得到△A′D′C′,连A′B,D′B,D′C,在平移过程中:(1)四边形A′BCD′的形状始终是__;(2)A′B+D′B的最小值为__.参考答案:1.D【详解】解:如图,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,连接BE,交AC于点N',连接DN',∴DN'=BN',DN'+EN'=BN'+ EN' BD,则BE的长即为DP+PE的最小值,∴AC是线段BD的垂直平分线,又∵CE=CD-DE=4-1=3,在Rt△BCE中,BE2=CE2+BC2=25,∵BE>0,∴BE=5,即DP+PE的最小值为5,故选:D.【点睛】本题主要考查了正方形的性质,轴对称-最短路线问题,两点之间,线段最短等知识,将PE+PD的最小值转化为BE的长是解题的关键.2.D【解析】【分析】【详解】思路引领:由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.答案详解:连接OP,∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:D.3.B【解析】【分析】作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.由PM垂直平分线段DE,推出PD=PE,推出PC+PD=PC+PE≥EC,利用勾股定理求出EC的值即可.【详解】解:如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC都是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵S△P AB=12S△PCD,∴12×4×x=12×12×4×(6-x),∴x=2,∴AM=2,DM=EM=4,在Rt△ECD中,EC∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC∴PD+PC的最小值为故选:B.【点睛】本题考查了轴对称-最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.4.B【解析】【分析】【详解】思路引领:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.利用相似三角形的性质证明MP13=P A,可得13AP+BP=PM+PB≥BM,利用勾股定理求出BM即可解决问题.答案详解:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.∵PC=3,CM=1,CA=9,∴PC2=CM•CA,∴PC CM CA CP=,∵∠PCM=∠ACP,∴△PCM∽△ACP,∴13 PM PCPA AC==,∴PM13=P A,∴13AP +BP =PM +PB , ∵PM +PB ≥BM ,在Rt △BCM 中,∵∠BCM =90°,CM =1,BC =7,∴BM ==∴13AP +BP∴13AP +BP 的最小值为 故选:B .5.【解析】 【分析】P A +PB (P A PB 即可解答. 【详解】解:设⊙O 半径为r ,OP=r =12BC =2,OB = 取OB 的中点I ,连接PI ,∴OI =IB∵OP OI =2OB OP ==, ∴OP OBOI OP= ,∠O 是公共角, ∴△BOP ∽△POI ,∴2PI OI PB OP ==,∴PI =2PB ,∴AP +2PB =AP +PI ,∴当A 、P 、I 在一条直线上时,AP +2PB 最小, 作IE ⊥AB 于E , ∵∠ABO =45°,∴IE =BE =2BI =1, ∴AE =AB −BE =3,∴AI =∴AP PB 最小值=AI ,A +PB P A +2PB ),A +PB AI =故答案是 【点睛】本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.6【解析】 【分析】作BH ⊥AC 于H ,取BC 的中点D ,连接PD ,如图,根据切线的性质得BH 为⊙B 的半径,再根据等腰直角三角形的性质得到BH 12=AC 接着证明△BPD ∽△BCP 得到PD 2=PC ,所以P A =P A +PD ,而P A +PD ≥AD (当且仅当A 、P 、D 共线时取等号),从而计算出AD 得到P A 的最小值. 【详解】解:作BH ⊥AC 于H ,取BC 的中点D ,连接PD ,如图, ∵AC 为切线, ∴BH 为⊙B 的半径, ∵∠ABC =90°,AB =CB =2,∴AC =∴BH 12=AC∴BP∵2PB BC =,2BD BP ==, 而∠PBD =∠CBP , ∴△BPD ∽△BCP ,∴PD PB PC BC ==,∴PD =,∴P A =P A +PD , 而P A +PD ≥AD (当且仅当A 、P 、D 共线时取等号),而AD ==∴P A +PD即P A【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决问题的关键是利用相似比确定线段PD =.也考查了等腰直角三角形的性质.7【解析】 【分析】过点C 作关于AE 的平行线,过点D 作DH 垂直于该平行线于H ,可将12CD 转化为DH ,此时12OD CD +就等于OD DH +,当ODH 共线时,即为所要求的最小值.【详解】解:如图所示,过点C 作关于AE 的平行线,过点D 作DH 垂直于该平行线于H ,//CH AB Q ,30CAE ∠=︒,OC OA =, 30HCA OCA ∴∠=∠=︒,1sin 2HD HCD CD ∴∠==,60HCO ∠=︒, 12CD HD ∴=, 12OD CD OD DH ∴+=+,Q 当O ,D ,H 三点共线,即在图中H 在'H 位置,D 在'D 位置的时候有OD DH +最小,∴当O ,D ,H 三点共线时,12OD CD +有最小值,此时'sin sin605OH OC HCO OC =⨯∠=⨯︒==12OD CD ∴+. 【点睛】本题主要考查了最值问题中的胡不归问题,解题的关键是在于将12OD 进行转换.8.5 【解析】 【分析】因为DG =12EF =2,所以G 在以D 为圆心,2为半径圆上运动,取DI =1,可证△GDI ∽△CDG ,从而得出GI =12CG ,然后根据三角形三边关系,得出BI 是其最小值 【详解】解:如图,在Rt△DEF中,G是EF的中点,∴DG=122EF=,∴点G在以D为圆心,2为半径的圆上运动,在CD上截取DI=1,连接GI,∴DIDG=DGCD=12,∴∠GDI=∠CDG,∴△GDI∽△CDG,∴IG DICG DG==12,∴IG=12 CG,∴BG+12CG=BG+IG≥BI,∴当B、G、I共线时,BG+12CG最小=BI,在Rt△BCI中,CI=3,BC=4,∴BI=5,故答案是:5.【点睛】本题考查了相似三角形的性质与判定,圆的概念,求得点G的运动轨迹是解题的关键.9【解析】【分析】作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,易证四边形AOCF是菱形,根据对称性可得DF=DO.过点D作DH⊥OC于H,易得DH=12DC,从而有12CD+OD=DH+FD.根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD(即12CD+OD)最小,然后在Rt△OHF中运用三角函数即可解决问题.【详解】解:作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图所示,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠COB=60°,则∠AOF=∠COF=12∠AOC=12(180°-60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DH⊥OC于H,则DH =12DC,∴12CD+OD=DH+FD.根据两点之间线段最短可得,当F、D、H三点共线时,DH+FD(即12CD+OD)最小,∵OF=OA=5,∴1522 OH OF==,∴FH==即12CD+OD..【点睛】本题主要考查了圆半径相等的性质,等边三角形的判定与性质、菱形的判定与性质、两点之间线段最短、等腰三角形的性质、含30度角的直角三角形的性质,勾股定理等知识,把12 CD+OD转化为DH+FD是解题的关键.10.38【解析】【分析】首先连接AC,过B作BH⊥AC于H,当G在BH上时,三角形ACG面积取最小值,此时四边形AGCD面积取最小值,再连接BG,知BG=2,得到G点轨迹圆,该轨迹与BH交点即为所求最小值时的G点,利用面积法求出BH、GH的长,代入三角形面积公式求解即可.【详解】解:连接AC,过B作BH AC⊥于H,当G在BH上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,四边形AGCD面积=三角形ACG面积+三角形ACD面积,即四边形AGCD面积=三角形ACG面积+24.连接BG,由G是EF中点,EF=4知,BG=2,故G在以B为圆心,BG为半径的圆弧上,圆弧交BH于'G,此时四边形AGCD面积取最小值,如图所示,由勾股定理得:AC=10,∵12AC·BH=12AB·BC,∴BH=4.8,∴' 2.8G H=,即四边形AGCD面积的最小值=110 2.824382⨯⨯+=.故答案为:38.【点睛】本题考查了勾股定理及矩形中的与动点相关的最值问题,解题的关键是利用直角三角形斜边的直线等于斜边的一半确定出G点的运动轨迹.11.3##3−+ 【解析】 【分析】先由折叠判断出F 的运动轨迹是为以D 为圆心,CD 的长度为半径的圆,当B 、D 、F 共线且F 在B 、D 之间时BF 最小,根据勾股定理及圆的性质求出此时BD 、BF 的长度即可. 【详解】解:由折叠知,F 点的运动轨迹为:以D 为圆心,CD 的长度为半径的圆,如图所示,可知,当点B 、D 、F 共线,且F 在B 、D 之间时,BF 取最小值, ∵∠C =90°,AC =8,AB =10, ∴BC =6,在Rt △BCD 中,由勾股定理得:BD==∴BF =BD -DF =3,故答案为:3. 【点睛】本题考查了折叠的性质、圆的性质、勾股定理解直角三角形的知识,该题涉及的最值问题属于中考常考题型,根据折叠确定出F 点运动轨迹是解题关键.12.9− 【解析】 【分析】由ABD △与ACE V 是等腰直角三角形,得到90BAD CAE ∠=∠=︒,DAC BAE ∠=∠,根据全等三角形的性质得到ADC ABE ∠=∠,求得在以BC 为直径的圆上,由ABC V 的外心为O ,60BAC ∠=︒,得到120BOC∠=︒,如图,当PO BC ⊥时,OP 的值最小,解直角三角形即可得到结论. 【详解】解:Q V ABD 与ACE V 是等腰直角三角形,90BAD CAE ∴∠=∠=︒,DAC BAE ∴∠=∠,在DAC △与BAE V 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩, DAC V ∴≌()BAE SAS V ,ADC ABE ∴∠=∠,90PDB PBD ∴∠+∠=︒, 90DPB ∴∠=︒,P ∴在以BC 为直径的圆上,ABC QV 的外心为O ,60BAC ∠=︒, 120BOC ∴∠=︒,如图,当PO BC ⊥时,OP 的值最小,18BC =Q ,9BH CH ∴==,12OH OB =BH ∴==OH ∴=,9PH =,9OP ∴=−则OP的最小值是9−故答案为:9−【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键. 13. 【解析】 【分析】如图1,将△BQC 绕点B 顺时针旋转60°得到△BNM ,连接QN ,当点A ,点Q ,点N ,点M共线时,QA+QB+QC值最小,此时,如图2,连接MC,证明AM垂直平分BC,证明AD=BD,此时P与D重合,设PD=x,则DQ=x-2,构建方程求出x可得结论.【详解】解:如图1,将△BQC绕点B顺时针旋转60°得到△BNM,连接QN,∴BQ=BN,QC=NM,∠QBN=60°,∴△BQN是等边三角形,∴BQ=QN,∴QA+QB+QC=AQ+QN+MN,∴当点A,点Q,点N,点M共线时,QA+QB+QC值最小,此时,如图2,连接MC∵将△BQC绕点B顺时针旋转60°得到△BNM,∴BQ =BN ,BC =BM ,∠QBN =60°=∠CBM , ∴△BQN 是等边三角形,△CBM 是等边三角形, ∴∠BQN =∠BNQ =60°,BM =CM , ∵BM =CM ,AB =AC , ∴AM 垂直平分BC , ∵AD ⊥BC ,∠BQD =60°, ∴BD,∵AB =AC ,∠BAC =90°,AD ⊥BC ,∴AD =BD ,此时P 与D 重合,设PD =x ,则DQ =x -2,∴x =())tan 6022x x ︒⨯−=−,∴x ∴PD故答案为: 【点睛】本题主要考查了等腰直角三角形的性质,旋转的性质,等边三角形的判定和性质,解题的关键是正确运用等边三角形的性质解决问题,学会构建方程解决问题.14.【解析】 【分析】以BM 为边作等边△BMN ,以BC 为边作等边△BCE ,如图,则△BCM ≌△BEN ,由全等三角形的对应边相等得到CM =NE ,进而得到AM +MB +CM =AM +MN +NE .当A 、M 、N 、E 四点共线时取最小值AE .根据等腰三角形“三线合一”的性质得到BH ⊥AE ,AH =EH ,根据30°直角三角形三边的关系即可得出结论. 【详解】以BM 为边作等边△BMN ,以BC 为边作等边△BCE ,则BM =BN =MN ,BC =BE =CE ,∠MBN =∠CBE =60°,∴∠MBC =∠NBE ,∴△BCM ≌△BEN ,∴CM =NE ,∴AM +MB +CM =AM +MN +NE .当A 、M 、N 、E 四点共线时取最小值AE .∵AB =BC =BE =6,∠ABH =∠EBH =60°,∴BH ⊥AE ,AH =EH ,∠BAH =30°,∴BH =12AB =3,AH=AE =2AH =故答案为【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.15【解析】【分析】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.首先证明当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,想办法求出AC的长即可解决问题.【详解】如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.∵AB=AC,AH⊥BC,∴∠BAP=∠CAP,∵PA=PA,∴△BAP≌△CAP(SAS),∴PC=PB,∵MG=PB,AG=AP,∠GAP=60°,∴△GAP是等边三角形,∴PA=PG,∴PA+PB+PC=CP+PG+GM,∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为,∴,∵∠BAM=60°,∠BAC=30°,∴∠MAC=90°,∴AM=AC=2,AB=1,CN=2作BN⊥AC于N.则BN=1∴【点睛】本题考查轴对称-最短问题,等腰三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用两点之间线段最短解决问题16.A【解析】【分析】先分析出D的轨迹为以A为圆心AD的长为半径的圆,当BD与该圆相切时,∠DBA最大,过C作CF⊥AE于F,由勾股定理及三角函数计算出BD、CF的长,代入面积公式求解即可.【详解】解:由题意知,D点轨迹为以A为圆心AD的长为半径的圆,当BD与D点的轨迹圆相切时,∠DBA取最大值,此时∠BDA=90°,如图所示,过C作CF⊥AE于F,∵∠DAE=90°,∠BAC=90°,∴∠CAF=∠BAD,在Rt △ABD 中,由勾股定理得:BD, ∴由sin ∠CAF =sin ∠BAD 得:CF BDAC AB=, 即435CF =,解得:CF =125, ∴此时三角形ACE 的面积=112525⨯⨯=6, 故选:A . 【点睛】本题考查了旋转的性质、锐角三角函数、勾股定理等知识点.此题综合性较强,解题关键是利用D 的轨迹圆确定出∠DBA 取最大值时的位置. 17.C 【解析】 【分析】首先证明90AGD ∠=︒,从而122OG AD ==,再根据OAG HAM ∠=∠,可求MH =知点H 的运动轨迹为以点M 为圆心,MH 为半径的圆,从而可求BH 最小值. 【详解】解:如图,取AD 中点O ,连接OG ,以AO 为斜边作等腰直角三角形AOM ,则AM AO == 在ADE V 和DCF V 中,AD CD ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩, ∴V V ≌ADE DCF (SAS ), ∴DAG CDF ∠=∠, ∵90ADG CDF ∠+∠=︒,∴90ADG DAG ∠+∠=︒, ∴90AGD ∠=︒,ADG V 是直角三角形, ∴122OG AD ==, ∵AHG V 为等腰直角三角形,∴OAG GAM HAM GAM ∠+∠=∠+∠, ∴OAG HAM ∠=∠,又∵AH MA AG OA ==∴AMH AOG △∽△,∴MH OG =∴MH =∴点H 的运动轨迹为以点M 为圆心,MH 为半径的圆, 如图,连接BM ,交圆M 于H ',过点M 作MP AB ⊥于点P , ∵45DAE BAH ∠+∠=︒,OAG MAH ∠=∠, ∴45PAM MAH BAH ∠=∠+∠=︒, ∴APM △为等腰直角三角形,∵AM∴, ∴BP=4-1=3,在Rt BPM V 中,BM ==∴BH BM MH ''=−=∴BH 故选:C . 【点睛】本题考查了最短路径问题,解题的关键是准确构造辅助线,利用三角形相似以及点和圆的知识解决. 18.D 【解析】 【分析】结合题意推导得90APB ∠=︒,取AB 的中点O ,以点O 为圆心,AB 为直径作圆,连接OP ;根据直角三角形斜边中线的性质,得142OP OA OB AB ====;根据圆的对称性,得点P 在以AB 为直径的O e 上,根据两点之间直线段最短的性质,得当点O 、点P 、点C 三点共线时,PC 最小;根据勾股定理的性质计算得OC ,通过线段和差计算即可得到答案. 【详解】90ABC ∠=︒Q ,90ABP PBC ∴∠+∠=︒,PAB PBC ∠=∠Q ,90BAP ABP ∴∠+∠=︒,90APB ∴∠=︒,取AB 的中点O ,以点O 为圆心,AB 为直径作圆,连接OP ,142OP OA OB AB ∴==== ∴点P 在以AB 为直径的O e 上,连接OC 交O e 于点P ,当点O 、点P 、点C 三点共线时,PC 最小 在Rt BCO △中,90OBC ∠=︒Q ,6BC =,4OB =,OC ∴==,4PC OC OP ∴=−=PC ∴最小值为4 故选:D . 【点睛】本题考查了两点之间直线段最短、圆、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握圆的对称性、两点之间直线段最短、直角三角形斜边中线的性质,从而完成求解. 19.A 【解析】 【分析】从图2知,a 是y PE PC =+的最小值,从图1作辅助线知211a CE CE PE PC PE PC =<+=+…;接下来求出2a CE ==2CE 与BD 交于点2P ,则求出2P B =BD =2b P D ==a b +=,选A .【详解】解:如下图,在AB 边上取点1E ,使得BE 和1BE 关于BD 对称, 连接1PE ,得1PC PE PC PE +=+, 连接1CE ,作2CE AB ⊥,垂足为2E ,由三角形三边关系和垂线段最短知,112PE PC PE PC CE CE +=+厖,即PE PC +有最小值2CE ,菱形ABCD 中,6AB =,120BAD ∠=︒, 在Rt △2BE C 中,260E BC ∠=︒,解得2CE =(,)H a b Q 是图象上的最低点2b y PE PC CE ∴==+==此时令2CE 与BD 交于点2P , 由于23BE =,在Rt △22BP E 中,2BP =BD =2P D ∴=又PD 的长度为x ,图2中(,)H a b 是图象上的最低点,2a P D ∴==又b =a b ∴+=故选:A . 【点睛】本题考查动点及最小值问题,解题的关键是在于通过翻折点(E BD 轴对称),然后利用三角形三边关系及垂线段最短原理,判断出PC PE +最小值为2CE . 20.C 【解析】 【分析】由轴对称知识作出对称点,连接两对称点,由两点之间线段最短证明B B '''最短,多次用勾股定理求出相关线段的长度,平角的定义及角的和差求出角度的大小,最后计算出BMN ∆的周长最小值为6. 【详解】解:作点B 关于CD 、AD 的对称点分别为点B '和点B '', 连接B B '''交DC 和AD 于点M 和点N ,DB ,连接MB 、NB ; 再DC 和AD 上分别取一动点M '和N '(不同于点M 和)N , 连接M B ',M B '',N B '和N B ''',如图1所示:B B M B M N N B ''''''''''<++Q ,B M BM '''=,B N BN ''''=, BM M N BN B B '''''''∴++>,又B B B M MN NB ''''''=++Q , MB MB '=,NB NB ''=,NB NM BM BM M N BN ''''∴++<++,BMN l NB NM BM ∆∴=++时周长最小;连接DB ,过点B '作B H DB '''⊥于B D ''的延长线于点H , 如图示2所示:Q 在Rt ABD △中,3AD =,AB =∴DB ==230∴∠=︒,530∴∠=︒,DB DB ''=,又1260ADC ∠=∠+∠=︒Q ,301∴∠=︒,730∴∠=︒,DB DB '=,1257120B DB '''∴∠=∠+∠+∠+∠=︒,DB DB DB '''===又6180B DB '''∠+∠=︒Q ,660∴∠=︒,HD ∴3HB '=,在Rt △B HB '''中,由勾股定理得:6B B '''. 6BMN l NB NM BM ∆∴=++=,故选:C . 【点睛】本题综合考查了轴对称−最短路线问题,勾股定理,平角的定义和两点之间线段最短等相关知识点,解题的关键是掌握轴对称−最短路线问题,难点是构建直角三角形求两点之间的长度. 21.A 【解析】 【分析】 【详解】解:设AB 的中点为Q ,连接NQ ,如图所示: ∵N 为BM 的中点,Q 为AB 的中点, ∴NQ 为△BAM 的中位线, ∵AM ⊥BP , ∴QN ⊥BN , ∴∠QNB =90°,∴点N 的路径是以QB 的中点O 为圆心,14AB 长为半径的圆交CB 于D 的¶QD , ∵CA =CB =4,∠ACB =90°,∴AB =∠QBD =45°,∴∠DOQ =90°,∴¶QD为⊙O 的14周长, ∴线段BM 的中点N运动的路径长为:1904180π⨯⨯=, 故选:A .22.A 【解析】 【分析】由∠AEC =90°知,点E 在以AC 为直径的⊙M 的»CN上(不含点C 、可含点N ),从而得BE 最短时,即为连接BM 与⊙M 的交点(图中点E ′点),BE 长度的最小值BE ′=BM −ME ′. 【详解】 如图,由题意知,90AEC ∠=︒,E ∴在以AC 为直径的M e 的»CN上(不含点C 、可含点)N , BE ∴最短时,即为连接BM 与M e 的交点(图中点E '点),在Rt BCM ∆中,3BC cm =,142CM AC cm ==,则5BM cm ==. 4ME MC cm '==Q ,BE ∴长度的最小值1BE BM ME cm '=−'=,故选:A . 【点睛】本题主要考查了勾股定理,圆周角定理,三角形的三边关系等知识点,难度偏大,解题时,注意辅助线的作法. 23.A 【解析】 【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可. 【详解】解:如图,过点C 作CK ⊥l 于点K ,过点A 作AH ⊥BC 于点H ,在Rt △AHB 中, ∵∠ABC =60°,AB =2, ∴BH =1,AH在Rt △AHC 中,∠ACB =45°,∴AC== ∵点D 为BC 中点, ∴BD =CD ,在△BFD 与△CKD 中,90BFD CKD BDF CDK BD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△BFD ≌△CKD (AAS ), ∴BF =CK ,延长AE ,过点C 作CN ⊥AE 于点N , 可得AE+BF =AE+CK =AE+EN =AN , 在Rt △ACN 中,AN <AC , 当直线l ⊥AC, 综上所述,AE+BF故选:A . 【点睛】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.24.C【解析】【分析】根据题意,在折叠过程中A′在以M为圆心、AD为直径的圆上的弧AD上运动,当A′C取最小值时,由两点之间线段最短知此时M、A′、C三点共线,得出A′的位置,过点M作MH⊥DC于点H,再利用含30°的直角三角形的性质以及勾股定理求出MC的长,进而求出A′C的长即可.【详解】解:如图所示,∵MA′是定值,A′C长度取最小值时,即A′在MC上.过点M作MH⊥DC于点H,∵在边长为4的菱形ABCD中,∠MAN=60°,M为AD的中点,∴2MD=AD=CD=4,∠HDM=∠MAN=60°,∴MD=2,∠HMD=30°,MD=1,∴HD=12CH=CD+DH=5,∴∴MC==∴A′C=MC-2;故选:C.【点睛】本题考查翻折变换、菱形的性质、勾股定理、两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,突破点是正确寻找点A′的位置.25.D【解析】【分析】根据“两点之间线段最短”,当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长. 【详解】 解:如图,∵将△ABG 绕点B 逆时针旋转60°得到△EBF , ∴BE=AB=BC ,BF=BG ,EF=AG , ∴△BFG 是等边三角形. ∴BF=BG=FG ,.∴AG+BG+CG=FE+GF+CG . 根据“两点之间线段最短”,∴当G 点位于BD 与CE 的交点处时,AG+BG+CG 的值最小,即等于EC 的长, 过E 点作EF ⊥BC 交CB 的延长线于F , ∴∠EBF=180°-120°=60°, ∵BC=4,∴BF=2,Rt △EFC 中, ∵EF 2+FC 2=EC 2,∴ ∵∠CBE=120°, ∴∠BEF=30°, ∵∠EBF=∠ABG=30°, ∴EF=BF=FG ,∴EF=13故选:D . 【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键. 26.2 【解析】 【分析】由题意易得点F 的运动轨迹是以点B 为圆心,BC 长为半径的圆弧,连接BD ,然后根据隐圆问题可进行求解.【详解】解:由题意得:点F的运动轨迹是以点B为圆心,BC长为半径的圆弧,连接BD,交圆弧于点H,如图所示:∴当点F与点H重合时,点D到点F的距离为最短,∵四边形ABCD是矩形,AB=BC=2,∴==∠=︒,90DC AB BCD∴4B D=,∴422=−=−=,即点D到点F的最短距离为2;DH BD BH故答案为2.【点睛】本题主要考查隐圆问题,矩形与折叠,勾股定理,解题的关键是分析得出点F的运动轨迹.27.10【解析】【分析】作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,则A'B即为所求.【详解】解:作A点关于x轴的对称点A',连接A'B与x轴交于点P,连接AP,∵AP=A'P,∴AP+BP=A'P+BP=A'B,此时P点到A、B的距离最小,∵A(0,3),∴A'(0,﹣3),∵B(6,5),5-(-3)=8,6-0=6∴A'B,∴P点到A、B的距离最小值为10,故答案为:10.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,会根据两点坐标求两点间距离是解题的关键.28.6【解析】【分析】连接BE交AD于M,则BE就是EM+CM的最小值,通过等腰三角形的“三线合一”,可得BE=AD即可得出结论.【详解】解:连接BE,与AD交于点M.∵AB=AC,AD是BC边上的中线,∴B、C关于AD对称,则EM+CM=EM+BM,则BE就是EM+CM的最小值.∵E是等边△ABC的边AC的中点,AD是中线∴BE=AD=6,∴EM+CM的最小值为6,故答案为:6.【点睛】此题主要考查了等腰三角形的性质—“三线合一”、等边三角形的性质和轴对称等知识的综合应用,解题关键是找到M点的位置.29.【解析】【分析】当连接BE,交AD于点P时,EP+CP=EP+PB=EB取得最小值.【详解】解:连接BE∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点C关于AD的对应点为点B,∴BE就是EP+CP的最小值.∵△ABC是等边三角形,E是AC边的中点,∴BE是△ABC的中线,AC=2,∴CE=12∴BE=即EP+CP的最小值为故答案为:【点睛】本题主要考查了轴对称-最短路线问题以及等边三角形的性质,勾股定理,熟练掌握等边三角形和轴对称的性质是解题的关键.30.8【解析】【分析】连接AD,AM,由EF是线段AB的垂直平分线,得到AM=BM,则△BDM的周长=BD+BM+DM=AM+DM+BD,要想△BDM的周长最小,即要使AM+DM的值最小,故当A、。
【2020高考数学】三角形中的最值问题解题指导(一) (含答案)

1 / 26【2020年高考数学】三角形中的最值问题解题指导(一)第一篇 三角函数与解三角形专题06 三角形中的最值问题【典例1】【湖南省益阳市、湘潭市2020届高三9月调研考试】已知锐角三角形ABC 中,内角,,A B C 的对边分别为,,a b c ,且2cos cos a b Bc C-= (1)求角C 的大小.(2)求函数sin sin y A B =+的值域. 【思路引导】 (1)由2cos cos a b Bc C-=利用正弦定理得2sin cos sin cos sin cos A C B C C B -=,根据两角和的正弦公式及诱导公式可得1cos 2C =,可求出C 的值;(2)对函数的关系式进行恒等变换,利用两角和与差的正弦公式及辅助角公式把函数的关系式变形成同一个角正弦型函数,进一步利用定义域求出函数的值域.2 / 26【典例2】【2020届海南省高三第二次联合考试】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且22cos a c b C -=. (1)求sin 2A C B +⎛⎫+⎪⎝⎭的值; (2)若b =c a -的取值范围.【思路引导】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得cos B ,进而求得B 和A C +,代入求得结果;(2)利用正弦定理可将c a -表示为2sin 2sin C A -,利用两角和差正弦公式、辅助角公式将其整理为2sin 3C π⎛⎫- ⎪⎝⎭,根据正弦型函数值域的求解方法,结合C 的范围可求得结果.3 / 26【典例3】【山西省平遥中学2020届高三上学期11月质检】 已知△ABC 的内角A ,B ,C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【思路引导】(1)利用正弦定理将角化为边可得222a b c bc =+-,再由余弦定理即可得A ; (2)由正弦定理2aR sinA=,可得a ,由基本不等式利用余弦定理可得222b c bc bc bc bc +-≥-=,从而由12S bscinA =可得解.4 / 26【典例4】【2020届河北省保定市高三上学期期末】已知ABC ∆的三个内角A ,B ,C 所对的边分别为,,a b c ,设(sin ,1cos )m B B =-,(2,0)n =. (1)若23B π=,求m 与n 的夹角θ; (2)若||1,m b ==,求ABC ∆周长的最大值.【思路引导】 (1)将23B π=代入可求得m .根据平面向量数量积的坐标运算求得m n ⋅,由数量积的定义即可求得cos θ,进而得夹角θ.(2)根据||1m =及向量模的坐标表示,可求得B .再由余弦定理可得22()4a cb +=.结合基本不等式即可求得a c +的最大值,即可求得周长的最大值;或由正弦定理,用角表示出a c +,结合辅助角公式及角的取值范围,即可求得a c +的取值范围,进而求得周长的最大值.5 / 26【典例5】【2020届吉林省长春市东北师大附中等六校高三联合模拟】 如图,在矩形ABCD 中,1AB =,BC =,点E 、F 分别在边BC 、CD 上,3FAE π∠=,06EAB πθθ⎛⎫∠=<< ⎪⎝⎭..(1)求AE ,AF (用θ表示); (2)求EAF ∆的面积S 的最小值. 【思路引导】(1)根据1AB =,BC =,分别在Rt ABE ∆和Rt ADF ∆中,利用锐角三角函数的定义求出AE 和AF即可;(2)由条件知13sin 232sin 23S AE AF ππθ=⋅⋅=⎛⎫+ ⎪⎝⎭,然后根据θ的范围,利用正弦函数的图象和性质求出S 的最小值.6 / 26【典例6】【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin ()(sin sin )a c C a b A B -=+-. (1)求B ; (2)设b =ABC 的面积为S ,求2sin 2S C -的最大值.【思路引导】(1)用正弦定理化角为边后,再用余弦定理可求得角B ;(2)用正弦定理把边用角表示,即2sin a A =,2sin c C =,这样2sin 2sin sin 2S C ac B C-=-2sin 2sin sin 2A C C =⋅,又sin sin()sin()3A B C C π=+=+,2sin 2S C -就表示为C 的三角函数,由三角函数恒等变换化为一个角的一个三角函数形式,结合正弦函数性质可得最大值.7 / 26【典例7】【福建省宁德市2019-2020学年高三上学期第一次质量检查(期末)】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,ccos c C -=⋅,c =(1)求A ;(2)若ABC ∆为锐角三角形,D 为BC 中点,求AD 的取值范围. 【思路引导】(1cos c C -⋅中的边化成角得到cos A =A 的值; (2)由(1)知4A π=,可得C 的范围,再将b 表示成关于tan C 的函数,从而求得b 的取值范围.8 / 261. 【陕西省2019年高三第三次教学质量检测】在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围.2. 【辽宁省葫芦岛市六校协作体2019-2020学年高三上学期11月月考】,,a b c 分别为ABC 的内角,,A B C 的对边.已知()sin 4sin 8sin a A B A +=.(1)若1,6b A π==,求sin B ; (2)已知3C π=,当ABC 的面积取得最大值时,求ABC 的周长.3. 【2019年云南省师范大学附属中学高三上学期第一次月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 4. 【2020届湖南省常德市高三上学期期末】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知cos cos 2cos +=ac B b C A.(1)求A ; (2)若a =b c +的最大值.5. 【2020届江西省吉安市高三上学期期末】在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =-,(1,cos cos )n a C c A =+,且//m n .(1)求角C 的大小;9 / 26(2)若c =ABC ∆的周长的取值范围.6. 【2020届重庆市康德卷高考模拟调研卷理科数学(二)】如图,在四边形ABCD 中,A为锐角,2cos sin()6A A C C π⎛⎫+=-⎪⎝⎭.(1)求A C +;(2)设ABD △、CBD 的外接圆半径分别为1,r 2r ,若1211m r r DB+≤恒成立,求实数m 的最小值. 7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值.8. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】 在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =,求a 的最小值.9. 【吉林省吉林市普通中学2019-2020学年度高三第二次调研测】 已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ; (2)若24a S =,求c bb c+的最大值. 10. 【湖南省长沙市浏阳市第一中学2019-2020学年高三上学期第六次月考】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan (sin 2cos )cos 2222A C A C a b a +=. (1)求角B 的值; (2)若△ABC的面积为D 为边AC 的中点,求线段BD 长的最小值.10 / 2611. ABC ∆中,60,2,B AB ABC ==∆的面积为 (1)求AC ;(2)若D 为BC 的中点,,E F 分别为边,AB AC 上的点(不包括端点),且120EDF ∠=,求DEF ∆面积的最小值.备战2020年高考数学大题精做之解答题题型全覆盖高端精品【参考答案部分】【典例1】【湖南省益阳市、湘潭市2020届高三9月调研考试】已知锐角三角形ABC 中,内角,,A B C 的对边分别为,,a b c ,且2cos cos a b Bc C-=(1)求角C 的大小.(2)求函数sin sin y A B =+的值域. 【思路引导】 (1)由2cos cos a b Bc C-=利用正弦定理得2sin cos sin cos sin cos A C B C C B -=,根据两角和的正弦公式及诱导公式可得1cos 2C =,可求出C 的值;(2)对函数的关系式进行恒等变换,利用两角和与差的正弦公式及辅助角公式把函数的关系式变形成同一个角正弦型函数,进一步利用定义域求出函数的值域. 解:(1)由2cos cos a b Bc C-=, 利用正弦定理可得2sin cos sin cos sin cos A C B C C B -=, 可化为()2sin cos sin A C sin C B A =+=,1sin 0,cos 2A C ≠∴=0,,23C C ππ⎛⎫∈∴= ⎪⎝⎭.(2)sin sin 3y A sinB A sin A ππ⎛⎫=+=+-- ⎪⎝⎭1sin sin 226A A A A π⎛⎫=++=+ ⎪⎝⎭,11 / 262,032A B A ππ+=<<,62A ππ∴<<,2,3636A sin A ππππ⎤⎛⎫∴<+<∴+∈⎥ ⎪⎝⎭⎝⎦,32y ⎛∴∈⎝. 【典例2】【2020届海南省高三第二次联合考试】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且22cos a c b C -=. (1)求sin 2A C B +⎛⎫+⎪⎝⎭的值; (2)若b =c a -的取值范围.【思路引导】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得cos B ,进而求得B 和A C +,代入求得结果;(2)利用正弦定理可将c a -表示为2sin 2sin C A -,利用两角和差正弦公式、辅助角公式将其整理为2sin 3C π⎛⎫- ⎪⎝⎭,根据正弦型函数值域的求解方法,结合C 的范围可求得结果.解:(1)由正弦定理可得:2sin sin 2sin cos A C B C -=A B C π++= ()sin sin A B C ∴=+()2sin sin 2sin cos 2cos sin sin 2sin cos B C C B C B C C B C ∴+-=+-=即2cos sin sin B C C =()0,C π∈ sin 0C ∴≠ 1cos 2B ∴=()0,B π∈ 3B π∴= 23AC π∴+=2sin sin 232A C B π+⎛⎫∴+==⎪⎝⎭(2)由(1)知:sin sin 3B π==2sin sin sin a c bA CB ∴==== 2sin cC ∴=,2sin a A =()2sin 2sin 2sin 2sin 2sin 2sin cos 2cos sin c a C A C B C C B C B C∴-=-=-+=--12 / 262sin sin sin 2sin 3C C C C C C π⎛⎫=-==- ⎪⎝⎭23A C π+=203C π∴<< ,333C πππ⎛⎫∴-∈- ⎪⎝⎭(2sin 3C π⎛⎫∴-∈ ⎪⎝⎭,即c a -的取值范围为(【典例3】【山西省平遥中学2020届高三上学期11月质检】 已知△ABC 的内角A ,B ,C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【思路引导】(1)利用正弦定理将角化为边可得222a b c bc =+-,再由余弦定理即可得A ; (2)由正弦定理2aR sinA=,可得a ,由基本不等式利用余弦定理可得222b c bc bc bc bc +-≥-=,从而由12S bscinA =可得解. 解:(1)设内角A ,B ,C 所对的边分别为a ,b ,c . 根据sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,可得222a b c ba b c bc c a b c-+=⇒=+-+-, 所以2221cos 222b c a bc A bc bc +-===,又因为0A π<<,所以3A π=.(2)22sin 2sin sin 3a R a R A A π=⇒=== 所以2232b c bc bc bc bc =+-≥-=,所以11sin 322S bc A =≤⨯=(b c =时取等号). 【典例4】【2020届河北省保定市高三上学期期末】已知ABC ∆的三个内角A ,B ,C 所对的边分别为,,a b c ,设(sin ,1cos )m B B =-,(2,0)n =.13 / 26(1)若23B π=,求m 与n 的夹角θ; (2)若||1,m b ==,求ABC ∆周长的最大值.【思路引导】 (1)将23B π=代入可求得m .根据平面向量数量积的坐标运算求得m n ⋅,由数量积的定义即可求得cos θ,进而得夹角θ.(2)根据||1m =及向量模的坐标表示,可求得B .再由余弦定理可得22()4a cb +=.结合基本不等式即可求得a c +的最大值,即可求得周长的最大值;或由正弦定理,用角表示出a c +,结合辅助角公式及角的取值范围,即可求得a c +的取值范围,进而求得周长的最大值.解:(1)23B π=,所以33,22m ⎛⎫= ⎪ ⎪⎝⎭,因为(2,0)n =, 202m n ⋅=⨯+=∴ ,又||22m ⎛== ⎝⎭⎭||2n =,31cos 2||||23m n m n θ⋅==⋅∴,3πθ∴=,(2)因为||1m =,即2||sin 1m B ===,所以3B π=,方法1.由余弦定理,得2222cos b a c ac B =+-.2222()()3()324a ca c a c ac a c ++⎛⎫=+-≥+-⋅=⎪⎝⎭,即2()34a c +≥,即a c +≤(当且仅当a c =时取等号) 所以ABC ∆周长的最大值为方法2.由正弦定理可知,2sin sin sin a c bA C B===,14 / 262sin ,2sin a A c C ==∴,23A C π+=,所以22sin 2sin 3sin 36a c A A A A A ππ⎛⎫⎛⎫+=+-==+⎪ ⎪⎝⎭⎝⎭,又203A π<<,5666A πππ<+<,1sin ,162A π⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦,a c +∈∴,所以当3A π=时,a c +取最大值所以ABC ∆周长的最大值为【典例5】【2020届吉林省长春市东北师大附中等六校高三联合模拟】 如图,在矩形ABCD 中,1AB =,BC =,点E 、F 分别在边BC 、CD 上,3FAE π∠=,06EAB πθθ⎛⎫∠=<< ⎪⎝⎭..(1)求AE ,AF (用θ表示); (2)求EAF ∆的面积S 的最小值. 【思路引导】(1)根据1AB =,BC =,分别在Rt ABE ∆和Rt ADF ∆中,利用锐角三角函数的定义求出AE 和AF即可;(2)由条件知13sin 232sin 23S AE AF ππθ=⋅⋅=⎛⎫+ ⎪⎝⎭,然后根据θ的范围,利用正弦函数的图象和性质求出S 的最小值.解:(1)在Rt ABE ∆中,1AB =,所以1cos cos AB AE EAB θ==∠,在Rt ADF ∆中,AD =236DAF EAB πππθ∠=--∠=-,15 / 260cos 6cos 6ADAF DAFπθθ⎫∴==<<⎪∠⎝⎭- ⎪⎝⎭; (2)13sin 234cos cos 6S AE AF ππθθ=⋅==⎛⎫- ⎪⎝⎭⎝⎭32sin 23πθ===⎛⎫++ ⎪⎝⎭,因为06πθ<<,所以22333πππθ<+<2sin 223πθ⎛⎫<+≤ ⎪⎝⎭,当232ππθ+=时,即当12πθ=时,S取最小值(32.【典例6】【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin ()(sin sin )a c C a b A B -=+-. (1)求B ; (2)设b =ABC 的面积为S ,求2sin 2S C -的最大值.【思路引导】(1)用正弦定理化角为边后,再用余弦定理可求得角B ;(2)用正弦定理把边用角表示,即2sin a A =,2sin c C =,这样2sin 2sin sin 2S C ac B C-=-2sin 2sin sin 2A C C=⋅,又sin sin()sin()3A B C C π=+=+,2sin 2S C -就表示为C 的三角函数,由三角函数恒等变换化为一个角的一个三角函数形式,结合正弦函数性质可得最大值. 解:(1)由正弦定理()()()a c c a b a b -=+-,222a c b ac +-=,由余弦定理2221cos 22a c b B ac +-==,3B π=;(2)由正弦定理2sin sin sin a c bA C B====,2sin a A =,2sin c C =, 2sin 2sin sin 2S C ac B C -=-16 / 262sin 2sin sin 2sin sin 2A C C A C C =⋅=-2)sin sin 23sin cos sin 2C B C C C C C C =+-=+-31cos 2sin 2sin 22sin 2222222C C C C C =-+-=-+sin 213C π⎛⎫=-≤ ⎪⎝⎭当且仅当512C π=时等号成立,故最大值为1. 【典例7】【福建省宁德市2019-2020学年高三上学期第一次质量检查(期末)】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,ccos c C -=⋅,c =(1)求A ;(2)若ABC ∆为锐角三角形,D 为BC 中点,求AD 的取值范围. 【思路引导】(1cos c C -⋅中的边化成角得到cos A =A 的值; (2)由(1)知4A π=,可得C 的范围,再将b 表示成关于tan C 的函数,从而求得b 的取值范围.解:(1cos c C -=⋅sin cos B C A C -=,又sin sin[()]sin()B A C A C =π-+=+,cos cos sin )sin cos A C A C C A C +-=sin sin 0A C C -=, 因为0C π<<,所以sin 0C ≠,所以cos A =0A π<<,所以4A π=. (2)由(1)知4A π=,根据题意得0242C C πππ⎧<<⎪⎪⎨⎪+>⎪⎩,,解得42C ππ<<. 在ABC ∆中,由正弦定理得sin sin c b C B=,所以)2sin 2cos 242sin sin tan C C C b CC Cπ++===+,因为()42C ππ∈,,所以tan (1,)C ∈+∞,所以(24)b ∈,.17 / 26因为D 为BC 中点,所以1()2AD AC AB =+, 所以221()4AD AC AB =+21(48)4b b =++21(2)14b =++,因为(24)b ∈,,所以AD的取值范围为.1. 【陕西省2019年高三第三次教学质量检测】在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围. 【思路引导】(1)根据题意,由余弦定理求得1cos 2C =,即可求解C 角的值; (2)由正弦定理和三角恒等变换的公式,化简得到4sin 6a b A π⎛⎫+=+ ⎪⎝⎭,再根据ABC ∆为锐角三角形,求得62A ππ<<,利用三角函数的图象与性质,即可求解.解:(1)由题意知()()3a b c a b c ab +++-=,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵(0,)C π∈,∴3C π=.(2)由正弦定理可知,2sin sin sin 3ab A Bπ===,a Ab B == ∴sin )a b A B +=+2sin sin 3A A π⎤⎛⎫=+-⎪⎥⎝⎭⎦ 2cos A A =+4sin 6A π⎛⎫=+ ⎪⎝⎭,18 / 26又∵ABC ∆为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,即,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上+a b的取值范围为.2. 【辽宁省葫芦岛市六校协作体2019-2020学年高三上学期11月月考】,,a b c 分别为ABC 的内角,,A B C 的对边.已知()sin 4sin 8sin a A B A +=.(1)若1,6b A π==,求sin B ; (2)已知3C π=,当ABC 的面积取得最大值时,求ABC 的周长.【思路引导】(1)根据正弦定理,将()sin 4sin 8sin a A B A +=,化角为边,即可求出a ,再利用正弦定理即可求出sin B ;(2)根据3C π=,选择in 12s S ab C =,所以当ABC 的面积取得最大值时,ab 最大,结合(1)中条件48a b +=,即可求出ab 最大时,对应的,a b 的值,再根据余弦定理求出边c ,进而得到ABC 的周长.解:(1)由()sin 4sin 8sin a A B A +=,得()48a a b a +=, 即48a b +=.因为1b =,所以4a =.由41sin sin6B=π,得1sin 8B =. (2)因为48a b +=≥=, 所以4ab ≤,当且仅当44a b ==时,等号成立. 因为ABC的面积11sin 4sin 223S ab C π=≤⨯⨯= 所以当44a b ==时,ABC 的面积取得最大值, 此时22241241cos 133c π=+-⨯⨯⨯=,则c =, 所以ABC的周长为519 / 263. 【2019年云南省师范大学附属中学高三上学期第一次月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 【思路引导】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=- ⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 解:(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >,则1sin cos sin 62B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin B B =,tan B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由1sin 2ABC S ac B ∆==,又D 为AC 的中点,则2BD BA BC =+, 等式两边平方得22242BD BC BC BA BA =+⋅+, 所以2222423a c BA BC a c ac ac =++⋅=++≥,20 / 26则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆43=4. 【2020届湖南省常德市高三上学期期末】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知cos cos 2cos +=ac B b C A.(1)求A ; (2)若a =b c +的最大值.【思路引导】(1)根据正弦定理即正弦的和角公式,将表达式化为角的表达式.即可求得A .(2)利用正弦定理,表示出b c +,结合三角函数的辅助角公式及角的取值范围,即可求得b c +的最大值. 解:(1)∵cos cos 2cos +=ac B b C A,由正弦定理得sin sin cos sin cos 2cos +=AC B B C A从而有()sin sin sin sin 2cos 2cos +=⇒=A AB C A A A , ∵sin 0A ≠,∴1cos 2A =,∵0A π<<,∴3A π=;(2)由正弦定理得:2sin sin sin a b cA B C===, ∴2sin ,2sin b B c C ==,则()22sin sin 2sin 2sin 3⎛⎫+=+=+-⎪⎝⎭b c B C B B π3sin 6B B B π⎛⎫==+ ⎪⎝⎭,∵203B π<<,∴5666B πππ<+<, ∴当3B π=时,b c +取得最大值5. 【2020届江西省吉安市高三上学期期末】在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =-,(1,cos cos )n a C c A =+,且//m n .(1)求角C 的大小; (2)若c =ABC ∆的周长的取值范围.21 / 26【思路引导】(1)根据向量平行列出方程,再利用正弦定理进行边角转化,然后求出角C 的大小; (2)根据余弦定理求出+a b 的取值范围,再根据三角形边的几何性质求出周长的取值范围. 解:(1)由//m n 得22cos 2cos cos a C c A C b +=-, 由正弦定理sin sin sin a b cA B C==, 得2cos (sin cos sin cos )sin C A C C A B +=-, 即2cos sin()sin C A C B +=-,因为在三角形中sin()sin 0A C B +=≠,则1cos 2C =-,又(0,)C π∠∈,故23C π∠=; (2)在ABC ∆中,因c =23C π∠=,由余弦定理得2223c a b ab =++=, 即22()332a b a b ab +⎛⎫+=+≤+ ⎪⎝⎭,当且仅当a b =时取等号,解得2a b +≤,又由三角形性质得a b c +>=2a b +≤,则2a b c <++≤,即ABC ∆的周长的取值范围为(+. 6. 【2020届重庆市康德卷高考模拟调研卷理科数学(二)】如图,在四边形ABCD 中,A为锐角,2cos sin()6A A C C π⎛⎫+=-⎪⎝⎭.(1)求A C +;(2)设ABD △、CBD 的外接圆半径分别为1,r 2r ,若1211mr r DB+≤恒成立,求实数m 的最小值. 【思路引导】(1)根据三角函数的和差角公式与三角函数值求解即可. (2)根据正弦定理参变分离,再利用A 的取值范围求解 解:(1)由题, 2cos sin()A A C +=22 / 263sin[()]sin[()]sin(2)sin sin 2A A C A A C A C C C C ++--+=++=-,即1sin(2)sin 22A C C C +=-sin(2)sin 3A C C π⎛⎫⇒+=- ⎪⎝⎭,因为23A C C π+>-.故23A C C π+≠-.所以2233A C C A C πππ++-=⇒+=. (2)122sin 2sin BD BD m A C r r ≥+=+22sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭12sin 2cos 2sin 22A A A ⎛⎫=+⨯-⨯- ⎪⎝⎭3sin A A =6A π⎛⎫=+ ⎪⎝⎭,因为0,2A π⎛⎫∈ ⎪⎝⎭,故当62A ππ+=时6A π⎛⎫+ ⎪⎝⎭有最大值所以m ≥即实数m的最小值为7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值. 【思路引导】(1)根据三角函数的基本关系式,可化简得2(sin cos sin cos )sin sin A B B A A B +=+,再根据A B C π++=,即可得到sin sin 2sin A B C +=,利用正弦定理,可作出证明;(2)由(1)2a bc +=,利用余弦定理列出方程,再利用基本不等式,可得cos C 的最小值. 解:(1)由题意知,sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+, 化简得:2(sin cos sin cos )sin sin A B B A A B +=+ 即2sin()sin sin A B A B +=+,因为A B C π++=, 所以sin()sin()sin A B C C π+=-=,从而sin sin 2sin A B C +=,由正弦定理得2a b c +=. (2)由(1)知,2a bc +=,23 / 26所以222222()3112cos ()22842a b a b a b c b a C ab ab a b ++-+-===+-≥, 当且仅当a b =时,等号成立,故cos C 的最小值为12.8. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】 在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =,求a 的最小值. 【思路引导】(Ⅰ)利用正弦定理、诱导公式、两角和差的三角公式求出cosA 的值,可得A 的值.解:(1) ∵ABC 中,cos 2cb a C -=, ∴由正弦定理知,1sin sin cos sin 2B AC C -=,∵πA B C ++=,∴()sin sin sin cos cos sin B A C A C A C =+=+, ∴1sin cos cos sin sin cos sin 2A C A C A C C +-=, ∴1cos sin sin 2A C C =, ∴1cos 2A =,∴π3A =.(2) 由 (1)及·3AB AC =得6bc =,所以222222cos 6266a b c bc A b c bc =+-=+--= 当且仅当b c =时取等号,所以a9. 【吉林省吉林市普通中学2019-2020学年度高三第二次调研测】 已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ; (2)若24a S =,求c bb c+的最大值. 【思路引导】24 / 26(1)由诱导公式和二倍角公式可得sin bc A ,从而得三角形面积;(2)由余弦定理得2222cos 2sin b c bc A a bc A +-==,从而可把22c b b c b c bc++=用角A 表示出来,由三角函数性质求得最大值.解:(1)在ABC ∆中,A B C π++=,∴B C A +=π-∵()sin 220cos 0bc A B C ++=∴2sin cos 20cos 0bc A A A ⋅-= ∵2A π≠,∴cos 0A ≠∴1sin 52S bc A == (2)∵24a S =∴222cos 2sin b c bc A bc A +-= ∴222sin 2cos b c bc A bc A +=+∴222sin 2cos 4c b b c A A A b c bc π+⎛⎫+==+=+ ⎪⎝⎭ ∴当4A π=时,c bb c+取最大值 10. 【湖南省长沙市浏阳市第一中学2019-2020学年高三上学期第六次月考】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan (sin 2cos )cos 2222A C A Ca b a +=. (1)求角B 的值; (2)若△ABC的面积为D 为边AC 的中点,求线段BD 长的最小值.【思路引导】 (1)根据tan(sin 2cos )cos 2222A C A C a b a +=,化简可得cos sin 2A C a b A +=,进一步得到1cos 22B =,然后求出B 的值;(2)由(1)的角B 及三角形面积公式可得ac 的值,因为D 为边AC 的中点,所以1()2BD BA BC =+,利用向量的模和基本不等式可求BD 的取值范围,即可得到BD 的最小值. 解:(1)由tan(sin 2cos )cos 2222A C A C a b a +=,得sin (sin 2cos )cos cos 22222A C A A Ca b a +=,25 / 26即(coscos sin sin )2sin cos 222222A C A C A A a b -=,即cos sin 2A Ca b A +=. 由正弦定理得sin cossin sin 2A C AB A +=,因0,sin 0,sin 02BA A π<<≠≠, 所以cossin 2A C A +=,则sin sin 2sin cos 222B B BB ==, 所以1cos (0)2222B B π=<<, 所以23B π=,即23B π=. (2)由△ABC的面积为1sin 2ac B =12ac =.因为D 为边AC 的中点,所以1()2BD BA BC =+,所以2221(2)4BD BA BC BA BC =++,即222111(2cos )(2)3444BD c a ac B ac ac ac =++≥-==,当且仅当a c ==“=”,所以3BD ≥,即线段BD. 11. ABC ∆中,60,2,B AB ABC ==∆的面积为 (1)求AC(2)若D 为BC 的中点,,E F 分别为边,AB AC 上的点(不包括端点),且120EDF ∠=,求DEF ∆面积的最小值. 【思路引导】 (1)利用1sin 2ABCAB B SBC =⋅⋅⋅求出BC ,再利用余弦定理求AC 即可; (2)设(),0,60BDE θθ︒︒∠=∈,在BDE 中,利用正弦定理表示出DE ,在CDF 中,利用正弦定理表示出DF ,再将DEF的面积表示出来,利用三角函数的性质求其最小值. 解:(1)因为60,2,B AB ==所以11sin 222ABCAB BC B BC B S C =⋅⋅⋅=⨯=, 又ABCS=4BC =,由余弦定理得:2222212cos 24224122ACAB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=, 所以AC =26 / 26(2)设(),0,60BDE θθ︒︒∠=∈,则60CDF θ︒∠=-,在BDE 中,由正弦定理得:sin sin BD DEBED B=∠,即()2sin 60θ︒=+,所以()sin 60DE θ︒=+, 在CDF 中,由正弦定理得:sin sin CD DFCFD C=∠,由(1)可得22260,,30B BC AC AB C ︒=∴=+=,则()21sin 902DFθ︒+=,所以1cos DF θ=,所以()13sin 24sin 60cos DEFSDE DF EDF θθ︒=⋅⋅⋅∠=+⋅==,当15θ︒=时,()()min sin 2601,6DEP S θ︒+===-故DEF 的面积的最小值为6-.。
解析几何中的一些最值问题

OCCUPATION2011 7162解析几何中的一些最值问题文/王海滔最值问题遍及中学数学的代数、三角、立体几何及解析几何等学科内的各个分支,在生产实践当中广泛应用,解析几何中的最值问题也是历届各类考试的热点。
如何利用相关的数学方法,运用数形结合的思想解决这类问题,来提高学生分析问题和解决问题的能力,为进一步学好高等数学中的最值问题打下基础,是中学数学复习中不可忽视的问题。
下面,笔者结合具体的例子,对解析几何中的最值问题介绍几种解答方法。
一、利用对称性求最值(动点在直线上)动点在直线上求最值,解决的办法是把折线问题转化成直线问题,利用平面内两点间直线段最短的公理,或利用两点间距离公式求出线段长的最值。
【例1】已知点P 在x 轴上运动,A (-2,2),B (1,3)(1)则│P A │+│PB │的最小值为多少?分析:作出A 点关于x 轴的对称点A'(-2,2),那么│P A │+│PB │=│P A'│+│PB │,利用三角形两边之和大于第三边,可得:│P A'│+│PB │≥│A'B │,当且仅当A',P ,B 三点共线时取得最小值│A'B(2)则│PB │-│P A 分析:此题不用找对称点,利用三角形两边之差小于第三边,只要延长BA 交x 轴于P ,│PB │-│PA │此时得到的最大值为│BA小结:当动点在直线上时,(1)求线段长之和的最小值时,若定点是异侧,则两定点距离即为最小值。
若是同侧,作对称点即可解决。
(2)求线段长之差的最大值时,若定点是同侧,则两定点距离即为最大值。
若是异侧,就利用对称性,转化到同侧,也可解决。
二、利用圆锥曲线的定义求最值(动点在圆锥曲线上)动点在圆锥曲线上求最值,解决方法是先利用圆锥曲线定义对所求的问题进行转化,再利用平面内两点间直线段最短的公理,或利用点到直线的距离为垂线段最短,求出最值。
【例2】已知F 是抛物线y 2=4x 的焦点,A (4,2),点P 是该抛物线上的一个动点,试求│PF │+│P A │的最小值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ab2中学数学的最值问题 最值问题是历年高考的热点,也是学生学习的难点。对于中学数学的常见最值问题,可归纳为以下几大块: 一、用函数的单调性求代数函数的最值 (1)对于一次函数、指数函数、对数函数等单调递增或单调递减的函数,若定义域的闭区间,如x∈[m,n],则f(m),与f(n)中较大者为最大值,较小者为最小值。 (2)求二次函数f(x)=ax2+bx+c在[m,n]上的最值时,先判定对称轴x= - 是否属于[m,n],若x=- ∈[m,n],则f(m) , f(n) ,f(- 中较大者是最大值,较小者是最小值,若- [m,n],则f(m)与f(n)中较大者为最大值,较小者为最小值;若二次函数f(x)2ax2+bx+c的定义域为R,当a>0时,有最小值ymn= ,岂a<0时,有最大值ymax= , 例1、求函数y=x2-2x-3在[ , ]上的最值。 解:≧对称轴x=1∈[ , ]f,而f( )= ,f(1)=-4, f( ∟ )= - . ≨f(x)max= f(x)min=-4 例2、(2004年北京卷) f(x)=ax2+bx+c中,若a、b、c成等比数列,且f(0)=-4,则f(x)有最________值(填“大”或“小”)且该值为_______。 解: ≧f(0)=-4 ≨c=-4 2≧a、b、c成等比数列 ≨b2=ac=-4a ab2ab2
abac4422125214152547abac4422125
47 而b≠0 则有a<0 从而函数f(x)=ax2+bx+c的图象的开口向下,故有最大值,其最大值为:f(x)max= = =-3. (3)对定义在[n,m]上的函数f(x)还可借助导函数值的符号判定其单调性,从而求得函数f(x)在[n,m]上的最值。 例3、已知函数f(x)= x∈[1,+≦] 当a= 时,求函数f(x)的最小值 (2004年上海) 解:当a= 时, f(x)=x+ +2 ≧f/ (x)=1- ≧x∈[1,+≦] ≨f/(x)>0 ≨f(x)在[1,+≦]上是增函数 ≨f(x)在区间[1,+≦]上的最小值是 f(x)min=f(1)= 二、有关三角函数最值的求法 (1)用三角函数的有界性求最值 由于正弦函数,余弦函数均是有界函数,即: -1≤sinx≤1 -1≤cosx≤1,故在求三角函数有关的函数的最值时,可考虑把它转化为同一三角函数,然后运用三角函数的有界性求其最值。 例4,已知R<-4,则函数cos2x+R(cosx-1)的最小值是( ) A、1 B、-2 C、2R+1 D、-2R+1 解:≧y=cos2x+R(cosx-1) =2cos2x+Rcosx-R-1 =2(cosx+ )2-R-1-
abac442aaa4416
xaxx222121x21221x
27
4k82
k 而R<-4 ≨当cosx=1时,ymin=1 例5,a、b是不相等的函数,求y=xbsinxacos22 + xbcosxasin22的最大值和最小值。 解:≧y是正值,故使y2达到最大(或最小)的x值也使y达到最大(或最小)。 y2=acosx2+bsin2x+2xbsinxacos22〃xbcosxasin22+asin2x+asin2x+bcos2x =a+b+2xsinb)-(a4ab22 ≧a≠b a>0 b>0 ≨(a-b)2>0 0≤sin2x≤1 ≨当sinx=±1,即x= + (k∈z)时ymax=2b2a 当sinx=0,即x= (k∈z)时,ymin= a+b (2)利用三角函数的单调性 如果f(x)在[α,β]上是增函数,则f(x)在[α,β]上有f(x)max=f(β),f(x)min=f(x),如果f(x)在[α,β]上是减函数,则f(x)在[α,β]上有最大值f(x),最小值f(β). 例6,在0≤x≤ 的条件下,求y=cos2x-4sinxcosx-3sin2x的最大值和最小值。 解:用二倍角公式及变形公式有: y= -2sinx-3 =2(cos2x-sinx)-1 =22(cos2xcos -sin2xsin )-1 =22cos(2x+ )-1 ≧0≤x≤ ≨ ≤2x+ ≤
2k22k
222cos1x22cos1x44424445 由余弦函数的单调性知:cos(2x+ )在[0, ]上是减函数,故岂x=0时有最大值 ,当x= 时有最小值-1。 cos(2x+ )在[ , ]上是增函数,故当x= 时,有最小值-1,当x= 时有最大值- 。 综上 当x=0时 ,ymax=22× -1=1 当x= 时 ,ymin=22x(-1)-1=22-1 (3)用换元法求三角函数的最值 利用变量代换,我们可以把三角函数的最值问题转化为代数函数最值问题求解, 例7,求f(x)=sin4x+2sin3xcosx+sin2xcos2x+2sinxcos3x +cos4x的最大值和最小值。 解:f(x)=sin4x+2sincosx+sin2xcos2x+2sinxcos3x+cos4x =(sin4x+2sin2xcos2x+cos4x)-sin2xcos2x+2sinxcosx (sin2x+cos2x) =(sin2x+cos2x)2-sin2xcos2+2sinxcosx =1+2sinxcosx-sin2xcos2x 令t=sinxcosx=21sin2x 则-21≤t≤21 ≨f(t)=1+2t-t2 =-(t-t)2+2 (-21≤t≤21) 当t=21,即x=kπ+4(k∈z)时,f(x)max=f(t)max=47 当t=-21 ,即x= kπ+43(kπ∈z)时,f(x)min=-41 ≨f(x)max=47 f(x)min=-41
483
2283
483283
222
22
83 三、用均值定理求最值 1、均值定理的构成的注意事项 二元均值不等式:2ba≥ab(a>0,b>0,当且仅当a=b时取等号) 三元均值不等式:3cba≥3abc(a>0,b>0,c>0,当且仅当a=b=c时取等号) n元均值不等式:naaan21≥nnaaa21(a1>0,a2>0…an>0,当且仅当a1=a2=…=an时取不等号) 在运用均值不等式求最值时应注意以下三点: i>函数解析式中各项均为正数。 ii>函数的解析式中含有变数的各项的和或积必须有一个定值。 iii>含变数的各项均相等时才能取得最值。 2、均值定理在求函数最值中的应用 例8、解答下列各题 (1)求函数y=x2+44x(x>0) 的最小值。 (2)求函数y=2x2+x4(x>0)的最小值。 (3)求函数y=6x2-3x3(0(4)求函数y=x(1-x2)(0(5)(05年全国卷Ⅲ)求函数y=xxx2sinsin82cos12(0分析:若均值定理的某一端为常数,则当不等式的等号能取到时,这个常数就是另一端的最值,如 2ba≥ab,当ab为常数m>0时,则当且仅当a=b时,a+b有最小值m2,若a+b为常数n>0,则当且仅当a=b时,有最大值2n,较解这些问题的关键是构造“定”或“定积”。 解:(1)≧y=x2+44x=22x+22x+44x≥34224223xxx=3 ≨当且仅当22x=44x,即 x=2(≧x>0)时,ymin=3 (2)≧x>0 ≨2x2>0 x2>0 ≨y=2x2+x4=2x2+x2+x2≥322223xxx=6 ≨当且仅当2x2=x2,即x=1时,ymin=6 (3)≧y=6x2-2x3=2x2(3-x) ≧00 2x>0
≨y=8〃2x〃2x(3-x)≤8×33)3(22xxx=8 当且仅当2x=3-x,即x=2时,ymax=8 (4)≧00 1-x2>0 ≨x(1-x2)>0
≧y2=x2〃(1-x2)2=21〃2x2(1-x2)(1-x2) ≤=33)1()1(221222xxx=274 当且仅当2x2=1-x2,即x=33时,y2有最大值274。 ≨当x=33时,ymax=932 (5)y=xxxxcossin2sin81cos2122 =cotx+4tanx ≧00 tanx>0 ≨y=cotx+4tanx≥xxcottan42=4 当且仅当4tanx=cotx即x=aintan21时,ymin=4 3、运用均值定理解应用题 例9:学校食堂定期从某粮店以每吨2000元价格购进大米,每次购进大米需支付运输费100元,已知食堂每天需用大米1吨,贮存大米的费用为每吨每天2元,假如食堂每次都在用完大米的当天购买。 (1)该食堂每隔多少天进一次大米才能使平均每天所支付的费用最少? (2)粮食提出价格优惠条件:一次购买不少于20吨时,大米价格可享受九五折优惠,问食堂可否接受此优惠条件?请说明理由。 解:(1)设每隔x天购进一次大米,因为每天用米一吨,故一次购米x吨,从而库存总费用为2[x+(x-1)+……+2+1]=x(x+1)若设平均每天所支付的总费用为y,则 y1=x1[x(x+1)+100]+2000=x+x100+2001≥2xx100+2001=2021 当且仅当x=x100 即x=10时取等号。 ≨每隔10天购出一项,才能使每天所付费用最少。 (2)设能接受优惠条件,则至少每隔20天购米一项,没每隔七天购米一次,平均每天费用为y2元,则 y2=t1[t(t+1)+100]+2000×95%=t+t100+1901 由于t=10不在函数定义域内,教不能使用均值定理。 令f(t)=t+t100+1901 (t≥20) 设t1 ,t2∈[20 ,+≦)且t1>t2
则f(t2)-f(t1)=t2-t1+12100100tt=(t2-t1)(1-12100tt) = ≧t2>t1≥20 ≨t2-t1>0 t2t1-100>0 t2t1>0 121212
)100)((tttttt