基因工程
什么是基因工程

什么是基因工程
一、什么是基因工程
基因工程(Gene Engineering)是一种技术,它可以改变物质基础的构造,使其形成新的基因组合,从而获得有意义的生物。
基因工程可以
让完全不同的物种合成出新物种,或者将不同物种的基因强行混合,
成功地让一些被认为在自然过程中不可能出现的新物种出现。
二、基因工程的基本原理
基因工程的基本原理是人工合成、改造、替换或者删除染色体的基因,在生物体的内部,精心操控它们来改变特质。
比如,可以用基因工程
在生物体内引入新基因,从而改变它们的某些性状,从而形成新物种、新性状或新能力。
同样,也能改变基因中某种成分,形成新物种。
三、基因工程在实践中的应用
(1)改性个体:基因工程可以调整体内基因水平,以便让体内特定的
特质性状得到发挥。
(2)编辑特质:基因工程可以根据所需改变,精确定位到特定的基因
的特定位点,再改变基因位置,最终让细胞发生变化。
(3)基因治疗:基因治疗是改变患有基因性疾病的患者的基因的技术,以改善疾病情况。
(4)转基因:转基因技术指的是将一种物种中的基因流入到另一种物
种中,从而改变或添加某种性质,如抗病性等。
四、基因工程的好处与弊端
(1)好处:基因工程可以帮助改变鉴定动物和植物的性能,用来生产
食物、药物、精馏植物等产品,帮助解决营养、病症,使物种在极端
环境发展。
(2)弊端:大量的基因重组可能引发不可预料的问题,产生致命的疾病,甚至影响人类基因。
有时,新基因对导入到一个物种中的其他生
命细胞产生负面影响。
什么是基因工程

什么是基因工程基因工程:改变生命的未来引言:人类一直在不断探索、改造和利用自然的力量,以满足我们的需求和向前迈进。
基因工程作为生物技术的一个重要分支,具有巨大的潜力,可以为人类带来许多福祉和进步。
本文将深入探讨什么是基因工程,它的原理和应用,以及相关的伦理和道德问题。
一、基因工程的定义和原理:基因工程,又称遗传工程,是一种利用重组DNA技术改变生物基因组的过程。
它主要包括三个步骤:选取目标基因、将目标基因导入目标生物体的基因组中、使导入基因能够在生物体中正常表达。
基因工程的原理主要包括DNA分子的切割、连接和重组。
科学家通过具有特定功能的限制酶将DNA切割成片段,然后将这些片段重新组合,以获得具有所需特性的DNA序列。
最后,将重组的DNA导入目标生物体中,通过细胞的自然复制过程使其在细胞和整个生物体中被表达。
二、基因工程的应用:1. 农业领域:基因工程在农业领域的应用非常广泛。
通过转基因技术,科学家们可以改良农作物,使其具有抗虫、抗病、耐旱等特性,提高产量和抗逆性,有力地支持全球粮食安全。
例如,转基因玉米可以抵抗玉米螟的侵袭,转基因水稻可以抗盐碱、耐旱。
2. 医学领域:基因工程在医学领域的应用正逐渐发展。
通过基因工程技术,科学家可以将外源基因导入体内,用于治疗一些遗传病、免疫系统疾病和癌症等疾病。
例如,基因工程药物可以治疗某些带有缺陷基因的遗传性疾病,如血友病和囊性纤维化等。
3. 环境保护:基因工程还可以用于环境保护。
通过改良某些细菌或植物的基因,可以使其具有降解有害化学物质的能力,从而清理油污和其他污染物。
基因工程在生物修复、环境治理中的潜力巨大,为解决环境问题提供了新的思路和方法。
三、伦理道德问题:虽然基因工程有着广阔的应用前景,但也涉及一些伦理和道德问题需要慎重考虑。
1. 遗传多样性:转基因作物的广泛种植可能导致农作物遗传多样性的丧失,降低农作物的抵抗能力。
我们应该保留自然界的遗传资源,同时加强监管和管理,确保基因工程的可持续发展。
第一章 基因工程概述

或新性状的DNA体外操作程序,也称为分子克隆技术。
因此,供体、受体、载体是重组DNA技术的三大基
本元件。
基因工程的基本概念
B 基因工程的基本定义
基因工程是指重组DNA技术的产业化设计与应用,
包括上游技术和下游技术两大组成部分。上游技术指的
是基因重组、克隆和表达的设计与构建(即重组DNA技
术);而下游技术则涉及到基因工程菌或细胞的大规模
酶工程
基因工程的基本概念
D 基因工程的基本形式
第一代基因工程 蛋白多肽基因的高效表达 经典基因工程 第二代基因工程 蛋白编码基因的定向诱变 蛋白质工程
第三代基因工程 代谢信息途径的修饰重构 途径工程
第四代基因工程 基因组或染色体的转移
基因组工程
第二节 基因工程的诞生和发展
一、基因
泛基因阶段
孟德尔遗传因子阶段
(如胰岛素)、干扰素、乙肝疫苗等 研制新型疫苗(HIV、霍乱、单纯疱疹病毒等)
生产具有药用价值的生物制剂,如水蛭素等
3. 基因诊断
– 遗传性疾病的分子诊断
– 癌症的分子诊断 – DNA指纹
4. 基因治疗
是指将外源正常基因导入靶细胞,以纠正或补偿因基因缺陷和异 常引起的疾病,以达到治疗目的。
3.断裂基因
1个基因被间隔区分成不连续的若干区段,这种编码序列不连续的间断基因被称为 断裂基因。
4.假基因
不能合成出功能蛋白质的失活基因 。
5.重叠基因
不同基因的核苷酸序列有时是可以共用的 即重叠的。
现代对基因的定义是DNA分子中含有特定遗传信息的一段核苷酸序列, 是遗传物质的最小功能单位。
二、 基因工程的诞生
顺反子阶段
1957 年,本泽尔(Seymour Benzer)以T4噬菌 体为材料,在DNA分子水平上研究基因内部的精细结 构,提出了顺反子(cistron)概念。 顺反子是1个遗传功能单位,1个顺反子决定 1条多肽链。
什么是基因工程

什么是基因工程
基因工程是一种通过改变生物体的遗传物质(DNA)来实现对其性状的改变的技术和方法。
这包括插入、删除或修改基因,以产生具有特定性状或功能的生物体。
基因工程可以应用于微生物、植物、动物和人类等各个领域。
主要的基因工程技术和方法包括:
1. 基因克隆:将感兴趣的基因从一个生物体中复制并插入到另一个生物体中。
这包括DNA的复制、切割和连接等操作,常用于制造重组蛋白、疫苗等。
2. 重组DNA技术:制造重组DNA,即将来自不同来源的DNA 片段组合在一起。
这包括PCR(聚合酶链式反应)、限制酶切割、DNA 连接酶等技术。
3. 基因编辑:利用特定的酶(如CRISPR-Cas9系统)精确地修改生物体的基因。
这使得科学家能够精准地添加、删除或替换基因序列,以改变目标生物体的性状。
4. 转基因:将外源基因导入到一个生物体中,使其表达这个基因。
转基因技术在植物、动物等领域广泛应用,以改善农作物产量、提高抗病性、研究基础科学等。
5. 合成生物学:利用化学合成的方法设计和构建新的生物体,以实现特定的功能。
这包括人工合成基因、合成生物通路等。
应用基因工程的领域包括医学、农业、环境保护、工业等,其应用范围涉及疾病治疗、农作物改良、生物能源生产等方面。
然而,基因工程也引发了一些伦理、安全和法规方面的讨论和关注。
基因工程

作用: 将外源基因送入受体细胞。 利用载体在受体细胞内,对外源基因 进行大量复制。
条件: 能够在宿主细胞中复制并稳定地保存。 具多个限制酶切点,以便与外源基因连接。 具有某些标记基因,便于进行筛选。 如抗菌素的抗性基因、产物具有颜色反应的基 因等。 种类:质粒、噬菌体和动植物病毒。
质
DNA诊断
DNA点杂交 寡聚核苷酸探针杂交分析法
PCR/单链构象多态性分析(SSCP)
(single strand conformation polymorphism, SSCP) 限制性内切酶谱分析法 DNA限制性长度多态性 (restriction fragment length polymorphism, RLFP) 分析
2.基因诊断
基因诊断:采用分子生物学的技术方法来分 析受检者的某一特定基因的结构(DNA水平) 或功能(RNA水平)是否异常,以此来对相应 的疾病进行诊断。是病因的诊断。
基因诊断的原理
DNA诊断----检测相关基因的结构及其 表达功能是否正常。 RNA诊断----对表达产物mRNA的质 和量进行分析。
基因工程为人类开辟新的食物来源。 1)鸡蛋白基因在大肠杆菌和酵母菌中表达获得 成功。这表明,未来能用发酵罐培养的大肠杆菌 或酵母菌来生产人类所需要的卵清蛋白。 2)用基因工程的方法从微生物中获得人们所需 要的糖类、脂肪和维生素等产品。
(三)基因工程与环境保护
基因工程在环保方面有什么应用?
1)用于环境监测。 2)用于被污染环境的净化。
基因治疗就是把基因直接导入人体或先导入人的 细胞然后再输入人体,让这种基因达到治疗目的。 首先是治疗基因的选择。
基因工程

二 DNA或RNA浓度、纯度和相对分子质量的测定
常用的方法有紫外分光光度计和琼脂糖凝胶电泳法。
(一)紫外分光光度计法测定DNA、RNA的浓度和纯度
分子量在1-200kb之间 。
生命科学学院
一、 质粒载体
同一质粒尽管分子量相同,不同的构型电泳迁移率不同:
超螺旋DNA最快、线形DNA次之、开环DNA最慢。
OC
SC
Lห้องสมุดไป่ตู้
生命科学学院
一、质粒载体
质粒的不相容性(incompatibility,又称质粒的不亲和性)
两个质粒在同一宿主中不能共存的现象称质粒的不相容性。
生命科学学院
四、人工染色体及其应用
(一)酵母人工染色体
酵母人工染色体(yeast artificial chromosome,YAC)是一类酵母穿梭 载体。
YAC具有自主复制序列、克隆位点 以及可在细菌和酵母菌中选择的标记 基因。可以接受350-400kb的外源DNA 片段。
生命科学学院
一、质粒表达载体
二、Klenow片段 (一)基本性质 大肠杆菌DNA聚合酶I经枯草杆菌蛋白酶处理,获得N 端三分之二的大肽段,即Klenow片段。
Klenow片段仍拥有5`→3`的DNA聚合酶活性和3`→5` 的核酸外切酶活性,但失去了5`→ 3`的核酸外切酶活性。
生命科学学院
载体的概念
载体(vector) • 是由在细胞中能够自主复制的DNA分子构成的一 种遗传成分;基因工程中,携带目的基因进入宿 主细胞进行扩增和表达的工具称为载体。 目的基因能否有效转入受体细胞,并在其中维持 高效表达,在很大程度上决定于载体 。
基因工程的名词解释

基因工程的名词解释
基因工程是一种利用生物技术手段改变生物体内遗传信息的技术,包括利用DNA分子作为工具来切割、重组、连接和修饰DNA分子,从而改变生物的性状和功能。
在基因工程中,通常会使用一些特定的工具和技术来操作DNA分子。
这些工具和技术包括:基因编辑技术,如CRISPR/Cas9、Taq酶、文库筛选等;DNA片段的制备,如扩增、剪切、合成等;DNA连接技术,如基因连接酶、基因转化技术等;以及基因转化材料,如植物、细菌、酵母等。
基因工程的应用范围非常广泛,包括生物医学研究、农业改良、食品加工、药物开发等。
在生物医学研究中,基因工程可以用于治疗疾病、开发新药物和改变生物体的性状。
在农业改良中,基因工程可以用于提高作物产量、改善作物品质、降低生产成本等。
在食品加工中,基因工程可以用于改变食品的口感、味道和营养价值等。
除了传统的生物学方法外,基因工程还采用了一些现代技术手段,如基因芯片、基因组学、蛋白质结构预测等。
这些技术的发展使得基因工程的研究和应用更加高效和精准。
基因工程也有一些伦理和法律问题需要解决,如基因隐私、基因歧视、遗传信息保护等。
因此,在基因工程的研究和应用中,需要遵循伦理和法律规定,确保其安全性和合法性。
基因工程的概念

基因工程的概念基因工程是一种利用基因技术改变生物体遗传特征的技术手段。
基因工程包括对基因的分离、克隆、修饰和转移等步骤,通过改变生物体的基因组来获得特定的性状或功能。
基因工程可以在不同的生物体中引入外来基因,实现基因的重组、修改和转移,从而改变其遗传特征并赋予其新的性状。
基因工程的应用范围非常广泛,包括农业、医学、生物工业等领域。
在农业领域,基因工程可以用于改良作物,提高作物的产量和抗性,使其更适应恶劣的环境条件。
通过异种基因转移,可以使作物具有抗虫、抗病、抗逆境等性状,提高作物的品质和经济效益。
在医学领域,基因工程可以用于治疗遗传性疾病。
通过基因修饰和转移,可以校正异常基因或增加缺失的基因,从而纠正遗传疾病的发生机制。
例如,通过基因工程技术可以生产蛋白质药物、基因疫苗和基因诊断试剂,用于预防和治疗多种疾病。
此外,基因工程还可以用于生物工业,如生产酶、药物和生物农药等。
通过基因工程技术可以改变微生物的代谢途径和菌株特性,使其具有高效、高产的产物合成能力。
这对于提高生物工业产品的产量和质量具有重要意义。
基因工程的发展离不开基因技术的进步。
现代基因工程技术主要包括DNA重组技术、基因克隆技术、基因表达技术和基因转导技术等。
这些技术的不断改进和创新,使得基因工程在各个领域的应用更加广泛和深入。
然而,基因工程也面临着一些争议和挑战。
一方面,基因工程技术可能带来一些潜在的风险,如基因突变、基因污染等。
另一方面,基因工程技术的应用也引发了伦理和道德方面的争议,如人类基因编辑是否合乎伦理规范等。
综上所述,基因工程作为一种利用基因技术来改变生物体遗传特征的技术手段,在农业、医学、生物工业等领域都具有重要的应用价值。
随着基因技术的不断发展和完善,基因工程有望为人类社会带来更多的福祉,但也需要在应用中严格控制和规范,以确保其安全和可持续发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因工程基因工程能够定向改造生物的遗传特性。
基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
由于基因工程是在DNA分子水平上设计和施工的,因此又叫做DNA重组技术。
DNA重组技术的基本工具实现这一精确的操作过程至少需要三种工具,即准确切割DNA的“手术刀”,将DNA片段再连接起来的“缝合针”,将体外重组好的DNA导入受体细胞的“运输工具。
限制性核酸内切酶——“分子手术刀”切割DNA的工具是限制性核酸内切酶又称限制酶。
这类酶主要是从原核生物中分离纯化出来的。
迄今已从近300种不同的生物中分离出了约4000种限制酶。
它们能识别双链DNA 分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。
大多数限制酶的识别序列由6个核苷酸组成,例如,EcoRI,SmaI限制酶识别的序列均为6个核苷酸,也有少数限制酶的识别序列由4,5和8个核苷酸组成。
DNA的分子经限制酶切割产生的DNA片段末端通常有两种形式——黏性末端和平末端。
当限制酶在它识别序列的中心轴线两侧将DNA的两条链分别切开时,产生的是黏性末端,而当限制酶在它识别序列的中心线处切开时,产生的则是平末端。
EcoRI{在G与A之间切割}磷酸二酯键Smal[在G与C之间切割]DNA连接酶——“分子缝合针”将切割下来的DNA片段拼接成新的DNA分子,是靠DNA连接酶来完成的。
1967年,世界上几个实验室几乎同时发现了一种能够将两条DNA连接起来的酶,称之为DNA连接酶.。
根据酶的来源不同,可以将这些酶分为两类;一类是从大肠杆菌中分离得到的,E·coli DNA 连接酶;另一类是从T4噬菌体中分离出来的,称为T4DNA连接酶。
这两类酶都是将双链DNA片段“缝合”起来,恢复被限制酶切开的两个核苷酸之间的磷酸二酯键,但这两种酶的作用有所差别:E·coli DNA连接酶只能将双链DNA片段互补的黏性末端之间连接起来,不能将双链DNA片段平末端之间进行连接。
而T4DNA连接酶即可以“缝合”双链DNA 片段互补的黏性末端,又可以“缝合”双链DNA片段的平末端,但连接平末端的效率比较低。
基因进入受体细胞的载体——“分子运输车”用什么方法才能将外源基因送入细胞中呢?通常是利用质粒作为载体,将基因送入细胞中。
质粒是一种裸露的,结构简单,独立于细菌拟核DNA之外,并具有自我复制能力的很小的双链环状DNA分子。
质粒DNA分子上有一个至多个限制酶切割位点,共外援DNA片段{基因}插入其中。
携带外源DNA片段的质粒进入受体细胞后,在细胞中进行自我复制,或整合到染色体DNA上,随染色体DNA进行同步复制。
质粒DNA分子上有特殊的标记基因如四环素抗性基因,安卡青霉素抗性基因等标记基因,供重组DNA的鉴定和选择。
在基因工程中使用的载体除质粒外,还有λ噬菌体的衍生物,动植物病毒等。
它们来源不同,在大小,结构,复制以插入片段大小也有很大差别。
这些基因工程载体的作用,就相当于一种一种运输工具,因此将它们比喻为“分子运输车”。
在进行基因工程操作中,真正被用作载体的质粒,都是在天然质粒的基础上进行过人工改造的。
基因工程的基本操作程序基因工程的基本操作程序主要包括四个步骤:目的基因的获取,基因表达载体的构建【核心】,将目的基因导入受体细胞,目的基因的检测与鉴定。
目的基因的获取获取目的基因是实施基因工程的第一步。
目的基因可以从自然界中已有的物种中分离出来,也可以用人工的方法合成。
目的基因主要是指编码蛋白质的基因,例如,与生物抗逆性相关的基因。
与优良品质相关的基因,与生物药物和保健品相关的基因,与毒物降解相关的基因,以及与工业所需用酶相关的基因等,也可以是一些具有调控作用的因子。
从基因文库中获取目的基因将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同基因。
称为基因文库。
基因文库很大,就像国家图书馆,这种基因文库叫做基因组文库。
也有一种基因文库很小就像某个市或某个单位的图书馆只包含一种生物的一部分基因,这种基因文库叫做部分基因文库,如cDNA文库利用PCR技术扩增目的基因PCR是多聚酶链式反应的缩写PCR的原理和做法并不难,它是利用DNA双链复制的原理将基因的核苷酸序列不断的加以复制,使其数量呈指数方程式增加。
利用PCR技术扩增目的基因的前提,是要有一段已知目的基因的核苷酸序列,以便根据这一序列合成引物。
扩增的过程是:目的基因DNA受热变性后解链为单链,引物与单链互补序列结合,然后在DNA聚合酶作用下进行延伸,如此重复循环物结合,因而每一次循环后目的基因的数量可以增加一倍,即成指数形式扩增,上述过程可以在PCR扩增仪中自动完成。
热稳定DNA聚合酶(Taq酶)①加热至90~95℃DNA解链②冷却至55~60℃引物结合到互补DNA链③加热值70~75℃Taq酶从引物起始进行互补链的合成。
此外,如果基因比较小,核苷酸序列又已知,也可以通过DNA合成仪用化学方法直接人工合成。
基因表达载体的构建基因表达载体的构建是实施基因工程的第二步,也是基因工程的核心。
其目的是使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时,使目的基因能够表达和发挥作用。
因此,一个基因表达载体的组成,除目的基因外,还必须有启动子,终止子以及标记基因等。
启动子是一段有特殊结构DNA片段,位于基因的末端,它是RNA聚合酶识别和结合的部位,有了它才能驱动基因转录出mRNA。
标记基因的作用是供重组DNA的鉴定和选择。
重组质粒:用同种限制酶分别切割目的基因和质粒,使之露出相同的黏性末端,再加入DNA 连接酶。
将目的基因导入受体细胞体细胞将目的基因导入受体细胞是实施基因工程的第三步目的基因进入受体细胞内,并在受体细胞内维持稳定和表达的过程,称为转化将目的基因导入植物细胞采用最多的方法是农杆菌转化法。
农杆菌是一种在土壤中生活的微生物能,能在自然条件感染双子叶植物和裸子植物,而大多数单子叶植物没有感染力。
当植物体受到受损伤时,伤口处的细胞会分密大量的酚类化合物,吸引农杆菌移向这些细胞,这时农杆菌中的Ti质粒上的T-DNA可转移至受体细胞,并且整合到受体细胞染色体的DNA 上。
根据脓杆菌的这种特点如果将目的基因插入到Ti质粒的T-DNA上通过农杆菌的转化作用,就可以使目的基因进入植物细胞,并将其插入到植物细胞中染色体的DNA上,使目的基因的遗传特性得意稳定维持和表达。
由于这种方法比较经济和有效,迄今为止,约80%的转基因植物都是通过这种方法获得的。
除此之外,还有基因枪法和花粉管通道法等。
(①基因枪法,又称微弹轰击法,是单子叶植物常用的一种基因转化方法,但是成本较高。
②花粉管通道法是我国独创,滴加含目的基因的DNA,使目的基因借助花粉管通道进入受体细胞,我国的转基因抗虫棉就是这种方法,简便经济)将目的基因导入动物细胞显微注射技术是转基因动物中采用最多,也是最为有效的一种方法。
基因的操作程序是:首先将含有目的基因的表达载体提纯,并使DNA浓度保持在1~3μg/mL;然后从雌性动物体内取出卵(卵可以在体内受精也可以在体外受精),采用显微注射仪进行显微注射;再将注射了目的基因的受精卵,经胚胎早期培养一段时间后,再移植到雌性动物的输卵管或子宫内,使其发育成具有新性状的动物。
将目的基因导入微生物细胞由于原核生物具有一些其他生物没有的特点:繁殖快,多为单细胞,遗传物质相对较少等,因此,早期的基因工程操作都用原核生物作为受体细胞,其中以大肠杆菌应用最为广泛。
大肠杆菌细胞最常用的转化方法是:首先用Ca+处理细胞,使细胞处于一种能吸收周围环境中DNA分子的生理状态,这种细胞成为感受态细胞,这种方法叫感受态法。
第二步是将重组表达载体DNA分子溶于缓冲液中与感受态细胞混合,在一定的温度下促进感受态细胞吸收DNA分子,完成转化过程。
目的基因的检测与鉴定目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。
这是基因工程的第四步工作,也是检查基因工程是否做成功的第一步。
首先,要检测转基因生物的DNA上是否插入了目的基因,者是目的基因能否在受体细胞中稳定遗传的关键。
检测方法是采用DNA分子杂交技术,即将转基因生物的基因组DNA提取出来,在含有的基因的DNA片段上用放射性同位素等做标记,以此作为探针,使探针与基因组织DNA杂交,如果显示出杂交带,就表明目的基因已插入染色体DNA中。
其次还需要检测目的基因是否转录出了mRNA,这是检测目的基因是否发挥功能作用的第一步。
检测方法同样采用分子杂交技术,与上述方法不同之处是是从转基因生物中提取的是mRNA,同样用标记的目的基因作探针,与mRNA杂交,如果显示出杂交带,则表明目的基因转录出了mRNA。
最后,检测目的基因是否翻译成蛋白质。
检测方法与上述方法有所不同,是从转基因中提取蛋白质,用相应的抗体进行抗原一抗体杂交,若有杂交带出现,表明目的基因已形成蛋白质产品。
除了上述的分子检测外,有时还需进行个体生物学水平的鉴定。
例如,一个抗虫或抗病的目的基因倒入植物细胞后,是否赋予了植物抗虫或抗病特性,需要做抗虫或抗病的接种实验,已确定是否具有抗性,以及抗性的程度。
又如有的基因工程产品需要与天然产品的功能进行活性比较,已确定转基因的功能活性是否与天然产品相同。