中考压轴一次函数注水问题

合集下载

2020年全国数学中考试题精选50题(6)——一次函数及其应用

2020年全国数学中考试题精选50题(6)——一次函数及其应用

2020年全国数学中考试题精选50题(6)——一次函数及其应用一、单选题1.(2020·自贡)函数与的图象如图所示,则的大致图象为()A. B. C. D.2.(2020·达县)如图,直线与抛物线交于A、B两点,则的图象可能是()A. B. C. D.3.(2020·济宁)数形结合是解决数学问题常用的思思方法.如图,直线y=x+5和直线y=ax+b,相交于点P ,根据图象可知,方程x+5=ax+b的解是()A. x=20B. x=5C. x=25D. x=154.(2020·菏泽)一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B.C. D.5.(2020·德州)函数和在同一平面直角坐标系中的大致图象可能是()A. B. C. D.6.(2020·江西)在平面直角坐标系中,点O为坐标原点,抛物线与轴交于点A,与x 轴正半轴交于点B,连接,将向右上方平移,得到,且点,落在抛物线的对称轴上,点落在抛物线上,则直线的表达式为()A. B. C. D.7.(2020·湘西州)已知正比例函数的图象与反比例函数的图象相交于点,下列说法正确的是()A. 正比例函数的解析式是B. 两个函数图象的另一交点坐标为C. 正比例函数与反比例函数都随x的增大而增大D. 当或时,8.(2020·湘潭)如图,直线经过点,当时,则x的取值范围为()A. B. C. D.9.(2020·北京)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系10.(2020·安徽)已知一次函数的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A. B. C. D.11.(2020·陕西)在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A. 2B. 3C. 4D. 6二、填空题12.(2020·南京)将一次函数的图象绕原点O逆时针旋转,所得到的图像对应的函数表达式是________.13.(2020·达县)已知k为正整数,无论k取何值,直线与直线都交于一个固定的点,这个点的坐标是________;记直线和与x轴围成的三角形面积为,则________,的值为________.14.(2020·临沂)点和点在直线上,则m与n的大小关系是________.15.(2020·德州)在平面直角坐标系中,点A的坐标是,以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为.若点恰在某一反比例函数图象上,则该反比例函数的解析式为________.16.(2020·北京)在平面直角坐标系中,直线与双曲线交于A,B两点.若点A,B 的纵坐标分别为,则的值为________.三、综合题17.(2020·自贡)甲、乙两家商场平时以同样价格出售相同的商品,新冠疫情期间,为了减少库存,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数关系式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?18.(2020·重庆A)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=性质及其应用的部分过程,请按要求完成下列各小题.x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y=…﹣﹣﹣﹣3 0 3 …(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.(3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式>2x﹣1的解集(保留1位小数,误差不超过0.2).19.(2020·南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示,求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂在第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)20.(2020·荆州)为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨,这批防疫物资将运往A地240吨,B地260吨,运费如下:(单位:吨)(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低m元,(且m为整数),按(2)中设计的调运方案运输,总运费不超过5200元,求m的最小值.21.(2020·无锡)在平面直角坐标系中,O为坐标原点,直线交二次函数的图像于点A,,点在该二次函数的图像上,设过点(其中)且平行于轴的直线交直线于点M,交直线于点N,以线段、为邻边作矩形.(1)若点A的横坐标为8.①用含m的代数式表示M的坐标;②点能否落在该二次函数的图像上?若能,求出m的值;若不能,请说明理由;(2)当时,若点恰好落在该二次函数的图像上,请直接写出此时满足条件的所有直线的函数表达式.22.(2020·苏州)某商店代理销售一种水果,六月份的销售利润y(元)与销售量之间函数关系的图像如图中折线所示.请你根据图像及这种水果的相关销售记录提供的信息,解答下列问题:日期销售记录6月1日库存,成本价8元/ ,售价10元/ (除了促销降价,其他时间售价保持不变). 6月9日从6月1日至今,一共售出.6月10、11日这两天以成本价促销,之后售价恢复到10元/ .6月12日补充进货,成本价8.5元/ .6月30日水果全部售完,一共获利1200元.(2)求图像中线段所在直线对应的函数表达式.23.(2020·连云港)如图,在平面直角坐标系中,反比例函数的图像经过点,点B在y轴的负半轴上,交x轴于点C,C为线段的中点.(1)________,点的坐标为________;(2)若点D为线段上的一个动点,过点D作轴,交反比例函数图像于点E,求面积的最大值.24.(2020·鄂州)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有x(元/件) 4 5 6y(件)10000 9500 9000(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.25.(2020·河南)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;设某学生暑期健身x(次),按照方案一所需费用为,(元),且;按照方案二所需费用为(元) ,且其函数图象如图所示.(1)求和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.26.(2020·安顺)如图,一次函数的图象与反比例函数的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数的图象向下平移2个单位,求平移后的图象与反比例函数图象的交点坐标;(3)直接写出一个一次函数,使其过点,且与反比例函数的图象没有公共点.27.(2020·遂宁)如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB ,以AB为边在第一象限内作正方形ABCD ,直线BD交双曲线y═ (k≠0)于D、E两点,连结CE ,交x轴于点F .(1)求双曲线y=(k≠0)和直线DE的解析式.(2)求的面积.28.(2020·泸县)如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象相交于A ,B两点.且点A的坐标为.(1)求该一次函数的解析式;(2)求的面积.29.(2020·广元)某网店正在热销一款电子产品,其成本为10元/件,销售中发现,该商品每天的销售量y (件)与销售单价x(元/件)之间存在如图所示的关系:(1)请求出y与x之间的函数关系式;(2)该款电子产品的销售单价为多少元时,每天销售利润最大?最大利润是多少元;(3)由于武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出300元捐赠给武汉,为了保证捐款后每天剩余利润不低于450元,如何确定该款电子产品的销售单价?30.(2020·甘孜)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.(1)求k ,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.31.(2020·枣庄)如图,抛物线交x轴于,两点,与y轴交于点C ,AC ,BC .M为线段OB上的一个动点,过点M作轴,交抛物线于点P ,交BC于点Q .(1)求抛物线的表达式;(2)过点P作,垂足为点N .设M点的坐标为,请用含m的代数式表示线段PN 的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.32.(2020·潍坊)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)33.(2020·泰安)如图,已知一次函数的图象与反比例函数的图象交于点,点.(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C ,点D为点C关于原点O的对称点,求的面积.34.(2020·青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变,同时打开甲、乙两个进水口注水,游泳池的蓄水量与注水时间之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量与注水时间之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?35.(2020·聊城)今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.36.(2020·聊城)如图,已知反比例函数的图象与直线相交于点,.(1)求出直线的表达式;(2)在x轴上有一点使得的面积为18,求出点P的坐标.37.(2020·济宁)在△ABC中.BC边的长为x,BC边上的高为y,△ABC的面积为2.(1)y关于x的函数关系式是________,x的取值范围是________;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.38.(2020·菏泽)如图,一次函数的图象与反比例函数的图象相交于,两点.(1)求一次函数和反比例函数的表达式;(2)直线交x轴于点C,点P是x轴上的点,若的面积是,求点P的坐标.39.(2020·岳阳)如图,一次函数的图象与反比例函数(为常数且)的图象相交于,B两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求b的值.40.(2020·湘潭)如图,在平面直角坐标系中,点O为坐标原点,菱形的顶点A的坐标为.(1)求过点B的反比例函数的解析式;(2)连接,过点B作交x轴于点D,求直线的解析式.41.(2020·怀化)某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.(1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.42.(2020·常德)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.43.(2020·龙东)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)44.(2020·福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.45.(2020·北京)在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.46.(2020·安徽)在平而直角坐标系中,已知点,直线经过点A.抛物线恰好经过三点中的两点.(1)判断点B是否在直线上.并说明理由;(2)求的值;(3)平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值.47.(2020·攀枝花)如图,过直线上一点作轴于点D,线段交函数的图像于点C,点C为线段的中点,点C关于直线的对称点的坐标为.(1)求k、m的值;(2)求直线与函数图像的交点坐标;(3)直接写出不等式的解集.48.(2020·河北)表格中的两组对应值满足一次函数 ,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线x -1 0 y -2 1(1)求直线l 的解析式;(2)请在图上画出..直线 (不要求列表计算),并求直线 被直线l 和y 轴所截线段的长;(3)设直线 与直线l , 及 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值.49.(2020·牡丹江)在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是________千米1时,B ,C 两地的路程为________千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.50.(2020·陕西)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?答案解析部分一、单选题1.【答案】D【解析】【解答】解:∵反比函数过一三象限,∴,由二次函数开口向下可得,又二次函数的对称轴,∴,∴同号,∴,∴∴一次函数经过第一、二、三象限,故答案为D.【分析】根据反比例函数过一、三象限可确定出k的符号,根据二次函数图像的对称轴可以确定出a,b的符号,进而求解.2.【答案】B【解析】【解答】解:由题图像得中k>0,中a<0,b<0,c<0,∴b-k<0,∴函数对称轴x= <0,交x轴于负半轴,∴当时,即,移项得方程,∵直线与抛物线有两个交点,∴方程有两个不等的解,即与x轴有两个交点,根据函数对称轴交x轴负半轴且函数图像与x轴有两个交点,∴可判断B符合题意.故答案为:B【分析】根据题目所给的图像,首先判断中k>0,其次判断中a<0,b<0,c <0,再根据k、b、的符号判断中b-k<0,又a<0,c<0可判断出图像.3.【答案】A【解析】【解答】解:由图可知:直线y=x+5和直线y=ax+b交于点P(20,25),∴方程x+5=ax+b的解为x=20.故答案为:A.【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.4.【答案】B【解析】【解答】解:A、∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,A不符合题意;B、∵二次函数图象开口向上,对称轴在y轴左侧,∴a>0,b>0,∴一次函数图象应该过第一、二、三象限,B符合题意;C、∵二次函数图象开口向下,对称轴在y轴右侧,∴a<0,b>0,∴一次函数图象应该过第一、二、四象限,C不符合题意;D、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,D不符合题意.故答案为:B.【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.5.【答案】D【解析】【解答】∵反比例函数和一次函数∴当时,函数在第一、三象限,一次函数经过一、二、四象限,A、B不符合题意,选项D符合题意;当时,函数在第二、四象限,一次函数经过一、二、三象限,C不符合题意,故答案为:D.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断各个选项中的函数图象是否正确,从而可以解答本题.6.【答案】B【解析】【解答】解:当y=0时,,解得x1=-1,x2=3,当x=0时,y=-3,∴A(0,-3),B(3,0),对称轴为直线,经过平移,落在抛物线的对称轴上,点落在抛物线上,∴三角形向右平移1个单位,即B′的横坐标为3+1=4,当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形向上平移5个单位,此时A′(0+1,-3+5),∴A′(1,2),设直线的表达式为y=kx+b,代入A′(1,2),B′(4,5),可得解得:,故直线的表达式为,故答案为:B.【分析】先求出A、B两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解.7.【答案】D【解析】【解答】解:根据正比例函数的图象与反比例函数的图象相交于点,即可设,,将分别代入,求得,,即正比例函数,反比例函数,故A不符合题意;另一个交点与关于原点对称,即,故B不符合题意;正比例函数随x的增大而减小,而反比例函数在第二、四象限的每一个象限内y均随x 的增大而增大,故C不符合题意;根据图像性质,当或时,反比例函数均在正比例函数的下方,故D符合题意.故答案为:D.【分析】根据两个函数图像的交点,可以分别求得两个函数的解析式和,可判断A不符合题意;两个函数的两个交点关于原点对称,可判断B不符合题意,再根据正比例函数与反比例函数图像的性质,可判断C不符合题意,D符合题意,即可选出答案.8.【答案】A【解析】【解答】解:由题意将代入,可得,即,整理得,,∴,由图像可知,∴,∴,故答案为:A .【分析】将代入,可得,再将变形整理,得,求解即可.9.【答案】B【解析】【解答】解:设水面高度为注水时间为t分钟,则由题意得:所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故答案为:B.【分析】设水面高度为注水时间为分钟,根据题意写出h与t的函数关系式,从而可得答案.10.【答案】B【解析】【解答】∵一次函数的函数值y随x的增大而减小,∴k﹤0,A.当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B.当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C.当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D.当x=3,y=4时,3k+3=4,解得k= ﹥0,此选项不符合题意,故答案为:B.【分析】先根据一次函数的增减性判断出k的符号,再将各项坐标代入解析式进行逐一判断即可.11.【答案】B【解析】【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积=3×2=3,故答案为:B.【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.二、填空题12.【答案】【解析】【解答】∵一次函数的解析式为,∴设与x轴、y轴的交点坐标为、,∵一次函数的图象绕原点逆时针旋转,∴旋转后得到的图象与原图象垂直,旋转后的点为、,令,代入点得,,∴旋转后一次函数解析式为.故答案为.【分析】根据一次函数互相垂直时系数之积等于-1,进而得出答案;13.【答案】(-1,1);;【解析】【解答】解:联立直线与直线成方程组,,解得,∴这两条直线都交于一个固定的点,这个点的坐标是;∵直线与x轴的交点为,直线与x轴的交点为,∴,∴,故答案为:;;【分析】联立直线和成方程组,通过解方程组,即可得到交点坐标;分别表示出直线和与x轴的交点,求得交点坐标即可得到三角形的边长与高,根据三角形面积公式进行列式并化简,即可得到直线和与x轴围成的三角形面积为的表达式,从而可得到和,再依据分数的运算方法即可得解.14.【答案】m<n【解析】【解答】解:∵直线中,k=2>0,∴此函数y随着x的增大而增大,∵<2,∴m<n.故答案为:m<n.【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.15.【答案】【解析】【解答】∵以原点O为位似中心,将线段OA放大为原来的2倍,得到OA',A(-2,1),∴点A的对应点A′的坐标是:(-4,2)或(4,-2).设反比例函数的解析式为( ),∴,∴反比例函数的解析式为:.故答案为:.【分析】直接利用位似图形的性质以及结合A点坐标直接得出点A′的坐标.利用待定系数法即可求得反比例函数的解析式.16.【答案】0【解析】【解答】解:∵正比例函数和反比例函数均关于坐标原点O对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴,故答案为:0.【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.三、综合题17.【答案】(1)解:由题意可得,,当时,,当时,,由上可得,;(2)解:由题意可知,当购买商品原价小于等于100时,甲商场打9折,乙商场不打折,所以甲商场购物更加划算;当购买商品原价超过100元时,若,即此时甲商场花费更低,购物选择甲商场;若,即,此时甲乙商场购物花费一样;若,即时,此时乙商场花费更低,购物选择乙商场;综上所述:当购买商品原价金额小于200时,选择甲商场更划算;当购买商品原价金额等于200时,选择甲商场和乙商场购物一样划算;当购买商品原价金额大于200时,选择乙商场更划算.【解析】【分析】(1)根据题意,可以分别写出两家商场对应的关于的函数解析式;(2)根据(1)中函数关系式,可以得到相应的不等式,从而可以得到新冠疫情期间如何选择这两家商场去购物更省钱.18.【答案】(1)解:补充完整下表为:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y=…﹣﹣﹣﹣﹣3 0 3 …(2)解:根据函数图象:①该函数图象是轴对称图形,它的对称轴为y轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3,说法正确;③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大,说法正确.(3)解:由图象可知:不等式>2x﹣1的解集为x<﹣1或﹣0.3<1.8.【解析】【分析】(1)把x=±3代入解析式即可求解;描点,连接成平滑的曲线即可;(2)观察图象,由图象的增减性和对称性可判断;(3)观察图象可得.19.【答案】(1)解:由图可知,当时,当时,z是关于x的一次函数,设则,得,即∴关于的函数解析式为(2)解:设第x个生产周期工厂创造的利润为W万元①时,。

中考数学 精讲篇 考点系统复习 第三章 函数 第二节 一次函数 课时2 一次函数的实际应用

中考数学 精讲篇 考点系统复习 第三章 函数 第二节 一次函数 课时2 一次函数的实际应用

(1)写出 y 与 x 之间的函数解析式; 解:由题意可得,当 0≤x≤20 时,y=2x, 当 x>20 时,y=20×2+(x-20)×2.6=2.6x-12,
2x(0≤x≤20), 综上可得,y=2.6x-12(x>20).
(2)小明家第二季度交纳水费的情况如下: 月份 四月份 五月份
交费金额 30 元 34 元 小明家这个季度共用水多少立方米?
(2)图象型:提取两个满足题意的点的坐标利用待定系数法求解. 注:若为分段函数,需分段求解,并写出各段自变量的取值范围.
设问二:求最值 (1)利用不等式确定自变量的取值范围; (2)自变量的端点处可能为最值; (3)根据一次函数的增减性确定最值. 注:最优方案本质也是求解最值的问题.
设问三:方案设计 (1)方案个数:根据限定的自变量取值范围,自变量取到几个值,就有几 种方案; (2)两种方案比较:根据解析式分类讨论,比较两个方案在不同取值下的 最优结果.
解:(1)甲书店:y=0.8x(x>0). 乙书店:当 0<x≤100 时,y=x.
当 x>100 时,y=100+0.6(x-100)=0.6x+40. x(0<x≤100),
∴y=0.6x+40(x>100).
(2)当 0<x≤100 时,选择甲书店可以享受优惠,而选择乙书店不会优惠.因 此选择甲书店购书更省钱. 当 x>100 时, 若 0.8x>0.6x+40,即 x>200,则选择乙书店购书更省钱. 若 0.8x=0.6x+40,即 x=200,则选择甲、乙两书店购书花费相同. 若 0.8x<0.6x+40,即 x<200,则选择甲书店购书更省钱. 综上所述,当 0<x<200 时,选择甲书店购书更省钱;当 x=200 时,选择 甲、乙两书店购书花费相同;当 x>200 时,选择乙书店购书更省钱.

与一次函数、反比例函数、二次函数有关问题的压轴题之五大题型(解析版)--2024年中考数学满分压轴题

与一次函数、反比例函数、二次函数有关问题的压轴题之五大题型(解析版)--2024年中考数学满分压轴题

与一次函数、反比例函数、二次函数有关问题的压轴题之五大题型目录【题型一 一次函数实际应用问题】【题型二 二次函数的实际应用问题】【题型三 一次函数与反比例函数综合问题】【题型四 二次函数的综合问题】【题型五 一次函数、反比例函数、二次函数综合问题】【题型一一次函数实际应用问题】1(2023·江苏南京·三模)A、B两地相距120km,甲车从A地驶往B地,乙车从B地以80km/h的速度匀速驶往A地,乙车比甲车晚出发mh.设甲车行驶的时间为x h ,甲、乙两车离A地的距离分别为y1km、y2 km,图中线段OP表示y1与x的函数关系.(1)甲车的速度为km/h;(2)若两车同时到达目的地,在图中画出y2与x的函数图像,并求甲车行驶几小时后与乙车相遇;(3)若甲、乙两车在距A地60km至72km之间的某处相遇,直接写出m的范围.【答案】(1)60(2)图象见解析,甲车出发后87h与乙车相遇;(3)14<m<35【分析】(1)根据路程除以时间即可得到甲车的速度;(2)求出乙车比甲车晚出发0.5h,即可画出图象,再求出y1=60x,y2=-80x+160,联立解析式解方程组即可得到答案;(3)求得y1=60x,y2=-80x+120+80m,联立解方程组可得y1=y2=6067+4 7m,根据甲、乙两车在距A地60km至72km之间的某处相遇,可列60<6067+4 7m<72,即可解得答案.【详解】(1)解:由图可得,甲车的速度为120÷2=60km/h,故答案为:60;(2)解:∵乙车从B地以80km/h的速度匀速驶往A地,两车同时到达目的地,∴乙车行驶时间为120÷80=1.5h ,∵m=2-1.5=0.5h ,∴乙车比甲车晚出发0.5h,画出y2与x的函数图象如下:图象CD即为y2与x的函数图象,由题意得y1=60x,设CD的函数表达式为y2=kx+b,将2,0,0.5,120代入y2=kx+b,得2k+b=00.5k+b=120 ,解得k=-80 b=160 ,∴y2=-80x+160,由-80x+160=60x,解得x=8 7,∴甲车出发后87h与乙车相遇,答:甲车出发后87h与乙车相遇;(3)解:根据题意得y1=60x,y2=120-80x-m=-80x+120+80m,由60x=-80x+120+80m得:x=67+47m,当x=67+47m时,y1=y2=6067+47m,∵甲、乙两车在距A地60km至72km之间的某处相遇,∴60<6067+4 7m<72,解得14<m<35,∴m的范围是14<m<35.【点睛】本题考查一次函数的应用,解一元一次不等式组,涉及待定系数法,解题的关键是数形结合的应用.【变式训练】1(2023·江苏南京·三模)甲、乙两车从A地驶往B地,甲车出发1小时后,乙车出发,乙车出发1.5小时追上甲.甲、乙两车离B地的距离y1,y2(单位:km)与甲出发的时间x(单位:h)的图像如图①所示.(1)乙车的速度为km/h;a=(2)求y1与x之间的函数表达式;(3)在图②中画出甲、乙两车之间的距离s(单位:km)与甲车出发的时间x(单位:h)之间的函数图像.【答案】(1)100;5(2)y1=-60x+300(3)见解析【分析】(1)用路程除以时间求出乙车的速度即可;根据乙车追上甲车时,乙车通过的距离,求出甲车的速度,然后用总路程除以甲车速度得出甲车到达B地所用时间,即可求出a的值;(2)用待定系数法求出y1与x之间的函数表达式即可;(3)分四段画出甲、乙两车之间的距离s与甲车出发的时间x之间的函数图像即可.【详解】(1)解:乙车的速度为3004-1=100km/h;乙车追上甲车时,乙车通过的距离为:100×1.5=150km,此时甲车通过的距离为150km,甲车的速度为:150 2.5=60km/h,则a=30060=5;故答案为:100;5.(2)解:设y1与x之间的函数表达式为y1=kx+b k≠0,把0,300,5,0代入得:b=300 5k+b=0,解得:k=-60 b=300,∴y1与x之间的函数表达式为y1=-60x+300.(3)解:当0≤x<1时,两车之间的距离逐渐增大,当x=1时,两车之间的距离s=60;当1<x≤2.5时,两车之间的距离逐渐减小,当x=2.5时,两车之间的距离为s=0;当2.5<x≤4时,两车之间的距离逐渐增大,当x=4时,两车之间的距离为s=100-60×4-2.5= 60;当4<x≤5时,两车之间的距离逐渐减小,当x=5时,两车之间的距离为s=0;∴函数图象如图所示:【点睛】本题主要考查了一次函数的应用,根据函数图像获得信息,求一次函数解析式,解题的关键是数形结合,注意分类.2(2023·江苏南京·二模)小明早晨从家里出发匀速步行去上学,中途没有停下来,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t 分钟时,他所在的位置与家的距离为s 千米,且s 与t 之间的函数关系的图象如图中的折线段OA -AB 所示.(1)试求线段OA 所对应的函数关系式;(2)请解释图中线段AB 的实际意义;(3)请在所给的图中画出小明的妈妈在追赶小明的过中,她所在位置与家的距离s (千米)与小明出发后的时间t (分钟)之间函数关系的图象.(注:请标注出必要的数据)【答案】(1)s =112t (0≤t ≤12)(2)小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟(3)见解析【分析】(1)待定系数求线段解析式即可求解;(2)根据题意,结合图象即可求解;(3)根据题意可得小明妈妈的速度是小明的2倍,进而补充函数关系图象,即可求解.【详解】(1)解:设线段OA 的解析式为y =kx ,将点12,1 代入,1=12k解得:k =112线段OA 对应的函数关系式为:s =112t (0≤t ≤12);(2)图中线段AB 的实际意义是:小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟;(3)由图象可知,小明花20分钟到达学校,则小明的妈妈花20-10=10分钟到达学校,∴小明妈妈的速度是小明的2倍,即:小明花12分钟走1千米,则妈妈花6分钟走1千米,又∵小明的妈妈在小明出发后10分钟出发,∴函数图象为经过点10,0,16,1的一段线段,如图所示,【点睛】本题考查了从函数图象获取信息,求直线解析式,从函数图象获取信息是解题的关键.3(2023·江苏南京·一模)如图①,古代行军中传令兵负责传送命令.如图②,一支长度为600m的队伍AB,排尾A处的传令兵从甲地和队伍AB沿同一直道同时出发.队伍AB以v1m/min的速度行进,且队伍长度保持不变;出发时,传令兵接到命令,立即以v2m/min的速度赶赴排头B,到达排头B后立即返回排尾A,再次接到命令,立即赶赴排头B⋯⋯如此循环往复,且传令兵往返速度保持不变.行进过程中,传令兵离甲地的距离y1(单位:m)与出发时间x(单位:min)之间的函数关系部分图象如图③所示.(1)v1=m/min,v2=m/min;(2)求线段MN所表示的y1与x之间的函数表达式;(3)在图③中,画出排头B离甲地的距离y2(单位:m)与出发时间x之间的函数图象【答案】(1)75;125(2)y1=-125x+300012≤x≤15(3)见解析【分析】(1)由函数图象可知在第12分钟时传令兵到达排头B,此时传令兵比队伍多走600米,在第15分钟传令兵此时返回到排尾A,3分钟内队伍和传令兵的路程和为600米,由此建立方程组求解即可;(2)先求出M、N的坐标,再利用待定系数法求解即可;(3)y2(单位:m)与出发时间x之间的函数图象过图中两个拐点(点M和与点M类似的那个点),由此画图即可.【详解】(1)解:12v2-v1=60015-12v2+v1=600,解得v1=75v2=125,故答案为:75;125;(2)解:125×12=1500,∴点M的坐标为12,1500,1500-125×3=1125,∴点N的坐标为15,1125,线段MN所表示的y1与x之间的函数表达式为y1=kx+b,∴12k+b=1500 15k+b=1125 ,∴k=-125 b=3000 ,∴段MN所表示的y1与x之间的函数表达式为y1=-125x+300012≤x≤15;(3)解:y2与x之间的函数图象如图所示.【点睛】本题主要考查了一次函数的实际应用,二元一次方程组的实际应用,正确读懂函数图象是解题的关键.4(2023·江苏南京·一模)如图①,小明家,妈妈的单位和超市在一条直线上,一天傍晚,小明从家步行去超市,与此同时妈妈从单位骑行回家拿东西,再以相同的速度骑行去超市.如图②,线段OD和折线ABCD 分别表示小明和妈妈离家的距离y(m)与出发时间x(min)的关系.(1)小明步行的速度是m min,妈妈的单位距离超市m;(2)求线段CD所表示的y与x之间的函数表达式;(3)当x=时,小明与妈妈相距400m.【答案】(1)100;800(2)y=200x-1400(7≤x≤14)(3)23或4或10【分析】(1)根据图示数据解答;(2)设解析式后,根据图示把(7,0),(14,1400)代入求出即可;(3)根据题意知,小明与妈妈相距400m 有三次,利用列方程分别求出即可.【详解】(1)解:由图可知:小明步行的速度是1400÷14=100m min ,妈妈的单位距离超市1400-600=800m ;故答案为:100;800.(2)解:设线段 CD 所表示的函数表达式为: y =kx +b (k ≠0),把(7,0),(14,1400)代入 y =kx +b (k ≠0)得:7k +b =014k +b =1400解得:k =200,b =-1400,线段 CD 所表示的函数表达式为:y =200x -1400(7≤x ≤14).(3)由图示知,小明妈妈从单位骑行回家拿东西共用时间是3min ,小明妈妈从单位骑行速度是:600÷3=200m min 当小明妈妈从单位骑行回家拿东西时,小明与妈妈相距400m ,由题意列方程为:100x +200x =600-400,解得:x =23;当小明妈妈回家拿东西并在家停留4min 时,小明与妈妈相距400m ,此时x =4;当小明妈妈回家拿东西后再以相同的速度骑行去超市时,由题意列方程为:100x -(200x -1400)=400,解得: x =10,综上所述:x =23或4或10时,小明与妈妈相距400m .故答案为:23或4或10.【点睛】本题考查了一次函数的应用,解题的关键是从图象中获取信息,利用数形结合的思想解答.【题型二二次函数的实际应用问题】1(2023·江苏南京·二模)某水果店出售一种水果,每箱定价58元时,每周可卖出300箱.试销发现:每箱水果每降价1元,每周可多卖出25箱;每涨价1元,每周将少卖出10箱.已知每箱水果的进价为35元,每周每箱水果的平均损耗费为3元.(1)若不进行价格调整,这种水果的每周销售利润为多少元?(2)根据以上信息,你认为应当如何定价才能使这种水果的每周销售利润最多?【答案】(1)若不进行价格调整,这种水果每周销售利润为6000元;(2)当每箱水果定价为54元时,这种水果的每周销售利润最大为6400元.【分析】(1)根据已知列式计算即可;(2)分两种情况:若每箱水果降价x 元,这种水果的每周销售利润为y 元,可得:y =(58-35-3-x )(300+25x )=-25(x -4)2+6400,若每箱水果涨价x '元,这种水果的每周销售利润为y '元,有y '=(58-35-3+x ')(300-10x ')=-10(x '-5)2+6250,由二次函数性质可得答案.【详解】(1)解:∵58-35-3=20,20×300=6000(元),∴若不进行价格调整,这种水果每周销售利润为6000元;(2)若每箱水果降价x元,这种水果的每周销售利润为y元,根据题意得:y=(58-35-3-x)(300+25x)=-25(x-4)2+6400,由二次函数性质可知,当x=4时,y的最大值为6400元;若每箱水果涨价x'元,这种水果的每周销售利润为y'元,根据题意得:y'=(58-35-3+x')(300-10x')=-10(x'-5)2+6250,由二次函数性质可知,当x'=5时,y'的最大值为6250元;综上所述,当每箱水果定价为54元时,这种水果的每周销售利润最大为6400元.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,分情况列出函数关系式.【变式训练】1(22-23九年级上·天津和平·阶段练习)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售。

专题01 一次函数 压轴题(十大题型)(原卷版)

专题01 一次函数 压轴题(十大题型)(原卷版)

(1)OC 的长为______,OD 的长为______;(2)如图,点()1,M a -是线段CD 上一点,连接OM ,作ON 并判断MON △的形状;(3)如备用图,若点()1,E b 为直线AB 上的点,点P 为y 轴上的点,是以点E 为直角顶点的等腰直角三角形,若存在,请求出此时(1)求直线CD 的函数表达式和点D 的坐标;(2)点P 为线段DE 上的一个动点,连接BP .①若直线BP 将ACD 的面积分为7:9两部分,试求点②点P 是否存在某个位置,将BPD △沿着直线BP 翻折,使得点在,请直接写出点P 的坐标;若不存在,请说明理由.题型2:取值范围问题(1)求点A 的坐标;(2)若点C 在第二象限,ACD ①求点C 的坐标;②直接写出不等式组4x kx +>③将CAD 沿x 轴平移,点C(1)求点C 的坐标及直线BC 的表达式;(2)在点E 运动的过程中,若△DEF 的面积为5,求此时点(3)设点E 的坐标为(0,m );①用m 表示点F 的坐标;②在点E 运动的过程中,若△DEF 始终在△ABC 的内部(包括边界)题型3:最值问题5.已知一次函数()134502y kx k k =++≠.的坐标为(),a a ,求CM MP +的最小值.6.如图1,在平面直角坐标系xoy 中,直线1:1l y x =+与x 轴交于点A ,直线2:33l y x =-与x 轴交于点B ,与1l 相交于C 点,过x 轴上动点(),0E t 作直线3l x ⊥轴分别与直线1l 、2l 交于P 、Q 两点.(1)①请直接写出点A ,点B ,点C 的坐标:A ______,B ______,C ______.②若2PQ =,求t 的值;(2)如图2,若E 为线段AB 上动点,过点P 作直线PF PQ ⊥交直线2l 于点F ,求当t 为何值时,PQ PF -最大,并求这个最大值.题型4:旋转问题7.如图1,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象交y 轴于点()0,1A -,交x 轴交于点B ,且2OB OC OA ==,过点C 作y 轴的垂线,交直线AB 于点D .(1)求点D 的坐标;(2)点E 是线段CD 上一动点,直线BE 与y 轴交于点F .①若BDF V 的面积为8,求点F 的坐标;②如图2,当点F 在y 轴正半轴上时,将直线BF 绕点B 顺时针旋转45︒后的直线与线段CD 交于点M ,连接FM ,若1OF MF =+,求线段MF 的长.备用图(1)求直线1l 的表达式;(2)过M 作y 轴的平行线,分别交直线1l ,直线2l 于点D ,E ,连接DE ,①当3m =时,求DE 的长;(1)求n 的值及直线2l 的表达式;(2)在直线2l 上是否存在点E ,使BO ABE A S S =△△若存在,则求出点(3)如图2,点P 为线段AD 上的一个动点,一动点H(1)求直线AB 的表达式;(2)由图象直接写出关于x 的不等式102x kx b <<+的解集;(3)如图②所示,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt BPM 直线MA 交y 轴于点Q .当点P 在x 轴上运动时,线段OQ 的长度是否发生变化?若不变,求出线段长度;若变化,求线段OQ 的取值范围.题型6:定值问题11.如图1所示,直线l :10y mx m =+与x 轴负半轴、y 轴正半轴分别交于(1)若点D坐标为(12,3).①求直线BC的函数关系式;②若Q为RS中点,求点P坐标.(2)在点P运动的过程中,PQCR的值是否变化?若不变,求出该值;若变化,请说明理由.题型7:新定义题型13.函数图象是研究函数的重要工具,类比一次函数的学习,表是探究过程中的部分信息:x…2-1-01232y x=-…4a2-14(1)a的值为______;(2)在图中画出该函数的图象;(3)结合函数的图象,解决下列问题:①下列说法正确的是:______.(填所有正确选项)A.函数图像关于x轴对称x=时,函数有最小值,最小值为B.当0x>时,y随x的增大而增大C.当0③若12x -≤≤,则y 的取值范围为【拓展提升】18.对于两个不同的函数,通过加法运算可以得到一个新函数,我们把这个新函数称为两个函数的数”.例如:对于函数12y x =和231y x =-,则函数1y ,2y 的“和函数”3y =(1)已知函数1y x =和2=y ①写出3y 的表达式,并求出当②函数1y ,2y 的图象如图①所示,则....(2)已知函数4y x =和5y =,这两个函数的“和函数”记为6y .按照上图的速度步行前往学校,记录下小东10天到达学校所用的时间,如表.上学日期4号5号6号7号8号11号到达学校所用时间(单位:min)2524.825.324.925.124.8某天早上7:20,小东按照上表的速度步行上学.t(0<t≤10)分钟后,小明骑自行车以从小区出发,沿着相同的路线上学.骑行7分钟后,自行车因零件损坏无法继续骑行,小明只好将自行车停在路边非机动车停靠点(停车时间忽略不计),改用步行前往学校.为了赶时间,小明的步行速度不小于。

上海上海中学数学初中九年级一次函数易错题压轴难题专项综合训练

上海上海中学数学初中九年级一次函数易错题压轴难题专项综合训练

上海上海中学数学初中九年级一次函数易错题压轴难题专项综合训练一、易错压轴选择题精选:一次函数选择题1.如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .2.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y(升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个 3.下列函数中y 随x 的增大而增大,且图象与x 轴交点在y 轴左侧的是( ) A .21y x =-B .21y x =+C .21y x =-+D .21y x =-- 4.函数y=kx+b (k 、b 为常数,k≠0)的图象如图,则关于x 的不等式kx+b >0的解集为( )A .x >0B .x <0C .x <2D .x >25.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,每min 的进水量和出水量是两个常数.容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示.根据图象提供的信息,则下列结论错误的是( )A .第4min 时,容器内的水量为20LB .每min 进水量为5LC .每min 出水量为1.25LD .第8min 时,容器内的水量为25L6.如图,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动到点A 停止,设点P 运动路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,则矩形ABCD 的面积是( )A .10B .16C .20D .367.一次函数y mx n =-+22()m n n -所得的结果是( )A .mB .m -C .2m n -D .2m n - 8.关于直线1y x =-+的说法正确的是() A .图像经过第二、三、四象限 B .与x 轴交于()1,0C .与y 轴交于()1,0-D .y 随x 增大而增大 9.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家.如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2km C .小明吃早餐用了30min ,读报用了17min D .小明从图书馆回家的平均速度为0.08km/min10.如图,直线y=-x+2分别交x 轴、y 轴于点A ,B ,点D 在BA 的延长线上,OD 的垂直平分线交线段AB 于点C .若△OBC 和△OAD 的周长相等,则OD 的长是( )A .2B .22C .522D .411.如图,若直线y=kx+b 与x 轴交于点A (-4,0),与y 轴正半轴交于B ,且△OAB 的面积为4,则该直线的解析式为( )A .y=12x+2B .y=2x+2C .y=4x+4D .y=14x+4 12.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 13.如图,直线3y kx =+经过点(2,0),则关于x 的不等式30kx +≥的解集是( )A .2x >B .2x <C .2x ≥D .2x ≤ 14.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+615.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( )A .B .C .D . 16.函数3x y +=中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠17.已知平面上点O (0,0),A (3,2),B (4,0),直线y =mx ﹣3m +2将△OAB 分成面积相等的的两部分,则m 的值为( )A .1B .2C .3D .﹣118.如图①,点P 为矩形ABCD 边上一个动点,运动路线是A →B →C →D →A ,设点P 运动的路径长为x ,S △ABP =y ,图②是y 随x 变化的函数图象,则矩形对角线AC 的长是( )A .5B .6C .12D .2419.如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线1l ,2l ,过点()1,0作x 轴的垂线交1l 于点1A ,过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,…,依次进行下去,则点2018A 的坐标为( ).A .()100910092,2 B .()100910092,2- C .()100910102,2-- D .()100910102,2- 20.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0) B .(-2,0) C .(6,0) D .(-6,0)【参考答案】***试卷处理标记,请不要删除一、易错压轴选择题精选:一次函数选择题1.A【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.【详解】解:由题意知,函数关系为一次函数y=-3x-6,由k=-3<0可知,y 随x 的增大而减小,且当x=0时,y=-6,当y=0时,x=-2.故选:A .【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-3x-6,然后根据一次函数的图象的性质求解.2.C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=kt+b,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.3.B【分析】根据一次函数的性质和各个选项中的函数解析式,可以判断哪个选项中的函数y随x的增大而增大,且图象与x轴交点在y轴左侧,本题得以解决.【详解】解:函数y=2x-1,y随x的增大而增大,与x轴的交点是(0.5,0),在y轴右侧,故选项A不符题意;函数y=2x+1,y随x的增大而增大,与x轴的交点是(-0.5,0),在y轴左侧,故选项B 符题意;函数y=-2x+1,y随x的增大而减小,与x轴的交点是(0.5,0),在y轴右侧,故选项C 不符题意;函数y=-2x-1,y随x的增大而减小,与x轴的交点是(-0.5,0),在y轴左侧,故选项D 不符题意;故选:B.【点睛】本题考查了一次函数的性质,解题的关键是明确题意,利用一次函数的性质解答.4.C【详解】根据图象可知y=kx+b与x轴交于(2,0),图像在交点的左侧部分满足不等式kx+b>0 ,故解集为x<2,故选C.5.C【分析】根据选项依次求解,由图可知,第4min时,对应的容器内的水量为20L,从某时刻开始的4min内只进水不出水,在随后的8min内既进水又出水,可确定两段函数的关系式,即可求出每min进水量为5L,第8min时容器内的水量为25L,最后根据图像每分钟出水的量为3.75L.【详解】A项,由图可知,第4min时,对应的容器内的水量y为20L,A不符合题意;B项,由题意可知,从某时刻开始的4min内只进水不出水,0~4min时的直线方程为:y=kx (k≠0),通过图像过(4,20),解得k=5,所以每min进水量为5L,B不符合题意;C项,由B项可知:每min进水量为5L,每分钟出水量=[(12-4)×5-(30-20)]÷(12-4)=3.75L,C符合题意;D项,由题意可知,从某时刻开始的4min内只进水不出水,0~4min时的直线方程为:y=kx+b(k≠0,k、b为常数),通过图像过(4,20),(12,30),解得k=54,b=15,所以第8min时,容器内的水量为25L,D不符合题意;故选C.【点睛】此题考查了一次函数的实际应用和识图能力,解题时首先应正确理解题意,然后根据图像的坐标,利用待定系数法确定函数解析式,接着利用函数的性质即可解决问题.6.C【分析】点P从点B运动到点C的过程中,y与x的关系是一个一次函数,运动路程为4时,面积发生了变化,说明BC的长为4,当点P在CD上运动时,三角形ABP的面积保持不变,就是矩形ABCD面积的一半,并且动路程由4到9,说明CD的长为5,然后求出矩形的面积.【详解】解:∵当4≤x≤9时,y的值不变即△ABP的面积不变,P在CD上运动当x=4时,P点在C点上所以BC=4当x=9时,P点在D点上∴BC+CD=9∴CD=9-4=5∴△ABC的面积S=12AB•BC=12×4×5=10∴矩形ABCD的面积=2S=20故选C.【点睛】本题考查的是动点问题的函数图象,根据矩形中三角形ABP的面积和函数图象,求出BC 和CD的长,再用矩形面积公式求出矩形的面积.7.D【分析】根据题意可得﹣m<0,n<0,再进行化简即可.【详解】∵一次函数y=﹣mx+n的图象经过第二、三、四象限,∴﹣m<0,n<0,即m>0,n<0,=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.8.B【分析】根据一次函数的性质对各选项进行逐一判断即可.【详解】解:A、∵k=-1<0,b=1>0,∴图象经过第一、二、四象限,故本选项错误;B、、∵当x=1时,y=0,∴图象经过点(1,0),故本选项正确;C、∵当x=-1时,y=2,∴图象不经过点(-1,0),故本选项错误;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误.故选B【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.9.C【分析】根据题意,分析图象,结合简单计算,可以得到答案.【详解】解:根据图象可知:A. 小明从家到食堂用了8min,故A选项说法正确;B. 小明家离食堂0.6km,食堂离图书馆0.8-0.6=0.2(km),故B选项说法正确;C. 小明吃早餐用了25-8=17(min),读报用了58-28=30(min),故C选项错误;D. 小明从图书馆回家的平均速度为0.8÷(68-58=)0.08(km/min),故D选项正确.故选C.【点睛】本题考核知识点:函数的图形. 重点:分析函数图象,得到相关信息,并进行简单运算. 10.B【分析】根据直线解析式可得OA 和OB 长度,利用勾股定理可得AB 长度,再根据线段垂直平分线的性质以及两个三角形周长线段,可得OD=AB .【详解】当x=0时,y=2∴点B (0,2)当y=0时,-x+2=0解之:x=2∴点A (2,0)∴OA=OB=2∵点C 在线段OD 的垂直平分线上∴OC=CD∵△OBC 和△OAD 的周长相等,∴OB+OC+BC=OA+OD+AD∴OB+BC+CD=OA+OD+ADOB+BD=OA+OD+AD 即OB+AB+AD=OB+OD+AD∴AB=OD在Rt △AOB 中=故选B【点睛】本题主要考查了一次函数图象上点坐标特征、线段垂直平分线的性质、以及勾股定理. 11.A【分析】先利用三角形面积公式求出OB=2得到B (0,2),然后利用待定系数法求直线解析式.【详解】∵A (-4,0),∴OA=4,∵△OAB 的面积为4∵12×4×OB=4,解得OB=2,∴B (0,2),把A (-4,0),B (0,2)代入y=kx+b ,402k b b -⎨⎩+⎧==, 解得122k b ⎧⎨⎩==,∴直线解析式为y=12x+2.故选:A.【点睛】本题考查了待定系数法求一次函数关系式:设一次函数解析式为y=kx+b(k≠0),要有两组对应量确定解析式,即得到k,b的二元一次方程组.12.B【分析】根据横坐标分别求出A,B,C的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.【点睛】本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键.13.D【分析】写出函数图象在x轴上方及x轴上所对应的自变量的范围即可.【详解】解:当x≤2时,y≥0.所以关于x的不等式kx+3≥0的解集是x≤2.故选:D.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.14.D【分析】设直线AB的解析式为y=kx+b,根据平移时k的值不变可得k=-2,把(1,4)代入即可求出b的值,即可得答案.【详解】设直线AB的解析式为y=kx+b,∵将直线y=-2x向上平移后得到直线AB,∵直线AB经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB的解析式为:y=-2x+6,故选:D.【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k值不变.15.D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.16.B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.解答:解:∵,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.17.B【分析】设点C为线段OB的中点,则点C的坐标为(2,0),利用一次函数图象上点的坐标特征可得出直线y=mx-3m+2过三角形的顶点A(3,2),结合直线y=mx-3m+2将△OAB分成面积相等的的两部分,可得出直线y=mx-3m+2过点C(2,0),再利用一次函数图象上点的坐标特征可求出m的值.【详解】解:设点C为线段OB的中点,则点C的坐标为(2,0),如图所示.∵y=mx﹣3m+2=(x﹣3)m+2,∴当x=3时,y=(3﹣3)m+2=2,∴直线y=mx﹣3m+2过三角形的顶点A(3,2).∵直线y=mx﹣3m+2将△OAB分成面积相等的的两部分,∴直线y=mx﹣3m+2过点C(2,0),∴0=2m﹣3m+2,∴m=2.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征,找出关于m的一元一次方程是解题的关键.18.A【分析】根据题意易得AB+BC=6,当点P运动到C点时三角形ABP的面积为4,故而可求出AB、BC 的长,进而求出AC.【详解】解:由图像及题意可得:AB+BC=6,当点P运动到C点时三角形ABP的面积为4,即1=42ABPS AB BC⋅=,∴AB=2,BC=4,在Rt ABC中,2225AC AB BC=+=故选A.【点睛】本题主要考查函数与几何,关键是根据图像得到动点的运动路程,然后利用勾股定理求解线段的长即可.19.B【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2018=504×4+2即可找出点A2018的坐标.【详解】解:当x=1时,y=2,∴点A1的坐标为(1,2);当y=-x=2时,x=-2,∴点A2的坐标为(-2,2);同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).∵2018=504×4+2,∴点A 2018的坐标为(-2504×2+1,2504×2+1),即(-21009,21009).故选:B .【点睛】本题考查了一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.20.B【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.。

专题05一次函数压轴题年中考数学压轴题分类全国通用解析版

专题05一次函数压轴题年中考数学压轴题分类全国通用解析版

专题05 一次函数压轴题一、单选题1.如图,在平面直角坐标系中,点1234,,,,A A A A L 在x 轴正半轴上,点123,,,B B B L 在直线(0)y x ³上,若1(1,0)A ,且112223334,,,A B A A B A A B A V V V L 均为等边三角形,则线段20192020B B 的长度为( )A .2B .2C .2D .2【答案】D【分析】根据题意得出∠A n OB n =30°,从而推出A n B n =OA n ,得到B n B n+1n A n+1,算出B 1A 2=1,B 2A 3=2,B 3A 4=4,找出规律得到B n A n+1=2n-1,从而计算结果.【解析】解:设△B n A n A n+1的边长为a n ,∵点B 1,B 2,B 3,…是直线(0)y x =³上的第一象限内的点,过点A 1作x 轴的垂线,交直线(0)y x x =³于C ,∵A 1(1,0),令x=1,则∴A 1∴111tan A C A OC OA Ð==∴∠A n OB n =30°,∵112223334,,,A B A A B A A B A V V V L 均为等边三角形,∴∠B n A n A n+1=60°,∴∠OB n A n =30°,∴A n B n =OA n ,∵∠B n A n+1B n+1=60°,∴∠A n+1B n B n+1=90°,∴B n B n+1B n A n+1,∵点A 1的坐标为(1,0),∴A 1B 1=A 1A 2=B 1A 2=1,A 2B 2=OA 2=B 2A 3=2,A 3B 3=OA 3=B 3A 4=4,...,∴A n B n =OA n =B n A n+1=2n-1,∴20192020B B2019A 202020182,故选D .【点睛】本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,本题属于基础题,难度不大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键.2.如图,过点0(0,1)A 作y 轴的垂线交直线:l y =于点1A ,过点1A 作直线l 的垂线,交y 轴于点2A ,过点2A 作y 轴的垂线交直线l 于点3A ,…,这样依次下去,得到012A A A D ,234A A A D ,4564A A D ,…,其面积分别记为1S ,2S ,3S ,…,则100S ( )A .100B .100C .1994D .3952【答案】D【分析】本题需先求出OA 1和OA 2的长,再根据题意得出OA n =2n ,把纵坐标代入解析式求得横坐标,然后根据三角形相似的性质即可求得S 100.【解析】∵点0A 的坐标是(0,1),∴01OA =,∵点1A 在直线y x =上,∴12OA =,01A A =∴24OA =,∴38OA =,∴416OA =,得出2n n OA =,∴12n n n A A +=∴1981982OA =,1981981992A A =∵11(41)2S =-=,∵21200199A A A A ∥,∴012198199200D D ∽A A A A A A ,∴21001S S =,∴39639522S ==故选D .【点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.3.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是()A .122t £<B .112t <£C .12t <£D .122t ££且1t ¹【答案】D【分析】画出函数图象,利用图象可得t 的取值范围.【解析】∵22y tx t =++,∴当y=0时,x=22t--;当x=0时,y=2t+2,∴直线22y tx t =++与x 轴的交点坐标为(22t --,0),与y 轴的交点坐标为(0,2t+2),∵t>0,∴2t+2>2,当t=12时,2t+2=3,此时22t--=-6,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图1,当t=2时,2t+2=6,此时22t--=-3,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图2,当t=1时,2t+2=4,22t--=-4,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,如图3,∴122t ££且1t ¹,故选:D.【点睛】此题考查一次函数的图象的性质,一次函数图象与坐标轴交点坐标,根据t 的值正确画出图象理解题意是解题的关键.4.如图,直线334y x =-+与x 轴、y 轴分别交于A 、B 两点,点P 是以C (﹣1,0)为圆心,1为半径的圆上一点,连接PA ,PB ,则△PAB 面积的最小值是( )A .5B .10C .15D .20【答案】A【分析】作CH ⊥AB 于H 交⊙O 于E 、F .当点P 与E 重合时,△PAB 的面积最小,求出EH 、AB 的长即可解决问题【解析】作CH ⊥AB 于H 交⊙O 于E 、F .连接BC .∵A(4,0),B(0,3),∴OA=4,OB=3,AB=5.∵S△ABC= 12AB•CH=12AC•OB,∴AB•CH=AC•OB,∴5CH=(4+1)×3,解得:CH=3,∴EH=3﹣1=2.当点P与E重合时,△PAB的面积最小,最小值12=´5×2=5.故选A.【点睛】本题考查了一次函数图象上的点的坐标特征、一次函数的性质、直线与圆的位置关系等知识,解题的关键是学会添加常用辅助线,利用直线与圆的位置关系解决问题,属于中考填空题中的压轴题.5.如图,平面直角坐标系xOy中,点A的坐标为(9,6),AB⊥y轴,垂足为B,点P从原点O出发向x 轴正方向运动,同时,点Q从点A出发向点B运动,当点Q到达点B时,点P、Q同时停止运动,若点P 与点Q的速度之比为1:2,则下列说法正确的是( )A.线段PQ始终经过点(2,3)B.线段PQ始终经过点(3,2)C .线段PQ 始终经过点(2,2)D .线段PQ 不可能始终经过某一定点【答案】B【分析】当OP=t 时,点P 的坐标为(t ,0),点Q 的坐标为(9﹣2t ,6).设直线PQ 的解析式为y=kx+b (k≠0),利用待定系数法求出PQ 的解析式即可判断;【解析】当OP=t 时,点P 的坐标为(t ,0),点Q 的坐标为(9﹣2t ,6).设直线PQ 的解析式为y=kx+b (k≠0),将P (t ,0)、Q (9﹣2t ,6)代入y=kx+b ,得,0(92)6kt b t k b +=ìí-+=î,解得:2323k t t b t ì=ïï-íï=ï-î,∴直线PQ 的解析式为y=23t -x+23t t -.∵x=3时,y=2,∴直线PQ 始终经过(3,2),故选B .【点睛】本题考查一次函数图象上的点的特征、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.规定:()3f x x =-,()4g y y =+,例如()4437f -=--=,()4440g -=-+=,下列结论中,正确的是( )①若()()0f x g y +=,则2318x y -=;②若4x <-,则()()12f x g x x =-;③能使()()f x g x =成立的x 的值不存在;④式子()()11f x g x -++的最小值是9.A .1个B .2个C .3个D .4个【答案】B【分析】根据非负数和为0的性质可判定①,由4x <-可以化简绝对值,进而可判断②;由两数绝对值相等得出两数相等或互为相反数可判断③;分三种情况讨论化简绝对值,利用一次函数的性质可判断④.【解析】解:①若()()0f x g y +=,即340x y -++=,解得:3,4x y ==-,则2318x y -=;故①正确;②若4x <-,则()()()()23412f x g x x x x x =-+--=+-,故错误;③若()()f x g x =,则34x x -=+,即34x x -=+或34x x -=--,解得:0.5x =-,所以能使()()f x g x =成立的x 的值存在;故错误;④式子()()1145f x g x x x -++=-++,当5x £-时,()()114521f x g x x x x -++=---=--,则()()11f x g x -++的值随x 的增大而减小,所以当x =-5时有最小值9;当54x -<<时,()()11459f x g x x x -++=-++=;当4x ³时,()()114521f x g x x x x -++=-++=+,则()()11f x g x -++的值随x 的增大而增大,所以当x =4时有最小值9;综上所述:()()11f x g x -++的最小值是9,故正确;∴正确的有①④,共2个;故选B .【点睛】本题主要考查一次函数的性质及绝对值,熟练掌握一次函数的性质及绝对值是解题的关键.7.如图,已知在平面直角坐标系xOy 中,点,A B 是函数102103103x x y x x ìæö-+ç÷ïïèø=íæöï>ç÷ïèøî…图象上的两动点,且点A 的横坐标是m ,点B 的横坐标是1m +,将点A ,点B 之间的函数图象记作图型L ,把图型L 沿直线1:32l y x =-+进行翻折,得到图型¢L ,若图型¢L 与x 轴有交点时,则m 的取值范围为( )A .2427m ££B .1727m ££C .2437m ££D .1737m ££【答案】A【分析】先由AB 关于l 对称直线和x 轴相交得到x 轴关于直线l 对称的直线也与AB 相交,作x 轴关于直线l 对称直线l 1,即其在132y x =-+中,然后再求出C 、D 点的坐标,求出OD 的长,设l 1的解析式为y =k (x -6),作DE ⊥l 1,可得OE =3,然后运用点与直线的距离求得k ,最后再代入分段函数即可求得m 的取值范围.【解析】解:∵AB 关于l 对称直线和x 轴相交∴x 轴关于直线l 对称的直线也与AB相交作x轴关于直线l对称直线l1,即其在132y x=-+中当y=0时,x=6,即C(6,0)在l中,当x=0时,y=3,即OD=3设l1的解析式为y=k(x-6),作DE⊥l1∵x轴和直线l1关于直线l对称∴OD=OE=3∴D到l1的距离3,解得k=4 3 -∴l1:y=43-x+8由题意可知:43-x+8=-2x+10103xæöç÷èø…,43-x+8=x103xæö>ç÷èø,解得x=3,x=247∴交点的横坐标为3和24 7∵交点在l上∴3≤m≤247或3≤m+1≤247,即2427m…….故选A.【点睛】本题主要考查了分段函数的应用、轴对称的性质、点到直线的距离等知识点,灵活运用相关知识成为解答本题的关键.8.如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q¢,连接OQ¢,则OQ¢的最小值为( )A B C D【答案】B【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【解析】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P Ð=Ð=°ìïÐ=Ðíï=î,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.9.如图,已知△ABC 的三个顶点A (a ,0)、B (b ,0)、C (0,2a )(b >a >0),作△ABC 关于直线AC 的对称图形△AB 1C , 若点B 1恰好落在y 轴上,则a b的值为( )A.13B.49C.12D.38【答案】D【分析】由B(b,0)、C(0,2a),可得,△ABC关于直线AC的对称图形△AB1C,且点B1恰好落在y 轴上,即可确定B1的坐标,进而确定BB1的中点D的坐标;△ABC关于直线AC的对称图形△AB1C,则段BB1的中点D在直线AC上;再由A(a,0)、C(0,2a)确定直线AC的解析式,最后将D点坐标代入求解即可.【解析】解:∵B(b,0)、C(0,2a)∴∵△ABC关于直线AC的对称图形△AB1C,且点B1恰好落在y轴上∴B1的坐标为(0,∴BB1的中点D的坐标为(2b∵A(a,0)、C(0,2a)∴直线AC的解析式为:y=-2x+2a∵△ABC 关于直线AC 的对称图形△AB 1C ,∴段BB 1的中点D 在直线AC 上222b a =-´+,即22323240a b ab +-= ∴2322430a a b b æöæö-+=ç÷ç÷èøèø且a b >0解得:a b =38故答案为D .【点睛】本题考查了轴对称变换、勾股定理、线段的中点坐标、一次函数解析式等在知识点,考查知识点较多,灵活应用相关知识成为解答本题的关键.10.如图,已知正比例函数y =kx (k >0)的图象与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图象上的两个动点,则AM +MP +PN 的最小值为( )A.2B.4sin40°C.D.4sin20°(1+cos20°+sin20°cos20°)【答案】C【分析】如图所示直线OC、y轴关于直线y=kx对称,直线OD、直线y=kx关于y轴对称,点A′是点A关于直线y =kx的对称点,作A′E⊥OD垂足为E,交y轴于点P,交直线y=kx于M,作PN⊥直线y=kx垂足为N,此时AM+PM+PN=A′M+PM+PE=A′E最小(垂线段最短),在RT△A′EO中利用勾股定理即可解决.【解析】解:如图所示,直线OC、y轴关于直线y=kx对称,直线OD、直线y=kx关于y轴对称,点A′是点A关于直线y=kx的对称点.作A′E⊥OD垂足为E,交y轴于点P,交直线y=kx于M,作PN⊥直线y=kx垂足为N,∵PN=PE,AM=A′M,∴AM+PM+PN=A′M+PM+PE=A′E最小(垂线段最短),在RT△A′EO中,∵∠A′EO=90°,OA′=4,∠A′OE=3∠AOM=60°,OA′=2,A′E=∴OE=12∴AM+MP+PN的最小值为故选:C.【点睛】本题考查轴对称﹣最短问题、垂线段最短、直角三角形30度角的性质、勾股定理、一次函数等知识,解题的关键是利用轴对称性质正确找到等P的位置,题目有点难度,是最短问题中比较难的题目.11.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是( )A.y=﹣2x+1B.y=﹣1x+2C.y=﹣3x﹣2D.y=﹣x+22【答案】D【分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k 与b的值,即可确定出所求直线解析式.【解析】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=12OA=2,OF=DG=BG=CG=12BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=2,即D(0,2),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:32k bb-+=ìí=î,解得:12kb=-ìí=î.则这条直线解析式为y=﹣x+2.故选D.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.12.如图,已知点A(1,4),点B(3,5),在y轴上取一点C,连接AC,将线段AC绕点C顺时针旋转90°到CD,连接AD,BD,则AD+BD的最小值是()A .B .C .D .5【答案】D【分析】首先证明点D 的运动轨迹是直线y =﹣x+3,作点A 关于直线y =﹣x+3的对称点M (﹣1,2),连接BM 交直线y =﹣x+3于D′,连接AD′,此时AD′+BD′的值最小,最小值为线段BM 的长.【解析】解:如图,过点A 作AE y ^轴于点E ,过点D 作DF y ^轴于点F ,设C (0,m ),由题意A (1,4),线段CD 是由线段CA 顺时针旋转90°得到,则AEC CFD @V V ,∴1AE CF ==,4EC FD m ==-,∴1OF m =-,∴D (4﹣m ,m ﹣1),设4﹣m =x ,m ﹣1=y ,可得y =﹣x+3,∴点D 的运动轨迹是直线y =﹣x+3,作点A 关于直线y =﹣x+3的对称点M (﹣1,2),连接BM 交直线y =﹣x+3于D′,连接AD′,此时AD′+BD′的值最小,最小值为线段BM 的长,∵B(3,5),M(﹣1,2),∴BM5,∴AD+BD的最小值为5,故选:D.【点睛】本题考查动点问题,解题的关键是分析出动点D的运动轨迹,然后利用轴对称的性质求出线段和的最小值.二、填空题13.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为__________.【答案】()0.4,0-【分析】先得出D 点关于x 轴的对称点坐标为H (0,-4),再通过转化,将求四边形BDEF 的周长的最小值转化为求FG +BF 的最小值,再利用两点之间线段最短得到当F 、G 、B 三点共线时FG +BF 的值最小,用待定系数法求出直线BG 的解析式后,令y =0,即可求出点F 的坐标,最后得到点E 的坐标.【解析】解:如图所示,∵D (0,4),∴D 点关于x 轴的对称点坐标为H (0,-4),∴ED =EH ,将点H 向左平移3个单位,得到点G (-3,-4),∴EF =HG ,EF ∥HG ,∴四边形EFGH 是平行四边形,∴EH =FG ,∴FG =ED ,∵B (-4,6),∴BD又∵EF =3,∴四边形BDEF 的周长=BD +DE +EF +BF =FG +3+BF ,要使四边形BDEF 的周长最小,则应使FG +BF 的值最小,而当F 、G 、B 三点共线时FG +BF 的值最小,设直线BG 的解析式为:()0y kx b k =+¹∵B (-4,6),G (-3,-4),∴4634k b k b -+=ìí-+=-î,∴1034k b =-ìí=-î,∴1034y x =--,当y =0时, 3.4x =-,∴()3.4,0F -,∴()0.4,0E -故答案为:()0.4,0-.【点睛】本题综合考查了轴对称的性质、最短路径问题、平移的性质、用待定系数法求一次函数的解析式等知识,解决问题的关键是“转化”,即将不同的线段之间通过转化建立相等关系,将求四边形的周长的最小值问题转化为三点共线和最短的问题等,本题蕴含了数形结合与转化的思想方法等.14.如图,一次函数2y x =与反比例数()0k y k x=>的图像交于A ,B 两点,点M 在以()2,0C 为圆心,半径为1的C e 上,N 是AM 的中点,已知ON 长的最大值为32,则k 的值是_______.【答案】3225根据题意得出ON 是ABM V 的中位线,所以ON 取到最大值时,BM 也取到最大值,就转化为研究BM 也取到最大值时k 的值,根据,,B C M 三点共线时,BM 取得最大值,解出B 的坐标代入反比例函数即可求解.【解析】解:连接BM ,如下图:在ABM V 中,,O N Q 分别是,AB AM 的中点,ON \是ABM V 的中位线,12ON BM \=,已知ON 长的最大值为32,此时的3BM =,显然当,,B C M 三点共线时,取到最大值:3BM =,13BM BC CM BC =+=+=,设(,2)B t t ,由两点间的距离公式:2BC ==,22(2)44t t \-+=,解得:124,05t t ==(取舍),48(,55B \,将48(,55B 代入()0k y k x=>,解得:3225k =,故答案是:3225.【点睛】本题考查了一次函数、反比例函数、三角形的中位线、圆,研究动点问题中线段最大值问题,解题的关键是:根据中位线的性质,利用转化思想,研究BM 取最大值时k 的值.15.如图,过直线:l y =上的点1A 作11A B l ^,交x 轴于点1B ,过点1B 作12B A x ^轴.交直线l 于点2A ;过点2A 作22A B l ^,交x 轴于点2B ,过点2B 作23B A x ^轴,交直线l 于点3A ;……按照此方法继续作下去,若11OB =,则线段1n n A A -的长度为______.(结果用含正整数n 的代数式表示)【答案】2532n -´【分析】根据题意由11OB =,直线l 关系式,可以得出A 2的坐标,可判断出∠OA 2B 1=30°,∠A 2OB 1=60°,根据题意可得出∠A 1B 1O=30°,可求出OA 1的值,在Rt △OA 2B 1中,可以求出OA 2的长;再在Rt △OA 2B 2中,利用30°角所对的直角边是斜边的一半,可求出OB 2的值,同理可求出OA 3,OB 3……,然后再找规律,得出OA n 的值,用OA n -OA n-1,从而求得点A n A n-1的值.【解析】解:∵OB 1=1,根据题意,结合,得出A 2(∴在Rt △A 2OB 1中,根据勾股定理得OA 2=2∴∠OA 2B 1=30°,∠A 2OB 1=60°∵A 1B 1⊥OA 1∴∠A 1B 1O=30°,又OB 1=1∴OA 1=12由OA 2=2,得OB 2=4,∴OA 3=8,OB 3=16,按照此规律即可求出OA n =2n 32- ,OA n -1=2n 52-∴A n A n -1=2n 32--2n 52-=22n 52n 5222·--- =2n 532´-【点睛】本题考查一次函数图象上线段长度特征,勾股定理,含30°角的直角三角形的特性,在找规律时,不断求出OA 1,OA 2,...OA n 的长度即可找出规律,求出答案.16.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ^交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ^交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,L ,则点2020B 的坐标______.【答案】()20202020231,3´-【分析】根据题意得出三角形AMO 为等腰直角三角形,∠AMO=45°,分别求出个线段的长度,表示出B 1和B 2的坐标,发现一般规律,代入2020即可求解【解析】解:∵AM 的解析式为1y x =+,∴M (-1,0),A (0,1),即AO=MO=1,∠AMO=45°,由题意得:MO=OC=CO 1=1,O 1A 1=MO 1=3,∵四边形1111O A B C 是正方形,∴O 1C 1=C 1O 2=MO 1=3,∴OC 1=2×3-1=5,B 1C 1=O 1C 1=3,B 1(5,3),∴A 2O 2=3C 1O 2=9,B 2C 2=9,OO 2=OC 2-MO=9-1=8,综上,MC n =2×3n ,OC n =2×3n -1,B n C n =A n O n =3n ,当n=2020时,OC 2020=2×32020-1,B 2020C 2020 =32020,点B ()20202020231,3´-,故答案为:()20202020231,3´-.【点睛】本题考查规律型问题、等腰直角三角形的性质以及点的坐标,解题的关键是学会探究规律的方法,属于中考常考题型.17.如图在平面直角坐标系中,直线4y x =-+的图像分别与y 轴和x 轴交于点A ,点B .定点P 的坐标为,点Q 是y 轴上任意一点,则12PQ QB +的最小值为__________.【答案】【分析】以点P 为顶点,y 轴为一边,在y 轴右侧作30OPD Ð=°,与x 轴交于点D ,作点B 关于y 轴的对称点B ¢,过点B ¢作B E PD ¢^,交y 轴与点Q ,根据直角三角形的性质得出B E ¢即为最小值,然后利用勾股定理和直角三角形的性质求出B E ¢的长即可.【解析】如图,以点P 为顶点,y 轴为一边,在y 轴右侧作30OPD Ð=°,与x 轴交于点D ,作点B 关于y 轴的对称点B ¢,过点B ¢作B E PD ¢^,交y 轴与点Q ,∵30B E PD OPD ¢^Ð=°,,∴12QE PQ =,∵此时BQ B Q ¢=,则B E ¢即为12PQ QB +的最小值.∵3090OPD POD Ð=°Ð=°,,∴260PD OD ODP =Ð=°,,根据勾股定理可得222(2)OD OD +=,解得6OD =,∵直线4y x =-+的图象分别与y 轴和x 轴交于点A ,点B ,令x =0,得y =4;令y =0,得x =4,则点(0,4)(4,0)A B ,,∴4OB =,∴4OB ¢=,∴4610B D =+=¢,∵60B E PD ODP ¢^Ð=°,,∴30EB D ¢Ð=°,∴152DE B D ¢==,∴B E ===¢即12PQ QB +的最小值为.故答案为:.【点睛】本题考查勾股定理,最短路径问题,以及一次函数与坐标轴的交点等,正确得出最短路径是解题关键.18.甲、乙两辆冷链运输车从某公司疫苗存储库同时出发,各自将一批疫苗运往省疾控中心疫苗仓储库,他们将疫苗运到省疾控中心疫苗仓储库后,省疾控中心将按规定流程对疫苗的质量进行检查验收,检查验收及卸货的时间共为30分钟,然后甲、乙两辆冷链运输车又各自按原路原速返回公司疫苗存储库,在整个过程中,假设甲、乙两辆冷链运输车均保持各自的速度匀速行驶,且甲车的速度比乙车的速度快.甲、乙两车相距的路程y (千米)与甲车离开公司疫苗存储库的时间x (小时)之间的关系如图所示,则在甲车返回到公司疫苗存储库时,乙车距公司疫苗存储库的距离为________千米.【答案】36【分析】根据图象求出甲、乙速度和公司疫苗存储库到省疾控中心疫苗仓储库的距离,从而可得甲回到公司疫苗存储库所用时间,求出这段时间乙行驶路程,即可得到答案.【解析】解:如图:由A(1.8,18)可知,甲1.8小时达到省疾控中心疫苗仓储库,且1.8小时,甲、乙相距18千米,即甲比乙多行驶18千米,∴甲、乙速度差为:V甲-V乙=18÷1.8=10(千米/时),∵检查验收及卸货的时间共为30分钟(0.5小时),∴C(2.3,0),而xD=2.5,∴甲比乙早0.2小时返回,即甲比乙早0.2小时到省疾控中心疫苗仓储库,设甲速度为x千米/时,则乙速度是(x-10)千米/时,可得:1.8x=(1.8+0.2)(x-10),解得x=100,∴甲速度为100千米/时,乙速度是90千米/时,公司疫苗存储库到省疾控中心疫苗仓储库的距离是180千米,∵在整个过程中,甲、乙两辆冷链运输车均保持各自的速度匀速行驶,∴甲从第2.3小时返回,到公司疫苗存储库时间为2.3+1.8=4.1(小时),乙从2.5小时开始返回,到4.1小时所行路程为:(4.1-2.5)×90=144(千米),此时到公司疫苗存储库距离是180-144=36(千米),∴甲车返回到公司疫苗存储库时,乙车距公司疫苗存储库的距离是36千米.故答案为:36.【点睛】本题考查一次函数图象及应用,读懂图象,特别是理解重要点的坐标,是解题的关键.三、解答题19.已知函数2(0)(0)x x y x x -£ì=í>î的图象如图所示,点()11,A x y 在第一象限内的函数图象上.(1)若点()22,B x y 也在上述函数图象上,满足21x x <.①当214y y ==时,求12,x x 的值;②若21x x =,设12=-w y y ,求w 的最小值;(2)过A 点作y 轴的垂线AP ,垂足为P ,点P 关于x 轴的对称点为P ¢,过A 点作x 轴的线AQ ,垂足为Q ,Q 关于直线¢AP 的对称点为Q ¢,直线AQ ¢是否与y 轴交于某定点?若是,求出这个定点的坐标;若不是,请说明理由.【答案】(1)①122,4x x ==-;②14-;(2)直线AQ ¢与y 轴交于定点,定点的坐标为10,4æöç÷èø.【分析】(1)①先确定20x £,再根据214y y ==代入求解即可得;②先确定2210,x x x <-=,从而可得21122,y x y x ==-,再代入w 可得一个关于1x 的二次函数,利用二次函数的性质即可得;(2)先分别求出点,,P P Q ¢的坐标,再利用待定系数法求出直线,AP QQ ¢¢的解析式,从而可得点Q ¢的坐标,然后利用待定系数法求出直线AQ ¢的解析式,由此即可得出结论.【解析】解:(1)①对于二次函数2y x =,在0x >内,y 随x 的增大而增大,21211,40,x x x y y <>==Q ,20x \£,则当14y =时,214x =,解得12x =或120x =-<(舍去),当24y =时,24x -=,解得24x =-;②21121,0,x x x x x <>=Q ,2210,x x x \<-=,21122,y x y x \==-,则22121211()w y y x x x x =-=--=-,化成顶点式为2111()24w x =--,由二次函数的性质可知,在1>0x 内,当112x =时,w 取最小值,最小值为14-;(2)由题意,设¢AP 与QQ ¢交于点B ,画图如下,11(x ,)A y Q 在已知函数的第一象限内的图象上,211y x \=,即211(,)A x x ,AP y ^Q 轴,AQ x ^轴,点P 关于x 轴的对称点为P ¢,22111(0,),(0,),(,0)P P Q x x x ¢\-,设直线¢AP 的解析式为11y k x b =+,将点22111(,),(0,)P A x x x ¢-代入得:21111211k x b x b x ì+=í=-î,解得112112k x b x =ìí=-î,则直线¢AP 的解析式为2112y x x x =-,Q Q 关于直线¢AP 的对称点为Q ¢,QQ AP ¢¢\^,\设直线QQ ¢的解析式为2112b x y x +=-,将点1(,0)Q x 代入得:121201x b x -+=,解得212b =,则直线QQ ¢的解析式为11212x y x +=-,联立211121122y x x x y x x ì=-ïí=-+ïî,解得211212121(12)4141x x x x x y x ì+=ï+ïíï=ï+î,即22111221141(12),41x x x B x x æö+ç÷++èø,设点Q ¢的坐标为(,)Q m n ¢,则2111212121(12)2410241m x x x x x n x ì++=ï+ïí+ï=ï+î,解得121212141241x m x x n x ì=ï+ïíï=ï+î,即21122114142,1x x Q x x æö¢ç÷++èø,设直线AQ ¢的解析式为33y k x b =+,将点22111122112(,),1,414x x A x x Q x x æö¢ç÷++èø代入得:2313121133221124141k x b x x x k b x x ì+=ïí+=ï++î,解得2131314414x k x b ì-=-ïïíï=ïî,则直线AQ ¢的解析式为21144114x y x x -=-+,当0x =时,14y =,即直线AQ ¢与y 轴交于定点10,4æöç÷èø.【点睛】本题考查了二次函数与一次函数的综合、轴对称等知识点,熟练掌握待定系数法是解题关键.20.在平面直角坐标系中,点A的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO Ð=°,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO V 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,444,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB Ð=Ð,根据等角的余角相等和对顶角相等,得到CDO COD Ð=Ð,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ^于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=´´V V 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO Ð=Ð时;②当点C 在第二象限内,ACB BCO Ð=Ð时;③当点C 在第四象限内,ACB CBO Ð=Ð时.【解析】解:(1)①证明:如图1,∵BA BO =,∴12Ð=Ð.∴BA BC ^,∴2590Ð+Ð=°.而45Ð=Ð,∴2490Ð+Ð=°.∵OB OC ^,∴1390Ð+Ð=°.∴34Ð=Ð,∴CD CO =.②如图1,过点A 作AH OB ^于点H .由题意可知3tan 18Ð=,在Rt AHO V 中,3tan 18AH OH Ð==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC Ð=°Ð=°,,∴45ABH Ð=°,∴3,tan 45sin 45AH AH BH AB ====°°∴5OB OH BH =-=.∵45OB OC CBO ^Ð=°,,∴tan 455,cos 45OB OC OB BC =´°===°,∴111522ABC S AB BC =´=´=V ,112555222CBO S OB OC =´=´´=V :∴552ABC CBO ABOC S S S =+=V V 四边形.(2)过点A 作AH OB ^于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO Ð=Ð时,设OB t=∵ACB CBO Ð=Ð,∴//AC OB .又∵AH OB OC OB ^^,,∴3AH OC ==.∵AH OB AB BC ^^,,∴12902390Ð+Ð=°Ð+Ð=°,,∴13Ð=Ð,∴AHB BOC V V ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =∴4OB =②如图3,当点C 在第二象限内,ACB BCO Ð=Ð时,延长AB CO ,交于点G ,则ACB GCB V V ≌,∴A B G B =.又∵AH OB OC OB ^^,,∴90AHB GOB Ð=Ð=°,而ABH GBO Ð=Ð,∴ABH GBO V V ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO Ð=Ð时,AC 与OB 相交于点E ,则有BE CE =.(a )如图4,点B 在第三象限内.在Rt ABC V 中,1290,90ACB CAB Ð+Ð=°Ð+Ð=°,∴2CABÐ=Ð∴AE BE CE ==,又∵,AH OB OC OB ^^,∴90AHE COE Ð=Ð=°,而AEH CEOÐ=Ð∴AHE COE V V ≌,∴142HE OE OH ===∴5AE ==,∴5BE =,∴9OB BE OE =+=(b )如图5,点B 在第一象限内.在Rt ABC V 中90,90ACB CAB CBO ABE Ð+Ð=°Ð+Ð=°∴CAB ABE Ð=Ð,∴AE BE CE ==.又∵,AH OB OC OB ^^,∴90AHE COE Ð=Ð=°而AEH CEO Ð=Ð,∴AHE COEV V ≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为444,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.21.某超市从厂家购进A 、B 两种型号的水杯,两次购进水杯的情况如下表:进货批次A 型水杯(个)B 型水杯(个)总费用(元)一1002008000二20030013000(1)求A 、B 两种型号的水杯进价各是多少元?(2)在销售过程中,A 型水杯因为物美价廉而更受消费者喜欢.为了增大B 型水杯的销售量,超市决定对B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B 型水杯降价多少元时,每天售出B 型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A 型水杯可获利10元,售出一个B 型水杯可获利9元,超市决定每售出一个A 型水杯就为当地“新冠疫情防控”捐b 元用于购买防控物资.若A 、B 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b 为多少?利润为多少?【答案】(1)A 型号水杯进价为20元,B 型号水杯进价为30元;(2)超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元;(3)A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元.【分析】(1)主要运用二元一次方程组,设A 型号水杯为x 元,B 型号水杯为y 元,根据表格即可得出方程组,解出二元一次方程组即可得A 、B 型号水杯的单价;(2)主要运用二次函数,由题意可设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w ,每个水杯的利润为()4430z --元;每降价1元,多售出5个,可得售出的数量为()205z +个,根据:利润=(售价-进价)×数量,可确定函数关系式,依据二次函数的基本性质,开口向下,在对称轴处取得最大值,即可得出答案;(3)根据(1)A 型号水杯为20元,B 型号水杯为30元.设10000元购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,可列出方程组,利用代入消元法化简得到利润W 的函数关系式,由于利润不变,所以令未知项的系数为0,即可求出b ,W .【解析】(1)解:设A 型号水杯进价为x 元,B 型号水杯进价为y 元,根据题意可得:100200800020030013000x y x y +=ìí+=î,解得:2030x y =ìí=î,∴A 型号水杯进价为20元,B 型号水杯进价为30元.(2)设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w ,根据题意可得:()()4430205w z z =--+,化简得:2550280w z z =-++,当()505225b z a =-=-=´-时,255505280405max w =-´+´+=,∴超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元.(3)设购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,根据题意可得:()203010000109m n W b m n +=ìí=-+î①②将①代入②可得:()100002010930m W b m -=-+´,化简得:()()106300043000W b m b m =--+=-+,使得A ,B 两种杯子全部售出后,捐款后所得利润不变,则40b -=,得4b =,当4b =时,3000W =,∴A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元.【点睛】题目主要考察二元一次方程、一元二次函数的以及一次函数的应用,难点是对题意的理解及对函数和方程的综合运用.22.如图,在平面直角坐标系中,点F 的坐标是(4,2),点P 为一个动点,过点P 作x 轴的垂线PH ,垂足为H ,点P 在运动过程中始终满足PF PH =【提示:平面直角坐标系内点M 、N 的坐标分别为11(,)x y 、22(,)x y ,则2222121()()MN x x y y =-+-】(1)判断点P 在运动过程中是否经过点C (0,5)(2)设动点P 的坐标为(,)x y ,求y 关于x 的函数表达式:填写下表,并在给定坐标系中画出 函数的图象:x ...02468...y ......(3)点C 关于x 轴的对称点为C ¢,点P 在直线C F ¢的下方时,求线段PF 长度的取值范围【答案】(1)点P 在运动过程中经过点C (0,5);(2)y 与x 的函数表达式为21254y x x =-+,表格和图。

中考一次函数压轴题集锦(含分析、答案、点评)

中考一次函数压轴题集锦(含分析、答案、点评)

一.解答题(共30小题)1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO 于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形若存在,求出T的值.2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.》(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积若存在,请求出点N的坐标;若不存在,请说明理由.3.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.4.如图,在平面直角坐标系xoy中,点A(1,0),点B(3,0),点,直线l经过点C,(1)若在x轴上方直线l上存在点E使△ABE为等边三角形,求直线l所表达的函数关系式;!(2)若在x轴上方直线l上有且只有三个点能和A、B构成直角三角形,求直线l所表达的函数关系式;(3)若在x轴上方直线l上有且只有一个点在函数的图形上,求直线l所表达的函数关系式.5.如图1,直线y=﹣kx+6k(k>0)与x轴、y轴分别相交于点A、B,且△AOB的面积是24.(1)求直线AB的解析式;(2)如图2,点P从点O出发,以每秒2个单位的速度沿折线OA﹣OB运动;同时点E从点O出发,以每秒1个单位的速度沿y轴正半轴运动,过点E作与x轴平行的直线l,与线段AB相交于点F,当点P与点F重合时,点P、E均停止运动.连接PE、PF,设△PEF的面积为S,点P运动的时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过P作x轴的垂线,与直线l相交于点M,连接AM,当tan∠MAB=时,求t值.!6.首先,我们看两个问题的解答:问题1:已知x>0,求的最小值.问题2:已知t>2,求的最小值.问题1解答:对于x>0,我们有:≥.当,即时,上述不等式取等号,所以的最小值.问题2解答:令x=t﹣2,则t=x+2,于是.由问题1的解答知,的最小值,所以的最小值是.弄清上述问题及解答方法之后,解答下述问题:在直角坐标系xOy中,一次函数y=kx+b(k>0,b>0)的图象与x轴、y轴分别交于A、B两点,且使得△OAB的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△AOB面积的最小值.《7.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有_________个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标_________;(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N的坐标.8.如图,已知AOCE,两个动点B同时在D的边上按逆时针方向A运动,开始时点F在点FA位置、点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的最大面积;(2)在前10秒内,求x两点之间的最小距离,并求此时点P,Q的坐标."9.若直线y=mx+8和y=nx+3都经过x轴上一点B,与y轴分别交于A、C(1)填空:写出A、C两点的坐标,A_________,C_________;(2)若∠ABO=2∠CBO,求直线AB和CB的解析式;(3)在(2)的条件下若另一条直线过点B,且交y轴于E,若△ABE为等腰三角形,写出直线BE的解析式(只写结果).10.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(﹣4,0),点B的坐标为(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P'(点P'不在y轴上),连接P P',P'A,P'C.设点P的横坐标为a.(1)当b=3时,求直线AB的解析式;(2)在(1)的条件下,若点P'的坐标是(﹣1,m),求m的值;(3)若点P在第一像限,是否存在a,使△P'CA为等腰直角三角形若存在,请求出所有满足要求的a的值;若不存在,请说明理由.11.如图,四边形OABC为直角梯形,BC∥OA,A(9,0),C(0,4),AB=5.点M从点O出发以每秒2个单位长度的速度向点A运动;点N从点B同时出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.(1)求直线AB的解析式;(2)t为何值时,直线MN将梯形OABC的面积分成1:2两部分;(3)当t=1时,连接AC、MN交于点P,在平面内是否存在点Q,使得以点N、P、A、Q为顶点的四边形是平行四边形如果存在,直接写出点Q的坐标;如果不存在,请说明理由.…12.如图所示,在平面直角坐标系中,已知点A(0,6),点B(8,0),动点P从A开始在线段AO上以每秒1个单位长度的速度向点O运动,同时动点Q从B开始在线段BA上以每秒2个单位长度的速度向点A运动,设运动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△ABO相似13.如图,在平面直角坐标系中,O为坐标原点,P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,C(a,0),点E在y轴上,点D,F在x轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,﹣x+y=1.(1)求点D的坐标;(2)用含有a的式子表示点P的坐标;(3)图中面积相等的三角形有几对>14.如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=,点P在线段OC上,且PO、OC的长是方程x2﹣15x+36=0的两根.(1)求P点坐标;(2)求AP的长;(3)在x轴上是否存在点Q,使四边形AQCP是梯形若存在,请求出直线PQ的解析式;若不存在,请说明理由.15.已知函数y=(6+3m)x+(n﹣4).(1)如果已知函数的图象与y=3x的图象平行,且经过点(﹣1,1),先求该函数图象的解析式,再求该函数的图象与y=mx+n的图象以及y轴围成的三角形面积;(2)如果该函数是正比例函数,它与另一个反比例函数的交点P到轴和轴的距离都是1,求出m和n的值,写出这两个函数的解析式;、(3)点Q是x轴上的一点,O是坐标原点,在(2)的条件下,如果△OPQ是等腰直角三角形,写出满足条件的点Q的坐标.16.如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点C在y 轴上,OA和OC是方程的两根(OA>OC),∠CAO=30°,将Rt△OAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE.(1)求线段OA和OC的长;(2)求点D的坐标;(3)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D、C为顶点的四边形是平行四边形若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,△AOB为等腰三角形,且OA=OB,过点B作y轴的垂线,垂足为D,直线AB的解析式为y=﹣3x+30,点C在线段BD上,点D关于直线OC的对称点在腰OB上.(1)求点B坐标;<(2)点P沿折线BC﹣OC以每秒1个单位的速度运动,当一点停止运动时,另一点也随之停止运动.设△PQC的面积为S,运动时间为t,求S与t的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,连接PQ,设PQ与OB所成的锐角为α,当α=90°﹣∠AOB时,求t值.(参考数据:在(3)中,取.)18.如图,在平面直角坐标系中,直线l经过点A(2,﹣3),与x轴交于点B,且与直线平行.(1)求:直线l的函数解析式及点B的坐标;(2)如直线l上有一点M(a,﹣6),过点M作x轴的垂线,交直线于点N,在线段MN上求一点P,使△PAB是直角三角形,请求出点P的坐标.19.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P."(1)求点P的坐标;(2)求S△OPA的值;(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.20.如图,在平面直角坐标系中,点A(2,0),C(0,1),以OA、OC为边在第一象限内作矩形OABC,点D(x,0)(x>0),以BD为斜边在BD上方做等腰直角三角形BDM,作直线MA交y轴于点N,连接ND.(1)求证:①A、B、M、D四点在同一圆周上;②ON=OA;(2)若0<x≤4,记△NDM的面积为y,试求y关于x的函数关系式,并求出△NDM面积的最大值;(3)再点D运动过程中,是否存在某一位置,使DM⊥DN若存在,请求出此时点D的坐标;若不存在,请说明理由.【21.如图(1),直线y=kx+1与y轴正半轴交于A,与x轴正半轴交于B,以AB为边作正方形ABCD.(1)若C(3,m),求m的值;(2)如图2,连AC,作BM⊥AC于M,E为AB上一点,CE交BM于F,若BE=BF,求证:AC+AE=2AB;(3)经过B、C两点的⊙O1交AC于S,交AB的延长线于T,当⊙O1的大小发生变化时,的值变吗若不变证明并求其值;若变化,请说明理由.22.如图:直线y=﹣x+18分别与x轴、y轴交于A、B两点;直线y=2x分别与AB交于C点,与过点A且平行于y 轴的直线交于D点.点E从点A出发,以每秒1个单位的速度沿x轴向左运动,过点E作x轴的垂线,分别交直线AB、OD于P、Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).(1)当0<t<12时,求S与t之间的函数关系式;(2)求(1)中S的最大值;"(3)当t>0时,若点(10,10)落在正方形PQMN的内部,求t的取值范围.23.直线l:y=﹣x+3分别交x轴、y轴于B、A两点,等腰直角△CDM斜边落在x轴上,且CD=6,如图1所示.若直线l以每秒3个单位向上作匀速平移运动,同时点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动,如图2所示,设移动后直线l运动后分别交x轴、y轴于Q、P两点,以OP、OQ为边作如图矩形OPRQ.设运动时间为t秒.(1)求运动后点M、点Q的坐标(用含t的代数式表示);(2)若设矩形OPRQ与运动后的△CDM的重叠部分面积为S,求S与t的函数关系式,并写出t相应的取值范围;(3)若直线l和△CDM运动后,直线l上存在点T使∠OTC=90°,则当在线段PQ上符合条件的点T有且只有两个时,求t的取值范围.24.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).)(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.25.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标;(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形若存在,请直接写出点H的坐标;若不存在,请说明理由.《26.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.27.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,!①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值若存在,求出这个最小值;若不存在,说明理由.28.已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.(1)求B点坐标;(2)设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;—②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.29.如图,在平面直角坐标系xoy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、b满足.(1)求直线AP的解析式;(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S 的坐标;(3)如图2,点B(﹣2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCE,EF⊥x轴,F为垂足,下列结论:①2DP+EF的值不变;②的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.\30.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D 分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合.(1)求点F的坐标和∠GEF的度数;(2)求矩形ABCD的边DC与BC的长;(3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围.答案与评分标准一.解答题(共30小题)1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO 于D,点A的坐标为(﹣3,1).;(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形若存在,求出T的值.考点:一次函数综合题。

能力提升:一次函数的综合与新定义函数问题压轴题七种模型全攻略(解析版)

能力提升:一次函数的综合与新定义函数问题压轴题七种模型全攻略(解析版)

专题14能力提升专题:一次函数的综合与新定义函数问题压轴题七种模型全攻略【考点导航】目录【典型例题】 (1)【考点一一次函数与三角形的面积问题】 (1)【考点二一次函数与三角形全等问题】 (9)【考点三一次函数与三角形存在问题】 (21)【考点四一次函数中折叠问题】 (28)【考点五一次函数——分段函数】 (35)【考点六绝对值的一次函数】 (39)【考点七新定义型一次函数】 (44)【典型例题】【考点一一次函数与三角形的面积问题】例题:(23-24八年级下·北京西城·开学考试)如图,直线443y x=-+与y轴交于点A,与直线4455y x=+交于点B,且直线4455y x=+与x轴交于点C,求ABC的面积.【答案】ABC的面积为4【分析】此题考查一次函数与坐标轴的交点坐标的求法,两个一次函数交点的坐标的求法,理解方程及方程组与一次函数的关系是解题的关键.先根据函数解析式分别求出点A、B、C、D的坐标,再根据ABC∆的【变式训练】1.(23-24八年级上·安徽宿州·期末)在平面直角坐标系xOy 中,直线26y x =+与x 轴交于点A ,与y 轴交于点B ,则AOB 的面积是.【答案】92.(23-24八年级上·贵州贵阳·期中)如图,在平面直角坐标系中,一次函数12y x =+的图象与x 轴,y 轴分别交于点A ,21,3B y x b =-+的图象与x 轴,y 轴分别交于点,D E ,且两个函数图象相交于点(),5C m .(1)填空:b =______;(2)求ACD 的面积;(3)在线段AD 上是否存在一点M ,使得ABM 的面积与四边形BMDC 的面积比为4:21?若存在,诸求出点M 的坐标;若不存在,请说明理由.3.(23-24八年级上·黑龙江哈尔滨·期末)如图,在平面直角坐标系中,O 为坐标原点.A 、B 两点的坐标分别为(),0A m 、()0,B n ,且22458160m mn n n -+-+=;(按下列题目要求,自行补出需要的图形)(1)求OA OB 、的长;(2)点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.连接PB,若POB 的面积为s,求s与t之间的关系式(不用写出t的取值范围);(3)在(2)的条件下,过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,连接AE,连接BP并的面积等于8时,请求出点F的坐标.延长交AE于点F,在点P运动的过程中,当POB则1628S t =-=,则4t =,即4AP OP OB ===,∵90EOP EDA ∠=∠=︒∠,∴BAO PEO ∠=∠,∵BO PO POE BAO =∠=∠,∴()AAS ABO EPO ≌,同理可得:()AAS ABO EPO ≌,∴8OE AO ==,∴45MEF ∠=︒,4.(22-23八年级上·江苏苏州·期末)如图在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A ,动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的函数关系式;(2)求OAB 的面积;(3)是否存在点M ,使OMC 的面积与OAB 的面积相等?若存在求出此时点M 的坐标;若不存在,说明理由.【答案】(1)6y x =-+(2)6(3)()2,1或()2,4或()2,8-【分析】本题考查了待定系数法求一次函数的解析式,三角形的面积,根据三角形的面积推得点M 的横坐标为2或2-是解题的关键.(1)根据待定系数法求一次函数的解析式即可;(2)根据三角形的面积公式即可求解;(3)根据待定系数法求直线OA 的解析式,根据面积公式求得M 的横坐标,然后代入解析式即可求得M 的坐标.设OA 的解析式是y mx =,根据题意,得:42m =,解得:12m =;则直线OA 的解析式是:y =∵点()0,6C ,【考点二一次函数与三角形全等问题】例题:(22-23八年级下·北京平谷·期末)如图,直线24y x =-与x 轴和y 轴分别交与A ,B 两点,射线AP AB ⊥于点A ,若点C 是射线AP 上的一个动点,点D 是x 轴上的一个动点,且以A ,C ,D 为顶点的三角形与AOB 全等,则OD 的长为.225OD OA AD=+=+;如图2所示,当ACD BAO△≌△246OD OA AD=+=+=.综上所述,OD的长为6或2故答案为:6或225+.【点睛】本题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图【变式训练】1.(23-24八年级上·广东深圳·期中)如图,直线3:34l y x=-+与x轴、y轴分别交于A、B两点,OM AB⊥于点M,点P为直线l上不与点A、B重合的一个动点.在y轴上存在()个点Q,使得以O、P、Q为顶点的三角形与OMP全等.A .2B .4C .5D .6【答案】B 【分析】本题考查一次函数与几何的综合应用,全等三角形的判定,根据题意,可知90OMP ∠=︒,要使以O 、P 、Q 为顶点的三角形与OMP 全等,则90OQP ∠=︒,再根据OP OP =,只需再确定一组对边相等,即可得到两个三角形全等,进行讨论即可.【详解】解:∵3:34l y x =-+,∴当0x =时,3y =,当0y =时,4x =,∴()()4,0,0,3A B ,∴224,3,345OA OB AB ===+=,∵OM AB ⊥,P 为直线l 上不与点A 、B 重合的一个动点,∴90OMP ∠=︒,1122ABC S OA OB AB OM =⋅=⋅ ,∴355OM ⨯=,∴125OM =,∵要使以O 、P 、Q 为顶点的三角形与OMP 全等,则90OQP ∠=︒,又∵OP OP =,∴分两种情况进行讨论,①当OM OQ =时,此时120,5Q ⎛⎫ ⎪⎝⎭或120,5Q ⎛⎫- ⎪⎝⎭,OMP OQP ≌△△,如图所示:或,②当OM PQ =时,此时1224,55P ⎛⎫- ⎪⎝⎭或126,55P ⎛⎫ ⎪⎝⎭,OMP PQO ≌△△,如图所示,或;综上,共存在4个点Q ;故选B .2.(23-24八年级上·河南郑州·期中)如图,直线22y x =-+与x 轴、y 轴分别交于A ,B 两点,射线AC AB ⊥于点A ,若点P 是射线AC 上的一个动点,点Q 是x 轴上的一个动点,且以P ,Q ,A 为顶点的三角形与AOB 全等,则点P 的坐标为.AC AB ⊥,90AOB ∠=︒,∴90PAQ BAO ∠+∠=︒,∠∴PAQ ABO ∠=∠,∴当APQ BAO △≌△时,AQ ∴133OQ OA AQ =+=+=∴点P 的坐标为:()3,1②当90APQ ∠=︒时,如图所示:过点P 作PD AQ ⊥于D ,PAQ ABO ∠=∠,当PQA BOA △≌△时,PQ 在Rt APQ △中,由勾股定理得:由三角形面积公式得APQ S V 2125AP PQ PD AQ ⋅⨯∴===在Rt APD 中,由勾股定理得:22455AD AP PD =-=,3.(23-24八年级上·陕西西安·期末)如图,直线43y x =-+与x 轴,y 轴分别交于A ,B 两点,点C 的坐标为(3,0)-,连接BC ,过点O 作OD AB ⊥于点D ,点Q 为线段BC 上一个动点.(1)BC 的长为_____________,OD 的长为_____________;(2)BO 上是否存在一点P ,使得BPQ V 与OAD △全等?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.(23-24八年级上·浙江绍兴·期末)已知:如图,平面直角坐标系中,一次函数21y x =-的图象分别与x 轴,y 轴交于点A ,B ,点C 的坐标是()3,0.(1)求直线BC 的函数表达式;(2)若直线AB 上有一点P ,且2PBC ABC S S = ,求点P 的坐标;(3)直线BC 上方..是否存在一点M ,使得M 、B 、C 三点构成的三角形与ABC 全等?若存在,请直接写出点M 的坐标;若不存在,请说明理由.如图,3PAC ABC S S =△△,得12AC ⋅⋅1P AC ABC S S = ,得12AC y ⋅⋅设点11,36M a a ⎛⎫- ⎪⎝⎭,∵MC AB =,254AB =,MC ∴12a =,272a =(舍去),5.(23-24八年级上·广东梅州·期中)如图:直线3y kx =+与x 轴、y 轴分别交于A 、B 两点,43OA OB =,点(,)C x y 是直线3y kx =+上与A 、B 不重合的动点.(1)求直线AB 的解析式;(2)作直线OC ,当点C 运动到什么位置时,AOB 的面积被直线OC 分成1:2的两部分;(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使BCD △与AOB 全等?若存在,求出点C 的坐标;若不存在,说明理由.此时123AOC AOBS SD D==,∴122COA y⋅=,即142Cy⨯⨯=1Cy∴=,3此时243AOC AOB S S ∆∆==,∴142C OA y ⋅=,即142⨯5BD AB ∴==,BC =(0,2)D ∴-,AC AB =-设3,34C t t ⎛⎫-+ ⎪⎝⎭,则OH 而222AH CH AC +=,233BD OB ∴==,CDB ∠=(0,6)D ∴,在334y x =-+中,令y =【考点三一次函数与三角形存在问题】例题:(2023春·八年级课时练习)如图,平面直角坐标系中,一次函数y kx b =+的图象与x 轴、y 轴分别交于点()100A ,,()05B ,.点F 是线段AB 上的一个动点(不与A ,B 重合),连接OF .设点F 的横坐标为x .(1)求一次函数的解析式;(2)求OAF△的面积S与x之间的函数关系式,并写出自变量(3)当OAF△的面积12 S S =△①判断此时线段OF与AB②第四象限内是否存在一点标,若不存在,请说明理由.情况一:∵1AFP △是等腰直角三角形,∴1AF PF =,11PFA P NF AEF ∠=∠=∠∴111NFP NPF NFP EFA ∠+∠=∠+∠∴1NPF EFA ∠=∠,【变式训练】(1)求m ,n 的值;(2)已知M 是x 轴上的动点,当以【答案】(1)1m =,2n =(2)()2,0或()3,0【点睛】本题考查用待定系数法确定一次函数的解析式,一次函数图像上点的坐标特征,两点间距离,直角三角形的性质以及勾股定理.分90AMP ∠=︒及90APM ∠=︒两种情况求出点M 的坐标是解题的关键.【考点四一次函数中折叠问题】(1)填空:b =______,m =______,k =______;(2)如图2.点D 为线段BC 上一动点,将ACD 沿直线AD 翻折得到①求线段AE 的长度;②当点E 落在y 轴上时,求点E 的坐标;③若DEF 为直角三角形,请直接写出满足条件的点D 的坐标.45AE =,2280HE AE AH \=-=-2194OE HE OH ∴=-=-,∴点E 的坐标为04219,-(当90EDF ∠=︒时,由翻折得1359045ADO ∴∠=︒-︒=︒,4AG = ,4DG AG ∴==,42OD DG OG ∴=-=-=【变式训练】(1)求直线AB和AC的表达式.+最小时,求点P的坐标.(2)点P是y轴上一点,当PA PC△沿直线AD翻折得到(3)如图2,点D为线段BC上一动点,将ABD为直角三角形,求点D坐标.13∴12x y =⎧⎨=⎩,()2,0M -,∴()1,2A ,()2,0M -,设直线∴202p q p q =+⎧⎨=-+⎩,2p ⎧=∵()1,2A ,()3,0B -,ABD △∴2AG =,ADB ADE ∠=∠,∴360902ADB ADE °-°Ð=Ð=∴45ADG ∠=︒,AG GD ==∵()1,2A ,()3,0B -,ABD △∴2AF =,ADB ADE ∠=∠∴,DGA DFA DF DG GAD FAD AD AD ∠=∠⎧⎪=∠=⎨⎪=⎩【考点五一次函数——分段函数】例题:在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质的过程.小红对函数1(3)2(3)x x y x -<⎧=⎨≥⎩的图象和性质进行了如下探究,请同学们认真阅读探究过程并解答:(1)请同学们把小红所列表格补充完整,并在平面直角坐标系中画出该函数的图象:(2)根据函数图像可知,这个函数图像不关于2【点睛】本题主要考查了一次函数的图像与性质,解题的关键在于能够熟练掌握一次函数的图像与性质.【变式训练】(2)通过观察图象,写出该函数的一条性质:x>时,y随x的增大而增大(答案不唯一)(2)由图象可知,当0故答案为当0x >时,y 随x 的增大而增大(答案不唯一);(3)函数|4|1y x =-+是由函数||y x =向右平移4个单位,再向上平移1个单位得来的,利用(1)中给出的平面直角坐标系画出函数|4|1y x =-+图象如图所示.【点睛】本题考查了一次函数的图象和性质,坐标与图形变换-平移,能根据图象得出正确信息是解此题的关键.【考点六绝对值的一次函数】下面是小慧的探究过程,请补充完成:(1)函数1y x =-的自变量x 的取值范围是(2)列表,找出y 与x 的几组对应值.其中,(3)在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)函数1y x =-的最小值为____________(5)结合函数的图象,写出该函数的其他性质(一条即可)【答案】(1)任意实数(4)0(5)x<1时,y随x增大而减小;x>1时,y随x增大而增大;图象关于直线y=1对称(写一条即可)【分析】(1)根据一次函数的性质即可得出结论;(2)把x=-1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.(5)根据函数图象解答即可.(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=-1时,y=|-1-1|=2,∴b=2.故答案为:2;(3)如图,(4)由函数图象可知,函数的最小值为0.故答案为:0.(5)x<1时,y随x增大而减小;x>1时,y随x增大而增大;图象关于直线y=1对称(写一条即可).【点睛】本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.【变式训练】(4)小明根据画出的函数图象,写出此函数的两条性质.【答案】(1)任意实数(2)1(3)见解析(4)见解析【分析】(1)根据题目中的函数解析式,可知(2)根据函数解析式可以得到m的值;(4)解:由函数图象可知,①函数有最小值为0;②当x>-1时,y随x的增大而增大;③图象关于过点(-1,0)且垂直于x轴的直线对称.【点睛】本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,画出相应的函数图象,利用数形结合的思想解答.(4)根据所画函数图象,你能得出哪些合理的结论?(写出一条即可)【答案】(1)全体实数(2)1,2(3)见解析(4)函数有最小值为0或当x>-1时,y随x【分析】(1)根据题目中的函数解析式,可知(2)根据函数解析式可以得到m、n的值;(3)根据表格中的数据可以画出相应的函数图象;(4)解:由函数图象得:函数有最小值为0或当x>-1时,y随x的增大而增大或图象关于过点(-2,0)且垂直于x轴的直线对称.【点睛】本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,画出相应的函数图象,利用数形结合的思想解答.【考点七新定义型一次函数】【变式训练】1.(2023下·福建南平·八年级顺昌县第一中学校考阶段练习)定义:对于一次函数12y ax b y cx d =+=+、,我们称函数()()(0)y m ax b n cx d ma nc =++++≠为函数12y y 、的“组合函数”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图1,在底面积为100cm2、高为20cm的长方体水槽内放人一个圆柱形烧杯.以恒定不变的流量速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h与注水时间t之间的函数关系如图2所示.(1)写出函数图象中点A、点B的实际意义; (2)求烧杯的底面积; (3)若烧杯的高为9cm,求注水的速度及注满水槽所用的时间.

2.将一块a×b×c的长方体铁块(如图1所示,其中a<b<c,单位:cm)放入一长方体(如图2所示)水槽中,并以速度v(单位:cm3/s)匀速向水槽注水,直至注满为止.已知b为8cm,水槽的底面积为180cm2.若将铁块b×c面放至水槽的底面,则注水全过程中水槽的水深y(cm)与注水时间t(s)的函数图象如图3所示(水槽各面的厚度忽略不计). (1)水槽的深度为 cm,a= cm;(2)注水速度v及c的值; (3)将铁块的a×b面、a×c面放至水槽的底面,试分别求注水全过程中水槽的水深y(cm)与注水时间t(s)的函数关系及t的取值范围,并画出图象(不用列表).

3.如图1,一长方体水槽内固定一个小长方体物体,该物体的底面积是水槽底面积的1/4 ,现以速度v(单

位:cm3/s)均匀地沿水槽内壁向容器,直至注满水槽为止,如图2所示. (1)在过程中,水槽中水面恰与长方体齐平用了 s,水槽的高度为 cm; (2)若小长方体的底面积为a(cm2),求的速度v.(用含a的式子表示); (3)若水槽内固定的长方体为一无盖的容器(小长方体的尺寸不变,质量,体积忽略不计),开口向上,请在图3画出水槽中水面上升的高度h(cm)与时间t(s)之间的函数关系图象. 4.如图,有一个底面积为15cm×12cm的长方体容器A,和一个棱长为6cm×5cm×10cm的长方体铁块B. (1)若将铁块B的6cm×10cm面放到容器A的底面上往A中,过程中A中水面高度y(cm)与时间x(s)的函数图象如图①所示. ①容器A的高度是 cm. ②求(1)中速度v(cm/s )和图①中的t的值 (2)若将铁块B的6cm×5cm面和5cm×10cm面分别放入容器A底面,以同样速度向容器,请在图②、图③中画出水面水面高度y(cm)与时间x(s)的函数关系大致图象.

5.将一块 a (cm)×b (cm )×c (cm) (a<b<c)的长方体铁块(如图1所示)放入一长方体水槽(如图2所示)内,铁块与水槽四壁不接触.现向水槽内匀速,直至注满水槽为止.因为铁块在水槽内有三种不同的放置方式,所以水槽内的水深h (cm)与时间 t (s)的函数关系用图象法来反映其全过程有三个不同的图象,如图3、4、5所示(说明:三次速度相同).

(1)根据图象填空 ①水槽的深度是 cm,a= ,b= ; ②t1与t2的大小关系是t1 t2,并求出t1、t2的值; (2)求水槽内的底面积和速度; (3)求c的值. 6.将一块a(cm)×b(cm)×12(cm)(a<b<12)的长方体铁块(如图1)放入一圆柱形水槽(如图2)内,铁块与水槽侧壁不接触.现向水槽内匀速,直至注满水槽为止.在安放的过程中发现只有2种方式可以将铁块全部浸没水槽内.对这2种放法探究后发现,可用图象法(如图3、4所示)来反映水槽内的水深h(cm)与时间t(s)的函数关系.(2次速度相同). (1)根据图象填空:水槽的深度为 cm,a= cm,b= cm,t2= s; (2)当24s,试计算图4方式中铁块露出水面的高度是多少? (3)求圆柱形水槽的底面积?

7.如图1是甲、乙两个圆柱形水槽的轴截而示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米>与时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题: (1)图2中折线ABC表示 槽中水的深度与时间之间的关系,线段DE表示 槽中水的深度与时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是 . (2)多长时间时,甲、乙两个水槽中水的深度相同? (3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积; (4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果) 2.(1)根据图3可知,分段函数的连接出坐标是(21,5),即21s时,水面高度是5cm,即a=5;函数图象的末尾是(66,10),即66s时,水注满水槽,故水槽深度是10cm. 故填空依次为:10,5(2分)

(2)由题意 180×5=5×8×c+21v 180×10=5×8×c+66v (3分) 解得v=20,c=12 即注水速度为20cm3/s,c=12cm.(4分)

(3)①以a×b面为底面时, ∵c=12>10,即此时铁块高度大于水槽高度 设注满水的时间为t1s ∴180×10=5×8×10+20t1解得t1=70s(5分) ∵(180-5×8)y=20t ∴y=1 7 t(0≤t≤70)(6分) (画出图象)(7分)

②以a×c面为底面时 ∵b=8<10,即此时铁块高度小于水槽高度 ∴注满水时所用时间为66s(8分) 设水刚至铁块顶部的时间为t2s ∴180×8=5×8×12+20t 解得t2=48(9分) 当0≤t≤48时,(180-5×12)y=20t,即y=1 6 t(10分) 当48<t≤66时,180(y-8)=20(t-48),即y=1 9 t+8 3 即y= 1 6 t,(0≤t≤48) 1 9 t+8 3 .(48<t≤66) .(11分) (画出图象)(12分)

3.由图象可以得出18秒时水槽中水面恰与长方体齐平, 由图象可以得出90秒时水槽的高度是20厘米, 故水槽中水面恰与长方体齐平用了18s,水槽的高度是20厘米. 故答案为:18,20. (2)设注水时间18秒时水槽的高度设为m厘米,由题意,得 4am-am v =18① 4a×20-4am v =90-18② , 由①,得 am=6v ③, 把③代入②,得 80a-24v=72v v=5 6 a. (3)由题意可以知道当18分钟时注水的体积应该是小长方体体积的三倍, 则注满小长方体的时间就为18÷3=6s,而后面注水的时间于原来相同是72s, 则注满整个水槽的时间是96s. 作图为: 4.(1)①由函数值的最大值可得容器A的高度; ②易得如此放置时铁块B水平的容器A的容积,除以相应的时间可得注水速度,进而让铁块B上方的容积除以注水速度后加上前面时间即为t的值; (2)铁块B的6cm×5cm面放置于容器A中,图象是一条线段,算出剩余的容积,除以注水速度,求得时间即可; 5cm×10cm面置于容器A中,图象是分段函数,先算出到达6cm时水的体积,除以注水速度,求得时间,到达8cm时的时间和(1)中的图象相同.解答:解:(1)①到8cm时,注水停止, ∴容器A的高度是8cm, 故答案为8; ②注到5cm时水的容积为:(15×12-6×10)×5=600cm3, 注水速度v=600÷40=15cm/s; t=40+15×12×3÷15=76s;

(2)铁块B的6cm×5cm面放置于容器A中,水的容积为:(15×12-6×5)×8=1200cm3, ∴注满用的时间为:1200÷15=80s; 5cm×10cm面置于容器A中, 注水到达6cm时水的体积为:(15×12-10×5)×6=780cm3, 780÷15=52s;

5.(1)①由图3、4水深到10cm以后不在增加,可知水槽深10cm,由图3可知长方体的最短棱长a的值,由图4可知处于中间的棱长b的值; ②根据水槽的容积等于长方体的体积与注入水的体积,又注入水的速度相同,所以时间t1与t2相等;设水槽的底面积为s,根据图3图4刚好没过长方体时的注入水量表示出注入水的速度相同列式整理得到s与c的关系,然后用c表示出注入速度,再根据图3,求出注入剩下的4cm所用的时间,加上21即可得到t1的值,也就是t2的值; (2)根据图5注入水的体积等于水槽中水的高度×(水槽的底面积-a、b为底面的面积),计算即可求出c的值,然后再代入水槽底面积表达式与速度表达式计算即可得解; (3)在(2)中已求.解答:解:(1)①由图3、图4可知水槽深度是10cm, 由图3知a=6cm,由图4可知b=9cm, ②前两种是完全浸没的,注水容积相同, 所以t1=t2, 设水槽底面积为s, 根据图3、4,注入水的速度为6(s-9c) 21 =9(s-6c) 45 , 整理得,10s-90c=7s-42c, 解得s=16c, 所以,注水速度为,6(s-9c) 21 =6(16c-9c) 21 =2c, 由图3,(10-6)s 2c =4×16c 2c =32秒, ∴t1=21+32=53秒; t2=t1=53秒; 故答案为:①10,6cm,9cm,②=;

(2)根据图5,注入水的体积=10(s-6×9)=62×2c, 即10(16c-54)=124c, 解得c=15, 所以,水槽的底面积为s=16c=16×15=240cm2, 注水速度为2c=2×15=30cm3/s;

(3)c=15cm(上一问已求). 6. (1)根据已知图象,可得水槽的深度为10cm,由图3可得此时如图1放置,故高a=6cm,由图4可得此时宽作为高放置,故宽B=9cm,由两次注满的时间应相同,故t2=64s; (2)首先求得当在0≤x≤54时的解析式,然后代入t=24,即可求得答案; (3)设圆柱形水槽的底面积为Scm3,根据题意得:注水速度为:4S 40 =S 10 (cm3/s),又由6S=24S 10 +6×9×12,即可求得答案.解答:解:(1)根据图象填空:水槽的深度为10cm,a=6cm,b=9cm,t2=64s; 根据图象可得水槽的深度为10cm, 由图3可得此时如图1放置,故高a=6cm, 由图4可得此时宽作为高放置,故宽B=9cm, ∵两次注满的时间应相同,故t2=64s; 故答案为:10,6,9,64;

(2)设图4中,在0≤x≤54时的解析式为:h=kt, 则9=54k, 解得:k=1 6 , 则当在0≤x≤54时的解析式为:h=1 6 t, 当t=24时,h=1 6 ×24=4, 则图4方式中铁块露出水面的高度是:9-4=5(cm);

(3)设圆柱形水槽的底面积为Scm2, 根据题意得:注水速度为:4S 40 =S 10 (cm3/s), ∴6S=24S 10 +6×9×12, 得:S=180. 答:圆柱形水槽的底面积为180cm2.

相关文档
最新文档