九年级数学下册第28章锐角三角形函数重难点突破作业课件新版新人教版
合集下载
人教版九年级下册数学作业课件 第二十八章 锐角三角函数 第1课时 仰角、俯角与解直角三角形

=
3
3)
=(30
3
+45)米,
3
∴DG=EH=AH-AE=(30 3 +45)-15=(30 3 +30)米,(30 3 +30)÷5=(6 3
+6)秒,∴经过(6 3 +6)秒时,无人机刚好离开了操控者的视线
2.如图,在高为 2 m,倾斜角为 30°的楼梯表面铺地毯,地毯的长度至少需要 (C )
A.[2பைடு நூலகம்( 3 +1)] m B.4 m C.2( 3 +1) m D.2( 3 +3) m
3.(威海中考)小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的 河流宽度.他先在河岸设立 A,B 两个观测点,然后选定对岸河边的一棵树记为点 M.测得 AB=50 米,∠MAB=22°,∠MBA=67°.请你依据所测数据求出这段河流的 宽度.(结果精确到 0.1 米,参考数据:sin22°≈38 ,cos22°≈1156 ,tan22°≈25 ,sin67°≈1123 , cos67°≈153 ,tan67°≈152 )
2
∴x = 17 ≈0.82 , ∴OD = 0.82 m , ∴DH = OH - OD = OA - OD = 3.4 - 0.82 =
5
2.58≈2.6(m),答:最大水深约为 2.6 m.
13.(广元中考)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到 一定高度 D 点处时,无人机测得操控者 A 的俯角为 75°,测得小区楼房 BC 顶端点 C 处的俯角为 45°.已知操控者 A 和小区楼房 BC 之间的距离为 45 米,小区楼房 BC 的高 度为 15 3 米.
解:如图,过点 D 作 DG⊥AE 于点 G,得矩形 GBFD,∴DF=GB,在 Rt△GDE 中,DE=80 cm,∠GED=48°,∴GE=DE·cos 48°≈80×0.67=53.6(cm),∴GB= GE+BE≈53.6+110=163.6≈164(cm).∴DF=GB≈164(cm).答:活动杆端点 D 离地面 的高度 DF 约为 164 cm
人教版九年级下册数学作业课件 第二十八章锐角三角函数 专题:求锐角三角函数常用的3种方法(一题多变)

∴BD=CD=k,AD=2k. ∴tanA=BADD=12.
方法总结:作垂线构造直角三角形时“不破坏”特殊 角(30°,45°,60°),如下展示部分常见构造方 法:
题型二 不含特殊角的非直角三角形 3.(1)[延长+连接线段构造直角三角形]如图,在正 方形网格中,已知△ABC 的三个顶点均在格点上, 则∠ACB 的正切值为( D )
◆类型一 构造直角三角形求解 题型一 含特殊角的非直角三角形 1.如图,在△ABC 中,∠B=45°,∠A=75°, AC=8,求 BC 和 AB 的长. 解:如图,过点 A 作 AD⊥BC,垂足为点 D. ∵在 Rt△ABD 中,∠B=45°, ∴∠BAD=45°,BD=AD,AB= 2AD. ∵∠BAC=75°,
2
2
∴AE=125x.
∴tan∠CAD=EACE=15.
◆类型三 利用等角转化求解【转化思想】 7.如图,CD 是 Rt△ABC 斜边 AB 上的高,AC=8, BC=6,则 cos∠BCD 的值是( D ) A.3 B.3 C.4 D.4
543 5
8.如图,在△ABC 中,AC=BC,过点 C 作 CD⊥AB,
(3)[利用垂径定理构造直角三角形]如图,⊙O 为△ABC
的外接圆,⊙O 的半径为 5,BC=8,则 cosA 的值为
3 5
.
10.如图,在矩形 ABCD 中,AB=2,BC=2 5,E 是 BC 的中点,将△ABE 沿直线 AE 翻折,点 B 落在点 F 处,连接 CF,求 cos∠ECF 的值.
A.2
B.2 5 5
C.
5 5
D.12
(2)如图,△ABC 的三个顶点都在正方形网格线的交 点处,将△ABC 绕着点 A 逆时针旋转得到△AB′C′. 若 A,C,B′三点共线,则 tan∠B′CB= 2 ;
人教版九年级数学下册作业课件 第二十八章 锐角三角函数 第2课时 仰角、俯角与解直角三角形

AF的高度约为9.0米
【素养提升】 11.(18分)(广州中考)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的 高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD, 标杆CD的影子为CE,CD=1.6 m,BC=5CD. (1)求BC的长; (2)从条件①,条件②这两个条件中选择一个作为已知,求旗杆AB的高度. 条件①:CE=1.0 m;条件②:从D处看旗杆顶部A的仰角α为54.46°. 注:如果选择条件①和条件②分别作答,按第一个解答计分. 参考数据:sin 54.46°≈0.81,cos 54.46°≈0.58,tan 54.46°≈1.40.
A.8(3- 3 ) m B.8(3+ 3 ) m C.6(3- 3 ) m D.6(3+ 3 ) m
8.(5分)(广西中考)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼 顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120 m,则乙楼的高 CD是__4_0__3____m.(结果保留根号)
第二十八章 锐角三角函数
28.2 解直角三角形及其应用 28.2.2 应用举例
第2课时 仰角、俯角与解直角三角形
仰角与俯角问题 1.(5分)(玉林中考)如图,从热气球A看一栋楼底部C的俯角是( ) D A.∠BAD B.∠ACB C.∠BAC D.∠DAC
2.(5分)(教材P78习题T3变式)如图,某地修建高速公路,要从A地向B地修一条隧道 (点A,B在同一水平面上).为了测量A,B两地之间的距离,一架直升飞机从A地出发, 垂直上升800米到达C处,在C处观察B地的俯角为α,则A,B两地之间的距离为 _____t_a8_n0_0_α__米.
3.(5分)如图,甲,乙两座建筑物相距30 m,从甲顶部点A测得乙顶部点D的仰角为 37°,若甲建筑物AB的高为40 m,则乙建筑物CD的高约为____m6.3 (结果取整数, 参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)
人教版九年级数学下册第28章锐角三角函数PPT课件(2)

典例精析 例1 如图,在Rt△ABC中,∠C = 90°,AC = BC 6 ,解这个直角三角形.
2 ,
BC 6 3, 解: tan A AC 2 A 60 ,
AB 2 AC 2 2.
A
2
C
6
B
B 90 A 90 60 30 ,
练一练
在Rt△ABC中,∠C=90°,a = 30,b = 20,根据条 件解直角三角形. B 解:根据勾股定理
∠A 90 ∠B=90 35 =55 . 解:
b tan B , a b 20 a 28.6. tan B tan 35
A c C 35° a b 20 B
b 20 b 34.9. sin B , c sin B sin 35 c
练一练 1. 在 Rt△ABC 中,∠C=90°,∠B=72°,c = 14. 根据条件解直角三角形. b A 解:sin B , c
合作探究 在图中的Rt△ABC中, (1) 根据∠A=75°,斜边AB=6,你能求出这个直 角三角形的其他元素吗? B
BC sin A BC AB sin A 6 sin 75 AB
6 75° C
AC cos A AC AB cos A 6 cos 75 AB
A A B 90 B 90 A 90 75 15 .
(2) 根据AC=2.4,斜边AB=6,你能求出这个直角三 角形的其他元素吗?
AB2 AC2 BC2 BC AB2 AC2 62 2.42 5.5
AC 2.4 cos A cos A 0.4 A 66 AB 6
A.4 B. 6 C.8 D.10
人教版九年级下册数学《解直角三角形应用举例》锐角三角函数研讨复习说课教学课件

学以致用
如图水坝的横断面是梯形,迎水坡的坡角∠B=30°,背
水坡的坡度为1: 2 (坡面的铅直高度DF与水平宽度AF的
比),坝高CE(DF)是45米,求AF、BE的长,迎水坡BC的长,
以及BC的坡度.
AF=45 2 m BE=45 3
BC=90m
= 1: 3
知识点二:坡度、坡角的实际应用
角三角形;
(3)得到数学问题的答案;
(4)得到实际问题的答案.
课堂小结
1.坡度:我们通常把坡面的铅直高度h和水平宽度 l 的比
叫坡度(或叫坡比)用字母 i 表示:
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
D.500
米
第5课时 解直角三角形
解直角三角形的应用
探索新知
例 1.如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔
80海里的A处,它沿正南方向航行一段时间后,到达位于灯
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
典例讲评
水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡
AB的坡度i=1:3,斜坡CD的坡度i' =1:2.5,求坝底宽AD和斜坡AB
的长.
(精确到0.1m,tan18°26′ ≈0.3333,sin18°26′≈0.3162)
课件
课件
课件
福建省2024九年级数学下册第28章锐角三角函数28.1锐角三角函数2余弦正切课件新版新人教版

∴cos α=AABC,∴AC=coxs α米.故选 B.
返回 目录
4.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,
MN⊥AB于点N,AN=3,AM=4,求cos B的值.
解:∵MN⊥AB,∴∠ANM=90°=∠C.
又∵∠A=∠A,∴∠B=∠AMN.
在Rt△AMN中,AN=3,MN=4,
3
4
3
4
A.5 B.5 C.4 D.3
返回 目录
7.如图,点A(t,3)在第一象限,OA与x轴正半轴所夹的角 为α,tan α= 3 ,则t的值是( C ) 2 A.1 B.1.5 C.2 D.3
返回 目录
8.【2023·深圳福田区期末】如图,某地修建高速公路,要
从A地向B地修一条隧道(点A,B在同一水平面上).为了
解:如图,过点 P 作 PF⊥x 轴于点 F.∵∠CBF=∠DBP=45°,
∴∠PBF=∠DBC.∴tan∠PBF=tan ∠DBC=35.在 Rt△PBF 中,
tan ∠PBF=BPFF.设点 P(x,-x2+3x+4),则-x24+-3xx+4=35,
解得 x1=-25,x2=4(舍去).当 x=-25时,y=--252+3×-25+4=6265,
由勾股定理得AM=5, ∴cos B=cos ∠AMN= MAMN=45 .
返回 目录
5.如图,在Rt△ABC中,∠C=90°,我们把锐角A的对 边与_邻__边_____的比叫做∠A的正切,记作tan A,即tan A=___ab_____.
返回 目录
6.【2023·佛山】在Rt△ABC中,∠C=90°,AB=5, BC=4,则tan A的值为( D )
返回 目录
(2)若BE=6,试求cos∠CDA的值. 解:设⊙O的半径为r.∵OC=3,
新人教版初中数学九年级下册第28章 锐角三角函数《28.2.1解直角三角形》教学PPT

知识梳理
问题2 根据不同的已知条件,归纳相应的解直角三 角形的方法,完成下表填空.
已知条件
解法
一条边 和一个
斜边 c 和 锐角∠A
∠B= b=______
,a=
,
锐角 直角边 a ∠B=______,b=______,
和锐角∠A c=______
两条直角边 c=______,由______
两条边
a和b 直角边 a
实例引入,初步体验
问题2 回想一下,刚才解直角三角形的过程中用 到了哪些知识?你能概括出直角三角形各元素之间的关 系吗?
实例引入,初步体验
(1)三边之间的关系
B
a2+b2=c2(勾股定理) ; (2)两锐角之间的关系
c
a
∠A+∠B=90°; (3)边角之间的关系
A
b
C
sin
A=
a, c
cos
A=
典型例题
例2 如图,在△ABC 中,∠C=90°,∠B=30°, AD 是∠BAC 的角平分线,与 BC 相交于点 D,且 AB=4, 求 AD 的长.
A
CD
B
典型例题
例3 如图,在△ABC 中,∠B=30°,∠C=45°, AC=4,求 AB 和 BC.
A
B 30°
45° C
布置作业
1.已知,如图,在△ABC 中,∠ACB=90°, CD⊥AB,垂足为 D,若∠B=30°,CD=6,求 AB 的长.
• 学习目标: 1.熟练掌握解直角三角形的方法; 2.能灵活运用解直角三角形解决与直角三角形有关的 图形计算问题.
• 学习重点: 灵活运用解直角三角形解决与直角三角形有关的图形
最新人教版九年级数学下册 第28章 锐角三角函数(课件合集)

一般地,当∠A 取其他一定度数的锐角时,它 的对边与斜边的比是否也是一个固定值?
探究
任意画Rt△ABC和Rt△A'B'C',使得∠C=∠C'=90°,
∠A=∠A'=α,那么
BC AB
与
B'C' A' B'
有什么关
系.你能解释一下吗?
B'
B
A
C A'
C'
这就是说,在直角三角形中,当锐角A的度数 一定时,不管三角形的大小如何,∠A的对边与 斜边的比也是一个固定值.
在Rt△ABC中
sinA= A的对边 = a A的斜边 c
cosA= A的邻边 = b A的斜边 c
tanA= A的对边 = a
A的邻边 b
定义中应该注意的几个问题:
1、sinA、cosA、tanA是在直角三角形中定 义的,∠A是锐角(注意数形结合,构造直角三 角形)。
2、sinA、 cosA、tanA是一个比值(数值)。
又AC AB2 BC2 102 62 8,
cos A AC 4 ,tan B AC 4 .
AB 5
BC 3
例2 如图,在Rt△ABC中,∠C=90°,BC=2,
AB=3,求∠A,∠B的正弦、余弦、正切值. B
在上面的问题中,如果使出水口的高度为 50m,那么需要准备多长的水管?
B' B
50m 30m
A
C C'
结论:在一个直角三角形中,如果一个锐角等于30°,
那么不管三角形的大小如何,这个角的对边与斜边的比 值都等于 1
2
如图,任意画一个Rt△ABC,使 A
探究
任意画Rt△ABC和Rt△A'B'C',使得∠C=∠C'=90°,
∠A=∠A'=α,那么
BC AB
与
B'C' A' B'
有什么关
系.你能解释一下吗?
B'
B
A
C A'
C'
这就是说,在直角三角形中,当锐角A的度数 一定时,不管三角形的大小如何,∠A的对边与 斜边的比也是一个固定值.
在Rt△ABC中
sinA= A的对边 = a A的斜边 c
cosA= A的邻边 = b A的斜边 c
tanA= A的对边 = a
A的邻边 b
定义中应该注意的几个问题:
1、sinA、cosA、tanA是在直角三角形中定 义的,∠A是锐角(注意数形结合,构造直角三 角形)。
2、sinA、 cosA、tanA是一个比值(数值)。
又AC AB2 BC2 102 62 8,
cos A AC 4 ,tan B AC 4 .
AB 5
BC 3
例2 如图,在Rt△ABC中,∠C=90°,BC=2,
AB=3,求∠A,∠B的正弦、余弦、正切值. B
在上面的问题中,如果使出水口的高度为 50m,那么需要准备多长的水管?
B' B
50m 30m
A
C C'
结论:在一个直角三角形中,如果一个锐角等于30°,
那么不管三角形的大小如何,这个角的对边与斜边的比 值都等于 1
2
如图,任意画一个Rt△ABC,使 A