九年级数学下册锐角三角形教案
九年级数学下册 28 锐角三角函数教案 (新版)新人教版

第二十八章锐角三角函数直角三角形是一种特殊的三角形,在应用中有较一般三角形优良的特点,例如面积比较好计算等,且其他三角形通过增补、分割等可以转化为直角三角形,从而简化计算,所以对直角三角形进行专门的研究很有必要.本章将学习直角三角形中边与角之间的关系,并运用这些关系解决一些测量等方面的问题.本章第一节学习锐角的三角函数,教材中首先从学生熟悉的问题情境——“汽车爬坡”引出如何描述坡面的倾斜程度,引出了直角三角形中两直角边的比即坡比,还引出了正切、坡角等概念.教材中通过学生熟悉的一副三角板引出.对于这一部分,由于学生已经学习了在直角三角形中30°的角所对的直角边等于斜边的一半,因此可让学生计算得到这些特殊角的三角函数值,教材最后介绍了用计算器求三角函数值.第二节主要是应用直角三角形知识解决一些简单的实际问题.带领学生探索直角三角形中锐角三角函数值与三边的关系,同时经历观察、操作、归纳等学习数学的过程,感受数学说理的必要性、说理过程的严谨性,养成科学认真的学习态度.让学生了解锐角三角函数的概念,能够正确应用三角函数.让学生掌握30°,45°,60°等特殊角的三角函数值,并学会用计算器求锐角的三角函数值,经历操作、归纳等学习数学的过程,感受数学思考过程的合理性,养成科学、严谨的学习态度.本章教学约需5课时,具体分配如下:28.1 锐角三角函数3课时28.2 解直角三角形及其应用2课时28.1锐角三角函数第1课时锐角三角函数知识与技能了解锐角三角函数的概念,能够正确应用sin A,cos A,tan A表示直角三角形中两边的比.过程与方法通过锐角三角函数的学习进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的应用.情感、态度与价值观1.通过学习培养学生的合作意识.2.通过探究提高学生学习数学的兴趣.重点锐角三角函数的概念.难点锐角三角函数概念的理解.一、问题引入问题:操场上有一个旗杆,老师让小明去测量旗杆高度.(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34°,并已知目高为1米,然后他很快就算出旗杆的高度了.你想知道小明是怎样算出的吗?师:通过前面的学习,我们知道利用相似三角形的方法可以测算出旗杆的大致高度,实际上我们还可以像小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度.这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法.下面我们一起来学习锐角三角函数.二、新课教授问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35 m ,那么需要准备多长的水管?分析:问题转化为在Rt △ABC 中,∠C =90°,∠A =30°,BC =35 m ,求AB.根据“在直角三角形中,30°角所对的直角边等于斜边的一半”,即 ∠A 的对边斜边=BC AB =12,可得AB =2BC =70 m ,即需要准备70 m 长的水管.思考1:在上面的问题中,如果使出水口的高度为50 m ,那么需要准备多长的水管? 学生按与上面相似的过程,自主解决.结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于12.思考2:如图,任意画一个Rt △ABC ,使∠C =90°,∠A =45°,计算∠A 的对边与斜边的比BCAB,能得到什么结论?分析:在Rt △ABC 中,∠C =90°,由于∠A =45°,所以Rt △ABC 是等腰直角三角形,由勾股定理得AB 2=AC 2+BC 2=2BC 2,AB =2BC ,BC AB =BC 2BC =12=22.结论:在一个直角三角形中,如果一个锐角等于45°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于22. 从上面这两个问题的结论中可知,在一个Rt △ABC 中,∠C =90°,当∠A =30°时,∠A 的对边与斜边的比都等于12,是一个固定值.当∠A =45°时,∠A 的对边与斜边的比都等于22,也是一个固定值.这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?探究:任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C =∠C ′=90°,∠A =∠A ′=α,那么BC AB 与B ′C ′A ′B ′有什么关系?你能解释一下吗?分析:由于∠C =∠C =90°,∠A =∠A ′=α, 所以Rt △ABC ∽Rt △A ′B ′C ′,则 BC AB =B ′C ′A ′B ′. 结论:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何改变,∠A 的对边与斜边的比都是一个固定值.正弦的概念: 在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A =∠A 的对边斜边=ac.例如,当∠A =30°时,sin A =sin 30°=12;当∠A =45°时,sin A =sin 45°=22.注意:1.sin A 不是sin 与A 的乘积,而是一个整体.2.正弦的三种表示方式:sin A ,sin 56°,sin ∠DEF. 3.sin A 是线段之间的一个比值,sin A 没有单位.提问:∠B 的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?sin B =∠B 的对边斜边=bc.思考3:一般地,当∠A 取一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?探究:如图,在Rt △ABC 与Rt △A ′B ′C ′中,∠C =∠C ′=90°,∠A =∠A ′=α,那么AC AB 与A ′C ′A ′B ′有什么关系?教师用类比的方法引导学生思考、讨论.结论:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何改变,∠A 的邻边与斜边的比是一个固定值.余弦的概念:在Rt △ABC 中,∠C =90°,把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cos A =∠A 的邻边斜边=bc.思考4:当∠A 取一定度数的锐角时,它的对边与邻边的比是否也是一个固定值?学生自立探究,得出结论,教师给出新的概念. 正切的概念:如图,在Rt △ABC 中,∠C =90°,a ,b 分别是∠A 的对边和邻边.我们把∠A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tan A =∠A 的对边∠A 的邻边=ab.锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数. 三、举例应用,巩固新知例1 如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.解:如图(1),在Rt △ABC 中,由勾股定理得AB =AC 2+BC 2=42+32=5.因此sin A =BC AB =35,sin B =AC AB =45.如图(2),在Rt △ABC 中,由勾股定理得 AC =AB 2-BC 2=132-52=12.因此sin A =BC AB =513,sin B =AC AB =1213.例2 如图,在Rt △ABC 中,∠C =90°,AB =10,BC =6,求sin A ,cos A ,tan A 的值.解:由勾股定理得A C =AB 2-BC 2=102-62=8,因此 sin A =BC AB =610=35,cos A =AC AB =810=45, tan A =BC AC =68=34.四、练习新知为测量如图所示的上山坡道的倾斜度,小明测得数据如图所示,则该坡道倾斜角α的正切值是( )A .117B .4C .14D .417答案 C五、课堂小结锐角三角函数概念及表示方法:sin A =∠A 的对边斜边,cos A =∠A 的邻边斜边,tan A =∠A 的对边∠A 的邻边.本节课采用问题引入法,从探究性问题入手,让学生主动参与学习活动,用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图、找边角、计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后探究:三角函数与直角三角形的边、角有什么关系?三角函数与三角形的形状有关系吗?整节课都在紧张而愉快的气氛中进行.学生非常活跃,大部分人都能积极动脑、积极参与.第2课时 30°,45°,60°角的三角函数值知识与技能熟记30°,45°,60°角的三角函数值,并能根据这些值说出对应的锐角度数. 过程与方法1.培养学生把实际问题转化为数学问题的能力. 2.培养学生观察、比较、分析、概括的能力.情感、态度与价值观经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性,感受数学说理的必要性、说理过程的严谨性,养成科学、严谨的学习态度.重点30°,45°,60°角的三角函数值. 难点与特殊角的三角函数值有关的计算.一、复习巩固如图,在Rt △ABC 中,∠C =90°.(1)a ,b ,c 三者之间的关系是________;(2)sin A =________,cos A =________,tan A =________; sin B =________,cos B =________,tan B =________. (3)若∠A =30°,则ac=________.二、共同探究,获取新知(1)探索30°,45°,60°角的三角函数值.师:观察一副三角尺,其中有几个锐角?它们分别等于多少度?生:一副三角尺中有四个锐角,它们分别是30°,60°,45°,45°. 师:sin 30°等于多少呢?你是怎样得到的?与同伴交流.生:sin 30°=12.sin 30°表示在直角三角形中,30°角的对边与斜边的比值,与直角三角形的大小无关.我们不妨设30°角所对的边长为a(如图所示),根据“直角三角形中30°角所对的边等于斜边的一半”的性质,则斜边长等于2a.根据勾股定理,可知30°角的邻边长为3a ,所以sin 30°=a 2a =12.师:cos 30°等于多少?tan 30°呢? 生:cos 30°=3a 2a =32.tan 30°=a 3a =13=33. 师:我们求出了30°角的三个三角函数值,还有两个特殊角——45°,60°,它们的三角函数值分别是多少?你是如何得到的?生:求60°角的三角函数值可以利用求30°角的三角函数值的三角形.因为30°角的对边和邻边分别是60°角的邻边和对边,利用上图,很容易求得sin 60°=3a 2a =32,cos 60°=a 2a =12,tan 60°=3aa= 3. 师生共同分析:我们一起来求45°角的三角函数值.含45°角的直角三角形是等腰直角三角形.如图,设其中一条直角边为a ,则另一条直角边也为a ,斜边为2a.由此可求得sin 45°=a 2a=12=22,cos 45°=a 2a =12=22, tan 45°=a a=1.教师多媒体课件出示:师:这个表格中的30°,45°,60°角的三角函数值需要熟记.另一方面,要能够根据30°,45°,60°角的三角函数值说出相应的锐角的大小.第一列,随着角度的增大,正弦值在逐渐增大. 第二列,余弦值随角度的增大而减小. 师:第三列呢?生:第三列是30°,45°,60°角的正切值,首先45°角是等腰直角三角形中的一个锐角,所以tan 45°=1比较特殊.随着角度的增大,正切值也在增大.(2)进一步探究锐角的三角函数值. 如图,在Rt △ABC 中,∠C =90°.∵sin A =a c ,cos A =bc,sin B =b c ,cos B =a c,∴sin A =cos B ,cos A =sin B. ∵∠A +∠B =90°, ∴∠B =90°-∠A ,即sin A =cos B =cos (90°-∠A), cos A =sin B =sin (90°-∠A).任意一个锐角的正(余)弦值,等于它的余角的余(正)弦值. 三、例题讲解,巩固新知 例1 计算:(1)sin 30°+cos 45°;(2)sin 260°+cos 260°-tan 45°. 解:(1)sin 30°+cos 45°=12+22=1+22;(2)sin 260°+cos 260°-tan 45° =(32)2+(12)2-1 =34+14-1 =0.例2 (1)如图(1),在Rt △ABC 中,∠C =90°,AB =6,BC =3,求∠A 的度数; (2)如图(2),AO 是圆锥的高,OB 是底面半径,AO =3OB ,求α的度数.解:(1)在图(1)中, ∵sin A =BC AB =36=22,∴∠A =45°.(2)在图(2)中,∵tan α=AO OB =3OBOB=3,∴α=60°.四、随堂练习1.计算4sin 60°-3tan 30°的值为( )A . 3B .2 3C .3 3D .0 答案 A2.计算sin 245°+cos 245°的值为( ) A .2 B .1 C .0 D .3 答案 B五、课堂小结1.探索30°,45°,60°角的三角函数值.sin 30°=12 ,sin 45°=22,sin 60°=32; cos 30°=32 ,cos 45°=22,cos 60°=12; tan 30°=33,tan 45°=1,tan 60°= 3. 2.能进行含30°,45°,60°角的三角函数值的计算.3.能根据30°,45°,60°角的三角函数值说出相应锐角的大小.本节课的教学中,课堂环节设置齐全,能很好地贯彻执行教育理念,对理解教育的教育模式把控较好;课堂中学生分组很好,能给学生构建一个宽松、和谐的学习环境和氛围;课件制作很好,能很好地配合指导自学书的使用,提高了课堂的效率;学生积极参与,学习积极性较高;课堂习题的设置有梯度,题目能面向全体学生.第3课时 一般锐角的三角函数值知识与技能1.会使用计算器求锐角的三角函数值.2.会使用计算器根据锐角三角函数的值求对应的锐角. 过程与方法在做题、计算的过程中,逐步熟悉计算器的使用方法. 情感、态度与价值观经历计算器的使用过程,熟悉其按键顺序.重点利用计算器求锐角三角函数的值. 难点计算器的按键顺序.一、复习回顾教师多媒体课件出示: 1.2.已知2sin 二、讲解新知师:上节课我们学习了几个特殊角的三角函数值,但如果是任意的一个锐角,如何求它的三角函数值呢?比如让你求sin 18°的值.生:作一个有一个锐角为18°的直角三角形,量出它的对边和斜边长,求它的比值. 学生作图、测量、计算.生:约等于0.309 016 994.师:对!用这种方法确实可以求出任意一个锐角三角函数的近似值,古代的数学家、天文学家也采用过这样的方法,只是误差较大.经过许多数学家不断的改进,不同角的三角函数值被制成了常用表,三角函数表大大改进了三角函数值的应用.今天,三角函数表又被带有sin、cos和tan功能键的计算器所取代.教师拿出计算器.师:我们学习这种计算器的使用方法.请同学们拿出自己的计算器.学生拿出自己的计算器.师:先按ON键,再按有关三角函数的键.教师板书:1.求已知锐角的三角函数值.例1 求sin40°的值.(精确到0.000 1)师:比如我们求sin40°的值,依次按sin、4、0、°′″、=这几个键.师:因为要求精确到万分位,我们将得到的数字四舍五入到万分位即可,你得到四舍五入后的值是多少?生:0.642 8.例2 求cos54°38′的值.(精确到0.000 1)师:我们依次按cos、5、4、°′″、3、8、°′″、=这几个键.学生操作后回答.2.由锐角三角函数值求锐角.例3 已知sin A=0.508 6,求锐角A.师:你有没有注意到计算器上有个2ndf键?生:注意到了.师:这个键叫做第二功能键,我们用这个可以转换键盘上的功能键的作用.我们依次按2ndf、sin-1、0、·、5、0、8、=.师:这样我们得到的是多少度,要化成度分秒的形式,我们按那个第二功能键2ndf和度分秒键°′″.学生操作后回答结果.三、巩固提高1.sinα=0.231 6,cosβ=0.231 6,则锐角α与锐角β之间的关系是( )A.α=βB.α+β=180°C.α+β=90°D.α-β=90°答案C2.使用计算器计算:sin52°18′≈________.(精确到0.001)答案0.7913.已知cosβ=0.741 6,利用计算器求出β的值约为________.(精确到1°)答案 42° 四、课堂小结1.用计算器求一个锐角的三角函数值.2.学习了已知一个函数值,求它对应的锐角的大小.如何让学生体会用计算器的好处,我设计一个正弦值难于直接得到的sin 18°的值让学生计算.在没有提示的情况下,学生有的用笔算,通过作图测量用正弦的定义计算,我肯定了学生的这种探索式作法,同时提出了使用计算器的简便性,在较短的时间内能正确计算,也显示了其较强的计算能力.28.2 解直角三角形及其应用 28.2.1 解直角三角形知识与技能在理解解直角三角形的含义、直角三角形五个元素之间关系的基础上,会运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.过程与方法通过综合运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.情感、态度与价值观在探究学习的过程中,培养学生合作交流的意识,使学生认识到数与形相结合的意义与作用,体会到学好数学知识的作用,并提高学生将数学知识应用于实际的意识,从而体验“从实践中来,到实践中去”的辩证唯物主义思想,激发学生学习数学的兴趣.让学生在学习过程中感受到成功的喜悦,产生后继学习的激情,增强学好数学的信心.重点直角三角形的解法. 难点灵活运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.一、复习回顾师:你还记得勾股定理的内容吗? 学生叙述勾股定理的内容.师:直角三角形的两个锐角之间有什么关系呢? 生:两锐角互余.师:直角三角形中,30°的角所对的直角边与斜边有什么关系? 生:30°的角所对的直角边等于斜边的一半. 二、共同探究,获取新知 1.概念.师:由sin A =ac ,你能得到哪些公式?生甲:a =c ·sin A. 生乙:c =asin A.师:我们还学习了余弦函数和正切函数,也能得到这些式子的变形.我们知道,在直角三角形中有三个角、三条边共六个元素,能否从已知的元素求出未知的元素呢?教师板书:在直角三角形中,由已知的边角关系,求出未知的边与角,叫做解直角三角形. 2.练习.教师多媒体课件出示:(1)如图(1)和(2),根据图中的数据解直角三角形.(1) (2)师:图(1)中是已知一角和一条直角边解直角三角形的类型,你怎样解决这个问题呢? 生1:根据cos 60°=AC AB ,得到AB =ACcos 60°,然后把AC 边的长和60°角的余弦值代入,求出AB 边的长,再用勾股定理求出BC 边的长,∠B 的度数根据直角三角形两锐角互余即可得到.生2:先用直角三角形两锐角互余得到∠B 为30°,然后根据30°的角所对的直角边等于斜边的一半,求出AB 的值,再由sin 60°=BCAB 得到BC =AB ·sin 60°,从而得到BC 边的长.师:同学们说出的这几种做法都是对的.下面请同学们看图(2),并解这个直角三角形. 学生思考,计算. 三、例题讲解例1 如图,在Rt △ABC 中,∠C =90°,AC =2,BC =6,解这个直角三角形.解:∵tan A =BC AC =62=3,∴∠A =60°,∠B =90°-∠A =90°-60°=30°,AB =2AC =2 2.例2 如图,在Rt △ABC 中,∠C =90°,∠B =35°,b =20,解这个直角三角形.(结果保留小数点后一位)解:∠A =90°-∠B =90°-35°=55°. ∵tan B =ba,∴a =btan B =20tan 35°≈28.6. ∵sin B =bc ,∴c =bsin B =20sin 35°≈34.9. 四、巩固练习1.在△ABC 中,∠C =90°,下列各式中不正确的是( ) A .b =a ·tan B B .a =b ·cos AC .c =bsin B D .c =acos B答案 B2.在Rt △ABC 中,∠C =90°,c =10,b =53,则∠A =________,S △ABC =________.答案 30° 252 3五、课堂小结师:本节课,我们学习了什么内容? 学生回答.师:你还有什么不懂的地方吗? 学生提问,老师解答.本节课在教学过程中,能灵活处理教材,敢于放手让学生通过自主学习、合作探究达到理解并掌握知识的目的,并能运用知识解决问题.在本章开头,我带领学生复习了与解直角三角形有关的知识点,使学生在解决问题时能想到并能熟练运用.在解有特殊角的三角形时有不止一种解法,我鼓励学生勇于发言,给了他们展示自我的机会,锻炼他们表达自己想法的能力,并且增强了他们的自信心.28.2.2 应用举例知识与技能使学生掌握仰角、俯角的概念,并会正确运用这些概念和解直角三角形的知识解决一些实际问题.过程与方法让学生体验方程思想和数形结合思想在解直角三角形中的用途. 情感、态度与价值观使学生感知本节课与现实生活的密切联系,进一步认识到将数学知识运用于实践的意义.重点将实际问题转化为解直角三角形问题. 难点将实际问题中的数量关系如何转化为直角三角形中元素间的关系求解.一、新知讲授1.讲解. 师:在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.教师在黑板上作图.师:当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角;在水平线下方的角叫做俯角.注意:(1)仰角和俯角必须是视线与水平线所夹的角,而不是与铅垂线所夹的角; (2)仰角和俯角都是锐角.师:测量仰角、俯角有专门的工具,是测角仪. 2.练习新知.教师多媒体课件出示:如图,∠C =∠DEB =90°,FB ∥AC ,从A 看D 的仰角是________;从B 看D 的俯角是________;从A 看B 的________角是________;从D 看B 的________角是________;从B 看A 的________角是________.答案:从A 看D 的仰角是∠2,从B 看D 的俯角是∠FBD ,从A 看B 的仰角是∠BAC ,从D 看B 的仰角是∠3,从B 看A 的俯角是∠1.二、例题讲解例1 2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 km 的圆形轨道上运行,如图,当组合体运行到地球表面P 点的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与P 点的距离是多少?(地球半径约为6 400 km ,π取3.142,结果取整数)分析:从组合体中能直接看到的地球表面最远点,是视线与地球相切时的切点.如图,本例可以抽象为以地球中心为圆心、地球半径为半径的⊙O 的有关问题:其中点F 是组合体的位置,FQ 是⊙O 的切线,切点Q 是从组合体中观测地球时的最远点,PQ ︵的长就是地球表面上P ,Q 两点间的距离.为计算PQ ︵的长需先求出∠POQ(即α)的度数.解:设∠POQ =α,在图中,FQ 是⊙O 的切线,△FOQ 是直角三角形. ∵cos α=OQ OF = 6 4006 400+343≈0.9491.∴α≈18.36°,∴PQ ︵的长为18.36π180×6 400≈18.36×3.142180×6 400≈2 051(km ).由此可知,当组合体在P 点正上方时,从中观测地球表面时的最远点距离P 点约2051 km .例2 热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m ,这栋楼有多高?(结果取整数)解:如图,α=30°,β=60°,AD =120.∵tan α=BD AD ,tan β=CDAD,∴BD =AD ·tan α=120×tan 30°=120×33=403, CD =AD ·tan β=120×tan 60°=120×3=120 3. ∴BC =BD +CD =403+1203=1603≈277(m ). 因此,这栋楼高约为277 m .例3 如图,一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80 n mile 的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的B 处.这时,B 处距离灯塔P 有多远?(结果取整数)解:如图,在Rt △APC 中, PC =PA ·cos (90°-65°) =80×cos 25° ≈72.505.在Rt △BPC 中,∠B =34°,∵sin B =PCPB ,∴PB =PCsin B =72.505sin 34°≈130(n mile ). 因此,当海轮到达位于灯塔P 的南偏东34°方向时,它距离灯塔P 大约130 n mile . 三、巩固提高1.如图,小雅家(图中点O 处)门前有一条东西走向的公路,现测得有一水塔(图中点A 处)在她家北偏东60°方向500 m 处,那么水塔所在的位置到公路的距离AB 长是( )A .250 mB .250 3 mC .500 33m D .250 2 m 答案 A2.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60°,已知水平距离BD =10 m ,楼高AB =24 m ,则树CD 的高度为( )A .(24-1033)m B .(24-103) m C .(24-53) m D .9 m 答案 B四、课堂小结师:本节课,我们学习了什么内容? 学生回答.师:你还有什么不懂的地方吗? 学生提问,教师解答.解直角三角形的内容是初中阶段数学教学中的重点之一,使学生对所学知识有了更好的巩固,同时让学生体会到数学与实际生活的联系,例题设置具有一定坡度,由浅入深,步步深入.。
北师大版数学九年级下册1.1 锐角三角函数(第2课时)教案

1.1 锐角三角函数第2课时教学目标1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义.教学重难点【教学重点】1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算. 【教学难点】用函数的观点理解正弦、余弦和正切.学习方法探索——交流法.教学过程一、正弦、余弦及三角函数的定义 想一想:如图(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系?(2) 211122BA C A BA C A 和有什么关系? 2112BA BC BA BC 和呢? (3)如果改变A 2在梯子A 1B 上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B 的倾斜角的大小呢?你由此又可得出什么结论? 请讨论后回答.二、由图讨论梯子的倾斜程度与sinA 和cosA 的关系:三、例题:例1、如图,在Rt △ABC 中,∠B=90°,AC =200.sinA =0.6,求BC 的长.例2、做一做:如图,在Rt △ABC 中,∠C=90°,cosA =1312,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.四、随堂练习:1、在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.2、在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积.3、在△ABC 中.∠C=90°,若tanA=21,则sinA= .4、已知:如图,CD 是Rt △ABC 的斜边AB 上的高,求证:BC 2=AB ·BD.(用正弦、余弦函数的定义证明)五、课后练习:1、在Rt △ABC 中,∠ C=90°,tanA=34,则sinB=_______,tanB=______.DB ACBA C2、在Rt △ABC 中,∠C=90°,AB=41,sinA=941,则AC=______,BC=_______. 3、在△ABC 中,AB=AC=10,sinC=45,则BC=_____. 4、在△ABC 中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( )A.sinA=34 B.cosA=35 C.tanA=34 D.cosB=355、如图,在△ABC 中,∠C=90°,sinA=35,则BCAC等于( )A.34B.43C.35D.456、Rt △ABC 中,∠C=90°,已知cosA=35,那么tanA 等于( )A.43B.34C.45D.547、在△ABC 中,∠C=90°,BC=5,AB=13,则sinA 的值是A .135 B .1312 C .125 D .5128、已知甲、乙两坡的坡角分别为α、β, 若甲坡比乙坡更徒些, 则下列结论正确的是( )A.tan α<tan βB.sin α<sin β;C.cos α<cos βD.cos α>cos β9、如图,在Rt △ABC 中,CD 是斜边AB 上的高,则下列线段的比中不等于sinA 的是( ) A.CD AC B.DB CB C.CB AB D.CDCB10、某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是( )mA.100sin βB.100sin βC.100cos β D. 100cos β11、如图,分别求∠α,∠β的正弦,余弦,和正切.12、在△ABC 中,AB=5,BC=13,AD 是BC 边上的高,AD=4.求:CD,sinC.13、在Rt △ABC 中,∠BCA=90°,CD 是中线,BC=8,CD=5.求sin ∠ACD,cos ∠ACD 和tan ∠ACD.14、在Rt△ABC中,∠C=90°,sinA和cosB有什么关系?15、如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=45.求:s△ABD:s△BCD§1.2 30°、45°、60°角的三角函数值学习目标:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.学习重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.学习难点:进一步体会三角函数的意义.学习方法:自主探索法学习过程:BDAC一、问题引入[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.二、新课[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度?[问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流.[问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?结论:(1)sin30°+cos45°; (2)sin260°+cos260°-tan45°.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)三、随堂练习 1.计算:(1)sin60°-tan45°; (2)cos60°+tan60°; (3) 22sin45°+sin60°-2cos45°; ⑷13230sin 1+-︒;⑸(2+1)-1+2sin30°-8; ⑹(1+2)0-|1-sin30°|1+(21)-1;⑺sin60°+︒-60tan 11; ⑻2-3-(0032+π)0-cos60°-211-.2.某商场有一自动扶梯,其倾斜角为30°.高为7 m ,扶梯的长度是多少?3.如图为住宅区内的两幢楼,它们的高AB =CD=30 m ,两楼问的距离AC=24 m ,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1 m ,2≈1.41,3≈1.73)四、课后练习:1、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;2、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ;3、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =4、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( ) (A )600(B )900(C )1200(D )1505、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为 ( ) (A )cm 41 (B )cm 21 (C )cm 43 (D )cm 236、在ABC ∆中,︒=∠90C ,若A B ∠=∠2,则tanA 等于( ). (A )3 (B )33(C )23 (D )217、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ). (A )21 (B )22(C )23 (D )1 8、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元9、计算:⑴、︒+︒60cos 60sin 22 ⑵、︒︒-︒30cos 30sin 260sin⑶、︒-︒45cos 30sin 2⑷、3245cos 2-+︒︒15020米30米⑸、045cos 360sin 2+ ⑹、 130sin 560cos 30-⑺、︒30sin 22·︒+︒60cos 30tan tan60° ⑻、︒-︒30tan 45sin 2210、请设计一种方案计算tan15°的值。
九年级数学下册 第28章锐角三角函数复习教案 人教新课标版 教案

第28章 锐角三角函数复习教案锐角三角函数(第一课时) 教学三维目标:一.知识目标:初步了解正弦、余弦、正切概念;能较正确地用siaA 、cosA 、tanA 表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
二.能力目标:逐步培养学生观察、比较、分析,概括的思维能力。
三.情感目标:提高学生对几何图形美的认识。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA 、cosA 、tanA 表示正弦,余弦,正切 教学程序: 一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaA=斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠3例1.求如图所示的Rt ⊿ABC 中的siaA,cosA,tanA 的值。
4.学生练习P21练习1,2,3 二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia 30°cos45° tan60° 归纳结果2. 求下列各式的值(1)sia 30°+cos30°(2)2sia 45°-21cos30°(3)004530cos sia +ta60°-tan30°三.拓展提高P82例4.(略) 1. 如图在⊿ABC 中,∠A=30°,tanB=23,AC=23,求AB 四.小结 五.作业课本解直角三角形应用(一) 一.教学三维目标 (一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯. 二、教学重点、难点和疑点 1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边. 三、教学过程 (一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=c a cosA=c b tanA=ba(2)三边之间关系a 2+b 2=c 2(勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二) 探究活动1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题评析例 1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 2 a=6,解这个三角形.例2在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b= 20 B ∠=350,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 3在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. (三) 巩固练习在△ABC 中,∠C 为直角,AC=6,BAC ∠的平分线AD=43,解此直角三角形。
九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。
从图形可以看出ACBCCACB'''',即tanA l>tanA。
在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。
新授:坡度的概念,坡度与坡角的关系。
如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。
坡面与水平面的夹角叫做坡角。
从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。
和坝底宽AD。
(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。
坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。
第28章-锐角三角函数-全章教案

====Word 行业资料分享--可编辑版本--双击可删====
一、在 Rt△ABC 中,∠C =90°: B
a 对边
c 斜边
视,对学习基 A 的对边与斜边的比;
础 较 弱 的 学 求 sinB 就是要确定∠B
生 及 时 给 予 的对边与斜边的比.
指点.
教师引导学
生作知识总
结,不断扩充
培养学生概括的能
学 生 的 知 识 力,使知识形成体系,
结构,学习新 并渗透数学思想方法。
的解题方法.
Cb
A
五、体验 收获
即
sin
A
A的对边 斜边
a c
.
同样 sinB= B的对边 斜边
b c
当∠A=300 时,sinA=? 当∠A=450 时,sinA=? 当∠A=600 时,sinA=?
也随之确
定”.但是怎
样证明这个
C
A C1
A!
命题呢?学
生这时的思
经过学生的实验和证明,得出:
维很活跃.对
于这个问题,
在 Rt△ABC 中,∠C=90°,我们把锐
部分学生可
角 A 的对边与斜边的比叫做∠A 的正弦
能能解决
(sine),记作:sinA,
它.因此教师
此时应让学
B
生展开讨论,
独立完成.
a 对边
长 50m,那么斜坡与水平面所成角的度数是多少
呢?
二、探究 1.请每一位同学拿出自己的三角板,分别测量并 教 师 提 出 问 在培养学生动手能力的
====Word 行业资料分享--可编辑版本--双击可删====
说理
三、感悟 深化
九年级数学下册《锐角三角函数》第2课时教学设计

九年级数学下册《锐角三角函数》第2课时教学设计一、教材分析本节课是北师大版九年级下册第一章《直角三角形的边角关系》的第一节的内容, 共两课时。
本设计是第二课时。
本节课是在学生理解了正切的基础上, 进一步通过探究发现直角三角形中直角边与斜边之间存在的关系。
从教材中可以看到, 其中渗透着数学核心素养如数学抽象、数学建模等数学思想, 是本节课的数学本质。
二、学情分析学生的知识技能基础:通过前一节课学习的有关正切的知识, 学生已获得一定的探究方法, 积累了一定的经验, 这为本节课的开展提供了必要的铺垫。
本节课将在此基础上进行类比学习, 进一步探究直角三角形中的边角关系。
学生的活动经验基础:学生在上一节课的学习过程中已经历过从实际生活中抽象出数学概念, 形成数学知识, 并建立起数学建模解决实际生活问题的模式, 而且获得了探究数学问题过程中采用合适的数学方法解决问题的经验, 同时具有了一定的合作学习的能力, 交流的能力, 这些都为本节课的学习提供了必要的铺垫。
三、教学任务本节共分2个课时, 这是第2课时, 主要内容是进一步通过探究发现直角三角形中直角边与斜边之间存在的关系, 并利用这种关系解决一些简单问题。
本节课的具体教学目标为:知识与技能:1、探索并掌握锐角三角函数的概念——正弦、余弦, 理解锐角的正弦与余弦和梯子倾斜程度的关系。
2、能够用正弦、余弦进行简单的计算, 解决一些简单的实际问题。
过程与方法:1、经历类比、猜想等过程.发展合情推理能力, 能有条理地、清晰地阐述自己的观点。
2、在课堂上落实数学核心素养数学抽象、数学建模的思想, 体会解决问题的策略的多样性, 发展实践能力和创新精神。
情感态度价值观:积极参与数学活动, 提高学生对数学学科的好奇心和求知欲, 学有用的数学, 同时体会数学学科的一些核心素养, 如数学抽象、数学建模对研究问题时的引领作用。
教学重点:掌握正弦、余弦的定义, 感受数学与生活的联系。
北师大版初三下册数学 1.1 锐角三角函数 教案(教学设计)

1.1 锐角三角函数第1课时锐角的正切函数教学目标1.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.重点从现实情境中探索直角三角形的边角关系;理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.难点难点理解正切的意义,并用它来表示两边的比.教学过程一、创设情境,导入新课用FLASH课件动画演示本章的章头图,提出问题,问题从左到右分层次出现:问题1:在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗?问题2:随着改革开放的深入,上海的城市建设正日新月异地发展,幢幢大楼拔地而起.70年代位于南京西路的国际饭店还一直是上海最高的大厦,但经过多少年的城市发展,“上海最高大厦”的桂冠早已被其他高楼取代,你们知道目前上海最高的大厦叫什么名字吗?你能应用数学知识和适当的途径得到金茂大厦的实际高度吗?通过本章的学习,相信大家一定能够解决.二、合作交流,探究新知用多媒体演示如下内容:[师]梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示).(1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?[生]梯子AB 比梯子EF 更陡.[师]你是如何判断的?[生]从图中很容易发现∠ABC >∠EFD ,所以梯子AB 比梯子EF 陡.[生]我觉得是因为AC =ED ,所以只要比较BC ,FD 的长度即可知哪个梯子陡.BC <FD ,所以梯子AB 比梯子EF 陡.[师]我们再来看一个问题(用多媒体演示)(2)在下图中,梯子AB 和EF 哪个更陡?你是怎样判断的?[师]我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,就比较困难了.能不能从第(1)问中得到什么启示呢?[生]在第(1)问的图形中梯子的垂直高度即AC 和ED 是相等的,而水平宽度BC 和FD 不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡.[师]这位同学的想法很好,的确如此,在第(2)问的图中,哪个梯子更陡,应该从梯子AB 和EF 的垂直高度和水平宽度的比的大小来判断.那么请同学们算一下梯子AB 和EF 哪一个更陡呢?[生]AC BC =41.5=83,ED FD =3.51.3=3513.∵83<3513, ∴梯子EF 比梯子AB 更陡.想一想:如图,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系?(2)B 1C 1AC 1和B 2C 2AC 2有什么关系? (3)如果改变B 2在梯子上的位置呢?由此你能得出什么结论?[师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.[生]在上图中,我们可以知道Rt△AB 1C 1,和Rt△AB 2C 2是相似的.因为∠B 2C 2A =∠B 1C 1A =90°,∠B 2AC 2=∠B 1AC 1,根据相似的条件,得Rt△AB 1C 1∽Rt△AB 2C 2.[生]由图还可知:B 2C 2⊥AC 2,B 1C 1⊥AC 1,得 B 2C 2∥B 1C 1,Rt△AB 1C 1∽Rt△AB 2C 2.[生]相似三角形的对应边成比例,得B 1C 1B 2C 2=AC 1AC 2,即B 1C 1AC 1=B 2C 2AC 2. 如果改变B 2在梯子上的位置,总可以得到Rt△B 2C 2A ∽Rt△B 1C 1A ,仍能得到B 1C 1AC 1=B 2C 2AC 2.因此,无论B 2在梯子的什么位置(除A 外), B 1C 1AC 1=B 2C 2AC 2总成立. [师]也就是说无论B 2在梯子的什么位置(A 除外),∠A 的对边与邻边的比值是不会改变的.现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?[生]∠A 的大小改变,∠A 的对边与邻边的比值会改变.[师]你又能得出什么结论呢?[生]∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.[师]这位同学回答得很棒,现在我们再返回去看一下小明和小亮的做法,你作何评价?[生]小明和小亮的做法都可以说明梯子的倾斜程度,因为图中直角三角形中的锐角A 是确定的,因此它的对边与邻边的比值也是唯一确定的,与B 1,B 2在梯子上的位置无关,即与直角三角形的大小无关.[生]但我觉得小亮的做法更实际,因为要测量B 1C 1的长度,需攀到梯子的最高端,危险并且复杂,而小亮只需站在地面就可以完成.[师]这位同学能将数学和实际生活紧密地联系在一起,值得提倡.我们学习数学就是为了更好地应用数学.由于直角三角形中的锐角A 确定以后,它的对边与邻边之比也随之确定,因此我们有如下定义:(多媒体演示)如图,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent),记作tan A ,即tan A =∠A 的对边∠A 的邻边. 注意:(1)tan A 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”.(2)tan A 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比.(3)tan A 不表示“tan”乘以“A ”.(4)初中阶段,我们只学习直角三角形中锐角的正切.思考:(1)∠B 的正切如何表示?它的数学意义是什么?(2)前面我们讨论了梯子的倾斜程度,课本图1—3,梯子的倾斜程度与tan A 有关系吗?[生](1)∠B 的正切记作tan B ,表示∠B 的对边与邻边的比值,即tan B =∠B 的对边∠B 的邻边. (2)我们用梯子的倾斜角的对边与邻边的比值刻画了梯子的倾斜程度,因此,在教材图1—3中,梯子越陡,tan A 的值越大;反过来,tan A 的值越大,梯子越陡.三、运用新知,深化理解例1(教材示例) 如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?分析:比较甲、乙两个自动电梯哪一个陡,只需分别求出tan α、tan β的值,比较大小,越大,扶梯就越陡.解:甲梯中, tan α= ∠α的对边∠α的邻边=48=12. 乙梯中,tan β=∠β的对边∠β的邻边=5132-52=512. 因为tan α>tan β,所以甲梯更陡.[师]正切在日常生活中的应用很广泛,例如建筑,工程技术等.正切经常用来描述山坡、堤坝的坡度.如图,有一山坡在水平方向上每前进100 m ,就升高60 m ,那么山坡的坡度(即坡角α的正切tan α)就是tan α=60100=35. 这里要注意区分坡度和坡角.坡面的铅直高度与水平宽度的比即坡角的正切称为坡度.坡度越大,坡面就越陡.例2 已知:如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D ,E 都在小正方形的顶点上,求tan∠ADC 的值.分析:先证明△ACD ≌△BCE ,再根据tan∠ADC =tan∠BEC 即可求解.解:根据题意可得AC =BC =12+22=5,CD =CE =12+32=10,AD =BE =5,∴△ACD ≌△BCE (SSS).∴∠ADC =∠BEC .∴tan∠ADC =tan∠BEC =13. 例3 已知一水坝的横断面是梯形ABCD ,下底BC 长14 m ,斜坡AB 的坡度为3∶3,另一腰CD 与下底的夹角为45°,且长为4 6 m ,求它的上底的长(精确到0.1 m ,参考数据:2≈1.414,3≈1.732).分析:过点A 作AE ⊥BC 于点E ,过点D 作DF ⊥BC 于点F ,根据已知条件求出AE =DF 的值,再根据坡度求出BE ,最后根据EF =BC -BE -FC 求出AD .解:过点A 作AE ⊥BC ,过点D 作DF ⊥BC ,垂足分别为E ,F .∵CD 与BC 的夹角为45°,∴∠DCF =45°,∴∠CDF =45°.∵CD =4 6 m ,∴DF =CF =4 62=4 3(m),∴AE =DF =4 3 m .∵斜坡AB 的坡度为3∶3,∴tan∠ABE =AE BE =33=3,∴BE =4 m .∵BC =14 m ,∴EF =BC -BE -CF =14-4-43=10-4 3(m).∵AD =EF ,∴AD =10-4 3≈3.1(m).所以,它的上底的长约为3.1 m.四、课堂练习,巩固提高1.教材P4“随堂练习”.2.《探究在线·高效课堂》相关作业.五、反思小结,梳理新知本节课经历了探索直角三角形中的边角关系,得出了在直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定,并以此为基础,在“直角三角形”中定义了tan A =∠A 的对边∠A 的邻边.接着,我们研究了梯子的倾斜程度,工程中的问题坡度与正切的关系,了解了正切在现实生活中是一个具有实际意义的很重要的概念.第2课时正弦、余弦1. 认识锐角三角函数——正弦、余弦.2. 用sinA,cosA表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算.二、教学目标知识与技能1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2. 能够用sinA,cosA表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算.过程与方法1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.2、体会解决问题的策略的多样性,发展实践能力和创新精神.情感态度与价值观1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学.2、形成实事求是的态度以及交流分享的习惯.三、重点与难点重点:理解正弦、余弦的数学定义,感受数学与生活的联系.难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题.四、复习引入设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望.五、探究新知探究活动1(出示幻灯片4):如图,请思考:(1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)的关系是和222111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则的关系是和222111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________. 它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念1、正弦的定义:如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的对边BC 与斜边AB 的比叫做∠A 的正弦,记作sinA ,即sinA =________.2、余弦的定义:如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的邻边AC 与斜边AB 的比叫做∠A 的余弦,记作cosA ,即cosA=_ _____.3、锐角A 的正弦,余弦,正切和余切都叫做∠A 的三角函数.温馨提示B 1B 2AC 1 C 2(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为: sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为: sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子;cosA越,梯子越陡.探究活动3:如图,在Rt△ABC中,∠C=90°,AB=20,sinA=0.6,求BC和cosB.B通过上面的计算,你发现sinA与cosB有什么关系呢? sinB与cosA呢?在其它直角三角形中是不是也一样呢?请举例说明.小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的.设计意图:在探究中进一巩固正弦和余弦的定义,同时发现直角三角形中两个锐角的三角函数值之间存在一定的关系,拓展学生的知识储备.六、归类提升类型一:已知直角三角形两边长,求锐角三角函数值例1、在Rt△ABC中,∠C=90°, BC=3,AB=5,求A的三个三角函数值.类型二:利用三角函数值求线段的长度例2、如图,在Rt△ABC中,∠B=90°,AC=200,sinA=0.6 ,求BC的长七、总结延伸1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;2、温馨提示:(1)sinA,cosA,tanA,是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sinA,cosA,tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”号;(3)sinA,cosA,tanA都是一个比值,注意区别,且sinA,cosA,tanA均大于0,无单位;(4)sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系;(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.精品文档用心整理3、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.设计意图:课堂小结,检查学生掌握情况,同时能对知识进行及时梳理,有利于学生归纳和消化,特别对于重要的方法提示和要注意的细节,能再次呈现,使学生印象深刻.八、课堂小结1.sinA,cosA,tanA, 是在直角三角形中定义的, ∠A是锐角(注意数形结合,构造直角三角形).2.sinA,cosA,tanA, 是一个完整的符号,表示∠A的正切,习惯省去“∠”号;3.sinA,cosA,tanA, 是一个比值.注意比的顺序,且sinA,cosA,tanA, 均﹥0,无单位.4.sinA,cosA,tanA, 的大小只与∠A的大小有关,而与直角三角形的边长无关.5.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.资料来源于网络仅供免费交流使用。
锐角三角函数数学教案

锐角三角函数数学教案标题:锐角三角函数数学教案一、教学目标:1. 理解并掌握正弦、余弦、正切等基本概念。
2. 学会利用直角三角形的边长关系求解三角函数值。
3. 能够运用锐角三角函数解决实际问题。
二、教学内容:1. 锐角三角函数的基本概念- 正弦、余弦、正切的定义- 特殊角的三角函数值2. 锐角三角函数的应用- 利用直角三角形的边长关系求解三角函数值- 利用三角函数解决实际问题三、教学过程:1. 引入新课:- 通过展示一些生活中常见的角度和比例问题,引入锐角三角函数的概念。
2. 讲授新知:- 介绍正弦、余弦、正切的定义,并举例说明。
- 介绍特殊角的三角函数值,并让学生记住这些基本的三角函数值。
3. 巩固练习:- 给出一些简单的直角三角形,让学生计算对应的三角函数值。
4. 拓展应用:- 给出一些实际的问题,让学生尝试使用锐角三角函数来解决。
5. 总结归纳:- 回顾本节课的主要知识点,强调锐角三角函数在实际生活中的应用。
四、教学方法:1. 直观演示法:通过实物或模型直观展示锐角三角函数的概念。
2. 启发引导法:通过提出问题,引导学生思考,激发他们的学习兴趣。
3. 实践操作法:让学生亲自参与实践活动,提高他们解决问题的能力。
五、教学评估:1. 过程评价:观察学生在课堂上的表现,包括他们的参与度、理解程度等。
2. 结果评价:通过作业和测试,检查学生对知识的掌握情况。
六、教学反思:1. 对于学生的反馈进行分析,找出教学中的不足,以便改进。
2. 根据学生的接受程度,调整教学进度和难度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斜边c
对边a
b
C B
A 当∠A=30°时,∠A 的对边与斜边的比都等于12
,是一个固定值;•
当∠A=45°时,∠A 的对边与斜边的比都等于2
2
,也是一个固定值.
这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角
时,•它的对边与斜边的比是否也是一个固定值?
任意画Rt △ABC 和Rt △A′B′C′,使得∠C=∠C′=90°,
∠A=∠A′=a ,那么''''BC B C AB A B 与有什么关系.你能解释一下吗?
得到:在直
角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A 的对边与斜边的比都是一个固定值. 正弦函数概念:
在Rt △BC 中,∠C=90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .
在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,
即sinA =
A a
A c
∠=∠的对边的斜边
例如,当∠A=30°时,我们有sinA=sin30°=
;
当∠A=45°时,我们有sinA=sin45°= . 例1 如图,在Rt △ABC 中, ∠C=90°,求sinA 和sinB 的值.
三、课堂训练 课本第64页练习. 补充:
1.如图,在直角△ABC 中,∠C =90o ,若AB =5,AC =4,则sinA =( )
•∠A 的对边与斜
边的比都是一个
固定值.
教师给出锐角的
正弦概念,学生理
解认识.
学生理解认识30°
和45°的正弦值,
尝试独立完成例
1,两名学生板书,
并解释做题依据与过程,师生评议,达成一致. 教师组织学生进行练习,学生独立完成,之后,由学生口答,说明依据. 学生谈本节课收获,教师 完善补充强调.
小如何,•∠A 的对边与斜边的比都是一个固定值。
”为基础给出锐角正弦概念,结合图形,便于学生理解认识和应用.
巩固加深对锐角正弦的理解和应用,培养学生应用意识以及综合运用知识的能力,并为此获得成功的体验. 加强教学反思,将知识进行系统整理,总结方法,形成技能,提高学生的学习效果.
A.
3
5B.
4
5C.
3
4D.
4
3
2.在△ABC中,∠C=90°,BC=2,sinA=
2
3,则边AC的长是( )
A.13 B.3 C.
4
3D. 5
3.如图,已知点P的坐标是(a,b),则sinα等于()
A.
a
b
B.b
a
C.
2222
.
a b
D
a b a b
++
四、课堂小结
1.锐角的正弦概念;
2.会求一个锐角的正弦值。
3.直角三角形的性质的补充
五、作业设计
补充:在RT△ABC中,∠ACB=90°,CD是AB上的高,
AC=5,BC=2,求sinB
28.1 锐角三角函数
正弦概念例题分析练习
教学反思。