2010年中考必备09年中考数学汇编-13-二次函数

合集下载

2010年中考数学试题分类(精选版):函数与一次函数

2010年中考数学试题分类(精选版):函数与一次函数

2010年中考数学试题分类汇编 函数与一次函数10.(2010年浙江省东阳县)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( ) 【关键词】函数的意义 【答案】A1、(2010年宁波市)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。

(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系;(A) (B) (C) (D)1题(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【关键词】函数与实际问题 【答案】解:(1)15,154 (2)由图像可知,s 是t 的正比例函数 设所求函数的解析式为kt s =(0≠k ) 代入(45,4)得:k 454= 解得:454=k ∴s 与t 的函数关系式t s 454=(450≤≤t ) (3)由图像可知,小聪在4530≤≤t 的时段内s 是t 的一次函数,设函数解析式为n mt s +=(0≠m )代入(30,4),(45,0)得:⎩⎨⎧=+=+045430n m n m解得:⎪⎩⎪⎨⎧=-=12154n m∴12154+-=t s (4530≤≤t ) 令t t 45412154=+-,解得4135=t当4135=t 时,34135454=⨯=S 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。

5.(2010年安徽省芜湖市)要使式子a +2a有意义,a 的取值范围是() A .a ≠0 B.a >-2且a ≠0 C.a >-2或a ≠0 D.a ≥-2且a ≠0 【关键词】函数自变量的取值范围 【答案】D9.(2010重庆市)小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。

中考数学总复习 第一篇 知识 方法 固基 第三单元 函数 第13讲 二次函数的应用课件

中考数学总复习 第一篇 知识 方法 固基 第三单元 函数 第13讲 二次函数的应用课件
1
4 + 2 = 4,
=- ,

解得
2
36 + 6 = 0,
= 3.
(2)过点A作x轴的垂线,垂足(chuízú)为D(2,0),连接CD,过点C作CE⊥AD于点
E,CF⊥x轴于点F.
1
1
2
1
2
1
S△OAD= OD·AD= ×2×4=4,
S△ACD= AD·CE= ×4×(x-2)=2x-4,
(或最小值);如果自变量的取值范围是x1≤x≤x2,顶点在自变量的取值范围
x1≤x≤x2内,则当
数增减性确定最值.
,如果顶点不在此范围内,则需根据二次函

4 - 2
2
4
x=- 时,y 最值=
12/9/2021
第三页,共二十八页。
考点必备梳理
考点(kǎo
diǎn)
(2)现实生活中的抛物线型
3 2
3
(2)y=- x +30x=- (x-20)2+300,
4
3
8分
4
由于- <0,抛物线开口向下,
4
又 0<x<40,所以当 x=20 时,y 取最大值,最大值为 300.
12/9/2021
第七页,共二十八页。
12 分
考题初做诊断
命题(mìng
tí)点1
命题(mìng
tí)点2
命题点3
命题(mìng
考法必研突破
考法1
考法2
考法3
对应练1(2018·湖北荆州)为响应荆州市“创建全国文明城市”号召(hàozhào),
某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可

最新2010年中考数学真题分类汇编(150套)专题十八·二次函数的图象和性质2

最新2010年中考数学真题分类汇编(150套)专题十八·二次函数的图象和性质2

28.(2010广东中山)如图(1),(2)所示,矩形ABCD 的边长AB=6,BC=4,点F 在DC 上,DF=2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、MN 、FN ,当F 、N 、M 不在同一直线时,可得ΔFMN ,过ΔFMN 三边的中点作ΔPQW .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:(1)说明ΔFMN ∽ΔQWP ;(2)设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,ΔPQW 为直角三角形?当x 在何范围时,ΔPQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值..【答案】解:(1)由题意可知P 、W 、Q 分别是ΔFMN 三边的中点,∴PW 是ΔFMN 的中位线,即PW ∥MN∴ΔFMN ∽ΔQWP(2)由题意可得 DM=BN=x ,AN=6-x ,AM=4-x ,由勾股定理分别得 2FM =24x +,2MN =2)4(x -+2)6(x -2FN =2)4(x -+16①当2MN =2FM +2FN 时,2)4(x -+2)6(x -=24x ++2)4(x -+16解得 34=x②当2FN =2FM +2MN 时,2)4(x -+16=24x ++2)4(x -+2)6(x -此方程无实数根③2FM =2MN +2FN 时,24x +=2)4(x -+2)6(x -+2)4(x -+16解得 101=x (不合题意,舍去),42=x综上,当34=x 或4=x 时,ΔPQW 为直角三角形;当0≤x <34或34<x <4时,ΔPQW 不为直角三角形(3)①当0≤x ≤4,即M 从D 到A 运动时,只有当x=4时,MN 的值最小,等于2;②当4<x ≤6时,2MN =2AM +2AN =2)4(-x +2)6(x -=2)5(22+-x当x=5时,2MN 取得最小值2,∴当x=5时,线段MN 最短,MN=2.29.(2010湖南常德)如图9, 已知抛物线212y x bx c =++与x 轴交于A (-4,0) 和B (1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)设E 是线段AB 上的动点,作EF //AC 交BC 于F ,连接CE ,当△CEF 的面积是△BEF 面积的2倍时,求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.【答案】解:(1)由二次函数212y x bx c =++与x 轴交于(4,0)A -、(1,0)B 两点可得:221(4)4021102b c b c ⎧--+=⎪⎪⎨⎪⋅++=⎪⎩,. 解得: 322b c ⎧=⎪⎨⎪=-⎩,.故所求二次函数的解析式为213222y x x =+-.(2)∵S △CEF =2 S △BEF , ∴1,2BF CF =1.3BF BC =∵EF //AC , ∴B ,EF BAC BFE BCA ∠=∠∠=∠ ,∴△BEF ~△BAC ,∴1,3BE BF BA BC ==得5,3BE =故E 点的坐标为(23-,0).(3)解法一:由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2).若设直线AC 的解析式为y kx b =+,则有20,04b k b -=+⎧⎨=-+⎩. 解得:1,22k b ⎧=-⎪⎨⎪=-⎩.故直线AC 的解析式为122y x =--.若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭,又Q 点是过点P 所作y 轴的平行线与直线AC 的交点,则Q 点的坐标为(1,2)2a a --.则有:2131[(2)](2)222PQ a a a =-+----=2122a a--=()21222a -++ 即当2a =-时,线段PQ 取大值,此时P 点的坐标为(-2,-3)解法二:延长PQ 交x 轴于D 点,则PD AB ⊥.要使线段PQ 最长,则只须△APC 的面积取大值时即可.设P 点坐标为(),00y x ,则有:ACO DPCO S APC ADP S S S =+-V V V 梯形xyO BC A图9=111()222AD PD PD OC OD OA OC ⋅++⋅-⋅=()()000001112242222x y y y x --+-+⋅--⨯⨯=0024y x ---=20001322422x x x ⎛⎫-+---⎪⎝⎭=2004xx -- =-()22024x ++即02x =-时,△APC 的面积取大值,此时线段PQ 最长,则P 点坐标为(-2,-3)30 .(2010湖南郴州)如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标;(2)当b =0时(如图(2)),ABE V 与ACE V 的面积大小关系如何?当4b >-时,上述关系还成立吗,为什么? (3)是否存在这样的b ,使得BOC V 是以BC 为斜边的直角三角形,若存在,求出b ;若不存在,说明理由.【答案】(1)将x =0,代入抛物线解析式,得点A 的坐标为(0,-4)(2)当b =0时,直线为y x =,由24y x y x x =⎧⎨=+-⎩解得1122x y =⎧⎨=⎩,2222x y =-⎧⎨=-⎩所以B 、C 的坐标分别为(-2,-2),(2,2)14242ABE S =⨯⨯=V ,14242ACE S =⨯⨯=V所以ABE ACE S S =V V (利用同底等高说明面积相等亦可)当4b >-时,仍有ABE ACE S S =V V 成立. 理由如下由24y x b y x x =+⎧⎨=+-⎩,解得11x y b ⎧=⎪⎨=⎪⎩,22x y b⎧=⎪⎨=⎪⎩所以B 、C 的坐标分别为(-4b +,-4b ++b ),(4b +,4b ++b ),作BF y ⊥轴,CG y ⊥轴,垂足分别为F 、G ,则4BF CG b ==+,而ABE V 和ACE V 是同底的两个三角形,所以ABE ACE S S =V V .(3)存在这样的b .因为90BF CG,BEF CEG,BFE CGE =∠=∠∠=∠=︒所以BEF CEG≅V V所以BE CE =,即E 为BC 的中点所以当OE =CE 时,OBC V 为直角三角形因为44GE b b b b GC =++-=+=所以 24CE b =⋅+,而OE b=所以24b b ⋅+=,解得124,2b b ==-,所以当b =4或-2时,ΔOBC 为直角三角形.31.(2010湖南怀化)图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4).(1)求出图象与x 轴的交点A,B 的坐标;(2)在二次函数的图象上是否存在点P ,使MAB PABS S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.【答案】解;(1) 因为M(1,-4) 是二次函数k m x y ++=2)(的顶点坐标,所以324)1(22--=--=x x x y令,0322=--x x 解之得3,121=-=x x .∴A ,B 两点的坐标分别为A (-1,0),B (3,0)(2) 在二次函数的图象上存在点P ,使MAB PAB S S ∆∆=45设),,(y x p 则y y AB S PAB 221=⨯=∆,又8421=-⨯=∆AB S MAB ,图9∴.5,8452±=⨯=y y 即∵二次函数的最小值为-4,∴5=y .当5=y 时,4,2=-=x x 或.故P 点坐标为(-2,5)或(4,5)……………7分(3)如图1,当直线)1(<+=b b x y 经过A 点时,可得.1=b ……………8分当直线)1(<+=b b x y 经过B 点时,可得.3-=b由图可知符合题意的b 的取值范围为13<<-b32.(2010湖北鄂州)如图,在直角坐标系中,A (-1,0),B (0,2),一动点P 沿过B 点且垂直于AB 的射线BM 运动,P 点的运动速度为每秒1个单位长度,射线BM 与x 轴交与点C .(1)求点C 的坐标.(2)求过点A 、B 、C 三点的抛物线的解析式.(3)若P 点开始运动时,Q 点也同时从C 出发,以P 点相同的速度沿x 轴负方向向点A 运动,t 秒后,以P 、Q 、C 为顶点的三角形为等腰三角形.(点P 到点C 时停止运动,点Q 也同时停止运动)求t 的值. (4)在(2)(3)的条件下,当CQ =CP 时,求直线OP 与抛物线的交点坐标.【答案】(1)点C 的坐标是(4,0); (2)设过点A 、B 、C 三点的抛物线的解析式为y =ax 2+bx +c (a ≠0),将点A 、B 、C 三点的坐标代入得:020164a b c c a b c =-+⎧⎪=⎨⎪=++⎩解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式是:y = 12-x 2+32x +2.(3)设P 、Q 的运动时间为t 秒,则BP =t ,CQ =t .以P 、Q 、C 为顶点的三角形为等腰三角形,可分三种情况讨论.①若CQ =PC ,如图所示,则PC = CQ =BP =t .∴有2t =BC =25,∴t =5.②若PQ =QC ,如图所示,过点Q 作DQ ⊥BC 交CB 于点D ,则有CD =PD .由△ABC ∽△QDC ,可得出PD =CD =25t ,∴4525t t =-,解得t =40105-.③若PQ =PC ,如图所示,过点P 作PE ⊥AC 交AC 于点E ,则EC =QE =25PC ,∴12t =25(25-t ),解得t =32540-.(4)当CQ =PC 时,由(3)知t =5,∴点P 的坐标是(2,1),∴直线OP 的解析式是:y =12x ,图1因而有12x =12-x 2+32x +2,即x 2-2x -4=0,解得x =1±5,∴直线OP 与抛物线的交点坐标为(1+5,15+)和(1-5,15-).33.(2010湖北省咸宁)已知二次函数2y x bx c =+-的图象与x 轴两交点的坐标分别为(m ,0),(3m -,0)(0m ≠).(1)证明243c b =;(2)若该函数图象的对称轴为直线1x =,试求二次函数的最小值.【答案】(1)证明:依题意,m ,3m -是一元二次方程20x bx c +-=的两根.根据一元二次方程根与系数的关系,得(3)m m b +-=-,(3)m m c ⨯-=-.∴2b m =,23c m =.∴224312c b m ==.(2)解:依题意,12b-=,∴2b =-.由(1)得2233(2)344c b ==⨯-=.∴2223(1)4y x x x =--=--.∴二次函数的最小值为4-.34.(2010湖北恩施自治州) 如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.【答案】解:(1)将B 、C 两点的坐标代入得⎩⎨⎧-==+33c c b解得:⎩⎨⎧-=-=32c b所以二次函数的表达式为:322--=x x y(2)存在点P ,使四边形POP /C 为菱形.设P 点坐标为(x ,322--x x ),PP /交CO 于E若四边形POP /C 是菱形,则有PC =PO .连结PP /则PE ⊥CO 于E ,∴OE=EC =23∴y =23-.∴322--x x =23-解得1x =2102+,2x =2102-(不合题意,舍去)∴P 点的坐标为(2102+,23-)…………………………8分(3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,322--x x ),易得,直线BC 的解析式为3-=x y则Q 点的坐标为(x ,x -3).EB QP OE QP OC AB S S S S CPQ BPQ ABC ABPC ⋅+⋅+⋅=++=∆∆∆212121四边形 3)3(2134212⨯+-+⨯⨯=x x =87523232+⎪⎭⎫ ⎝⎛--x当23=x 时,四边形ABPC 的面积最大此时P 点的坐标为⎪⎭⎫⎝⎛-415,23,四边形ABPC 的面积875的最大值为.35.(2010北京)在平面直角坐标系xOy 中,抛物线23454122+-++--=m x x mx m y 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求B 点的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交与点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧做等等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).① 当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;② 若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点做x 轴的垂线,与直线AB 交与点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N点也随之运动).若P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.【答案】解:(1)∵抛物线23454122+-++--=m m x m x m y 经过原点,∴m 2—3m +2=0.解的m 1=1,m 2=2. 由题意知m ≠1. ∴m =2,∴抛物线的解析式为xx y 25412+-=∵点B (2,n )在抛物线x x y 25412+-=,n=4.∴B 点的坐标为(2,4)(2)①设直线OB 的解析式为y =k 1x求得直线OB 的解析式y =2x∵A 点是抛物线与x 轴的一个交点,可求得A 点的坐标为(10,0),设P 点的坐标为(a ,0),则E 点的坐标为(a ,2a ).根据题意做等腰直角三角形PCD ,如图1.可求得点C 的坐标为(3a ,2a ),有C 点在抛物线上,得2a =-41x (3a )2+25x 3a .即49a 2— 211a =0解得 a 1=922,a 2=0(舍去)∴OP =922②依题意作等腰直角三角形QMN .设直线AB 的解析式y =k 2x +b由点A (10 ,0),点B (2,4),求得直线AB 的解析式为y =-21x +5当P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:第一种情况:CD 与NQ 在同一条直线上,如图2所示,-1 yx O(第24题) 1234 -2 -4 -33 -1-2 -3 -4 4 1 2可证△DPQ为等腰直角三角形.此时QP、OP、AQ的长可依次表示为t、4t、 2t个单位.∴PQ = DP = 4t∴t+4t+2t=10∴t=710第二种情况:PC与MN在同一条直线上,如图3所示.可证△PQM为等腰直角三角形.此时OP、AQ的长依次表示为t、2t个单位,∴OQ = 10 - 2t∵F点在直线AB上∴FQ=t∵MQ=2t∴PQ=MQ=CQ=2t∴t+2t+2t=10∴t=2.第三种情况:点P、Q重合时,PD、QM在同一条直线上,如图4所示,此时OP、AQ的长依次表示为t、2t个单位.∴t+2t=10∴t=310综上,符合题意的值分别为710,2,310.36.(2010云南红河哈尼族彝族自治州)二次函数2xy=的图像如图8所示,请将此图像向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图像,并写出函数的解析式.(2)求经过两次平移后的图像与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?【答案】解:画图如图所示:依题意得:2)1(2--=xy=2122-+-xx=122--xx∴平移后图像的解析式为:122--xx(2)当y=0时,122--x x =02)1(2=-x 21±=-x 212121+=-=x x ,∴平移后的图像与x 轴交与两点,坐标分别为(21-,0)和(21+,0)由图可知,当x<21-或x>21+时,二次函数2)1(2--=x y 的函数值大于0.37.(2010云南楚雄)已知:如图,抛物线2y ax bx c =++与x 轴相交于两点A (1,0),B (3,0).与y 轴相较于点C (0,3).(1)求抛物线的函数关系式; (2)若点D (7,2m )是抛物线2y ax bx c =++上一点,请求出m 的值,并求处此时△ABD 的面积.【答案】解:(1)由题意可知09303a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得143a b c =⎧⎪=-⎨⎪=⎩所以抛物线的函数关系式为243y x x =-+.(2)把D (7,2m )代人函数解析式243y x x =-+中,得2775()43224m =-⨯+=.所以155(31)244ABD S ∆=⨯-⨯=.38.(2010湖北随州)已知抛物线2(0)y ax bx c a =++≠顶点为C (1,1)且过原点O.过抛物线上一点P (x ,y )向直线54y =作垂线,垂足为M ,连FM (如图).(1)求字母a ,b ,c 的值;(2)在直线x =1上有一点3(1,)4F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形; (3)对抛物线上任意一点P ,是否总存在一点N (1,t ),使PM =PN 恒成立,若存在请求出t值,若不存在请说明理由.【答案】(1)a =-1,b =2,c =031241234O1-2-1-2-xy(2)过P 作直线x=1的垂线,可求P 的纵坐标为14,横坐标为1132+.此时,MP =MF =PF =1,故△MPF 为正三角形.(3)不存在.因为当t <54,x <1时,PM 与PN 不可能相等,同理,当t >54,x >1时,PM 与PN 不可能相等.39.(2010河南)在平面直角坐标系中,已知抛物线经过A(4,0),B(0,一4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.【答案】(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0),则有1640,4,420.a b c c a b c -+=⎧⎪=-⎨⎪++=⎩解得1,21,4.a b c ⎧=⎪⎪=⎨⎪=-⎪⎩∴抛物线的解析式y =12x 2+x ﹣4(2)过点M 作MD ⊥x 轴于点D .设M 点的坐标为(m ,n ).则AD =m +4,MD =﹣n ,n =12m 2+m -4 .∴S = S △AMD +S 梯形DMBO -S △ABO=12( m +4) (﹣n )+12(﹣n +4) (﹣m ) -12×4×4= ﹣2n -2m -8= ﹣2(12m 2+m -4) -2m -8= ﹣m 2-4m (-4< m < 0)∴S 最大值 = 4(3)满足题意的Q 点的坐标有四个,分别是:(-4 ,4 ),(4 ,-4),(-2+252-5,(-2-52+2540.(2010四川乐山)如图(13.1),抛物线y =x2+bx+c 与x 轴交于A ,B 两点,与y 轴交于点C(0,2),连接AC ,若tan ∠OAC =2. (1)求抛物线对应的二次函数的解析式; (2)在抛物线的对称轴l 上是否存在点P ,使∠APC =90°,若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图(13.2)所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点,过点M 作直线l ′∥l ,交抛物线于点N ,连接CN 、BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?【答案】解:(1)∵抛物线y=x2+bx+c过点C(0,2). ∴x=2又∵tan∠OAC=OCOA=2, ∴OA=1,即A(1,0).又∵点A在抛物线y=x2+bx+2上. ∴0=12+b×1+2,b=-3∴抛物线对应的二次函数的解析式为y=x2-3x+2(2)存在过点C作对称轴l的垂线,垂足为D,如图所示,∴x=-332212ba-=-=⨯.∴AE=OE-OA=32-1=12,∵∠APC=90°,∴tan∠PAE= tan∠CPD∴PE CDEA DP=,即12PE322PE=-,解得PE=12或PE=32,∴点P的坐标为(32,12)或(32,32)。

2010年中考数学真题分类汇编(150套)专题十八·二次函数的图象和性质2(可编辑)

2010年中考数学真题分类汇编(150套)专题十八·二次函数的图象和性质2(可编辑)

2010年中考数学真题分类汇编(150套)专题十八·二次函数的图象和性质228.2010广东中山如图12所示矩形ABCD的边长AB 6BC 4点F在DC上DF 2.....答案①当时解得②当时此方程无实数根③时解得不合题意舍去综上当或时ΔPQW为直角三角形当0≤x<或<x<4时ΔPQW不为直角三角形3①当0≤x≤4即M从D到A运动时只有当x 4时MN的值最小等于2②当4<x≤6时当x 5时取得最小值2∴当x 5时线段MN最短MN .29.2010湖南常德如图已知抛物线与轴交于A -4 和B 10 两点与轴交于C点.求此抛物线的解析式设E是线段AB上的动点作EFAC交BC于F连接CE当△CEF的面积是△BEF 面积的2倍时求E点的坐标若P为抛物线上AC两点间的一个动点过P作轴的平行线交AC于Q当P点运动到什么位置时线段PQ的值最大并求此时P点的坐标.解1由二次函数与轴交于两点可得解得故所求二次函数的解析式为.2∵S△CEF 2 S△BEF ∴∵EFAC ∴∴△BEF~△BAC∴得故E点的坐标为 0 3解法一由抛物线与轴的交点为则点的坐标为0-2.若设直线的解析式为则有解得故直线的解析式为.若设点的坐标为又点是过点所作轴的平行线与直线的交点则点的坐标为.则有==即当时线段取大值此时点的坐标为-2-3解法二延长交轴于点则.要使线段最长则只须△的面积取大值时即可设点坐标为则有======-即时△的面积取大值此时线段最长则点坐标为-2-3与y轴交于点AE0b为y轴上一动点过点E的直线与抛物线交于点BC1求点A的坐标2 当b 0时如图2与的面积大小关系如何当时上述关系还成立吗为什么3是否存在这样的b使得是以BC为斜边的直角三角形若存在求出b若不存在说明理由答案1将x 0代入抛物线解析式得点A的坐标为0-42当b=0时直线为由解得所以BC的坐标分别为-2-222所以利用同底等高说明面积相等亦可当时仍有成立理由如下由解得所以BC的坐标分别为--bb作轴轴垂足分别为FG则而和是同底的两个三角形所以3存在这样的b因为所以所以即E为BC的中点所以当OE CE时为直角三角形因为所以而所以解得所以当b=4或-2时ΔOBC为直角三角形31.2010湖南怀化图9是二次函数的图象其顶点坐标为M 1-41求出图象与轴的交点AB的坐标2在二次函数的图象上是否存在点P使若存在求出P点的坐标若不存在请说明理由3将二次函数的图象在轴下方的部分沿轴翻折图象的其余部分保持不变得到一个新的图象请你结合这个新的图象回答当直线与此图象有两个公共点时的取值范围答案解 1 因为M 1-4 是二次函数的顶点坐标所以令解之得∴AB两点的坐标分别为A-10B302 在二次函数的图象上存在点P使设则又∴∵二次函数的最小值为-4∴当时故P点坐标为-25或457分3如图1当直线经过A点时可得8分当直线经过B点时可得由图可知符合题意的的取值范围为解得∴抛物线的解析式是y x2x2.3设PQ的运动时间为t秒则BP tCQ t.以PQC为顶点的三角形为等腰三角形可分三种情况讨论.①若CQ PC如图所示则PC CQ BP t.∴有2t BC ∴t .②若PQ QC如图所示过点Q作DQ⊥BC交CB于点D则有CD PD.由△ABC∽△QDC可得出PD CD ∴解得t .③若PQ PC如图所示过点P作PE⊥AC交AC于点E则EC QE PC∴t -t解得t .4当CQ PC时由3知t ∴点P的坐标是21∴直线OP的解析式是y x因而有x x2x2即x2-2x-4 0解得x 1±∴直线OP与抛物线的交点坐标为1和1-.33.2010湖北省咸宁已知二次函数的图象与轴两交点的坐标分别为00.1证明2若该函数图象的对称轴为直线试求二次函数的最小值.1证明依题意是一元二次方程的两根.根据一元二次方程根与系数的关系得.∴.∴.2解依题意∴.由1得.∴.∴二次函数的最小值为.的图象与x轴交于AB两点 A点在原点的左侧B点的坐标为30与y轴交于C0-3点点P是直线BC下方的抛物线上一动点1求这个二次函数的表达式.2连结POPC并把△POC沿CO翻折得到四边形POPC 那么是否存在点P使四边形POPC为菱形若存在请求出此时点P的坐标若不存在请说明理由.3当点P运动到什么位置时四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积答案解1将BC两点的坐标代入得解得所以二次函数的表达式为2存在点P使四边形POPC为菱形.设P点坐标为xPP交CO于E若四边形POPC是菱形则有PC=PO.连结PP 则PE⊥CO于E∴OE EC∴.∴解得不合题意舍去∴P点的坐标为8分3过点P作轴的平行线与BC交于点Q与OB交于点F设Px易得直线BC的解析式为则Q点的坐标为xx-3当时四边形ABPC的面积最大此时P点的坐标为四边形ABPC的面积.35.2010北京在平面直角坐标系xOy中抛物线与x轴的交点分别为原点O 和点A点B2n在这条抛物线上.1求B点的坐标2点P在线段OA上从O点出发向A点运动过P点作x轴的垂线与直线OB交与点E延长PE到点D使得ED PE以PD为斜边在PD右侧做等等腰直角三角形PCD 当P点运动时C点D点也随之运动.①当等腰直角三角形PCD的顶点C落在此抛物线上时求OP的长②若P点从O点出发向A点作匀速运动速度为每秒1个单位同时线段OA 上另一个点Q从A点出发向O点作匀速运动速度为每秒2个单位当Q点到达O 点时停止运动P点也同时停止运动.过Q点做x轴的垂线与直线AB交与点F延长QF到点M使得FM QF以QM为斜边在QM的左侧作等腰直角三角形QMN当Q点运动时M点N点也随之运动.若P点运动到t秒时两个等腰直角三角形分别有一条边恰好落在同一条直线上求此刻t的值.解1∵抛物线经过原点∴m23m2 0解的m1 1m2 2由题意知m≠1∴m 2∴抛物线的解析式为∵点B2n在抛物线n 4∴B点的坐标为242①设直线OB的解析式为y k1x求得直线OB的解析式y 2x∵A点是抛物线与x轴的一个交点可求得A点的坐标为100设P点的坐标为a0则E点的坐标为a2a.根据题意做等腰直角三角形PCD如图1可求得点C的坐标为3a2a有C点在抛物线上得2a -x3a2x3a即a2 a 0解得 a1 a2 0舍去∴OP②依题意作等腰直角三角形QMN设直线AB的解析式y k2xb由点A 10 0 点B24求得直线AB的解析式为y -x5当P点运动到t秒时两个等腰直角三角形分别有一条边恰好落在同一条直线上有以下三种情况第一种情况CD与NQ在同一条直线上如图2所示可证△DPQ为等腰直角三角形.此时QPOPAQ的长可依次表示为t 4t 2t个单位.∴PQ DP 4t∴t4t2t 10∴t第二种情况PC与MN在同一条直线上如图3所示.可证△PQM为等腰直角三角形.此时OPAQ的长依次表示为t2t个单位∴OQ 10 - 2t∵F点在直线AB上∴FQ t∵MQ 2t∴PQ MQ CQ 2t∴t2t2t 10∴t 2第三种情况点PQ重合时PDQM在同一条直线上如图4所示此时OPAQ的长依次表示为t2t个单位.∴t2t 10∴t综上符合题意的值分别为2.红河自治州二次函数的图像如图8所示请将此图像向右平移1个单位再向下平移2个单位1画出经过两次平移后所得到的图像并写出函数的解析式2求经过两次平移后的图像与x轴的交点坐标指出当x满足什么条件时函数值大于0解画图如图所示依题意得∴平移后图像的解析式为2当y 0时 0∴平移后的图像与x轴交与两点坐标分别为0和0由图可知当x 时二次函数的函数值大于02010云南楚雄已知如图抛物线与轴相交于两点A 10 B 30 与轴相较于点C03.1求抛物线的函数关系式2若点D是抛物线上一点请求出的值并求处此时△ABD 的面积.答案解1由题意可知解得所以抛物线的函数关系式为.2把D代人函数解析式中得.所以.顶点为C11且过原点O过抛物线上一点Pxy向直线作垂线垂足为M 连FM如图1求字母abc的值2在直线x=1上有一点求以PM为底边的等腰三角形PFM的P点的坐标并证明此时△PFM为正三角形3对抛物线上任意一点P是否总存在一点N1t使PM=PN恒成立若存在请求出t值若不存在请说明理由答案1a=-1b=2c=02过P作直线x 1的垂线可求P的纵坐标为横坐标为此时MP=MF=PF=1故△MPF为正三角形3不存在因为当t<x<1时PM与PN不可能相等同理当t>x>1时PM与PN 不可能相等39.2010河南在平面直角坐标系中已知抛物线经过A 40 B 0一4 C 20 三点1 求抛物线的解析式2 若点M为第三象限内抛物线上一动点点M的横坐标为m△AMB的面积为S 求S关于m的函数关系式并求出S的最大值3 若点P是抛物线上的动点点Q是直线y -x上的动点判断有几个位置能使以点PQB0为顶点的四边形为平行四边形直接写出相应的点Q的坐标答案1设抛物线的解析式为y ax2bxc a≠0 则有解得∴抛物线的解析式y x2x-42过点M作MD⊥x轴于点D设M点的坐标为mn则AD m4MD -nn m2+m-4∴S S△AMDS梯形DMBO-S△ABOm4 -n +-n+4 -m -×4×4-2n-2m-8-2 m2+m-4 -2m-8-m2-4m -4 m 0∴S最大值 43满足题意的Q点的坐标有四个分别是-4 4 4 -4-22--2-2+40.2010四川乐山如图 131 抛物线y=x2bxc与x轴交于AB两点与y轴交于点C 02 连接AC若tan∠OAC=2.1 求抛物线对应的二次函数的解析式2 在抛物线的对称轴l上是否存在点P使∠APC=90°若存在求出点P的坐标若不存在请说明理由3 如图 132 所示连接BCM是线段BC上不与BC重合的一个动点过点M 作直线l′‖l交抛物线于点N连接CNBN设点M的横坐标为t.当t为何值时△BCN的面积最大最大面积为多少答案解1∵抛物线y x2+bx+c过点C 02 ∴x 2又∵tan∠OAC 2 ∴OA 1即A 10又∵点A在抛物线y x2+bx+2上∴0 12+b×1+2b -3∴抛物线对应的二次函数的解析式为y x2-3x+22存在过点C作对称轴l的垂线垂足为D如图所示∴x -∴AE OE-OA -1 ∵∠APC 90°∴tan∠PAE tan∠CPD∴即解得PE 或PE∴点P的坐标为或备注可以用勾股定理或相似解答3如图易得直线BC的解析式为y -x+2∵点M是直线l′和线段BC的交点∴M点的坐标为t-t2 0<t<2∴MN -t2- t2-3t+2 - t2+2t∴S△BCM S△MNCS△MNB MNtMN 2-tMN t2-t MN - t2+2t 0<t<2∴S△BCN - t2+2t - t-1 21∴当t 1时S△BCN的最大值为141.2010江苏徐州如图已知二次函数y的图象与y轴交于点A与轴交于BC两点其对称轴与轴交于点D连接AC.1 点A的坐标为点C的坐标为2 线段AC上是否存在点E使得△EDC为等腰三角形若存在求出所有符合条件的点E的坐标若不存在请说明理由3 点P为轴上方的抛物线上动连接PAPC若所得△PAC的面积为S则S取何值时相应的点P有2个三点1求此抛物线的解析式2以OA的中点M为圆心OM长为半径作⊙M在1中的抛物线上是否存在这样的点P过点P作⊙M的切线l 且l与x轴的夹角为30°若存在请求出此时点P的坐标若不存在请说明理由注意本题中的结果可保留根号答案解1设抛物线的解析式为由题意得解得∴抛物线的解析式为2存在抛物线的顶点坐标是作抛物线和⊙M如图⊙M相切于点C连接MC过C作CD⊥ x 轴于D ∵ MC OM 2 ∠CBM 30° CM⊥BC∴∠BCM 90°∠BMC 60° BM 2CM 4 ∴B -2 0 在Rt△CDM中∠DCM ∠CDM - ∠CMD 30°∴D 1 CD ∴ C 1设线的解析式为点BC在上可得∴切线BC的解析式为∵点P为抛物线与切线的交点由解得∴点P的坐标为∵抛物线的对称轴是直线此抛物线⊙M都与直线成轴对称图形于是作切线 l 关于直线的对称直线 l′如图得到BC关于直线的对称点B1C1l′满足题中要求由对称性得到P1P2关于直线的对称点即为所求的点∴这样的点P共有4个43.2010陕西西安如图在平面直角坐标系中抛物线经过A10B30C01三点 1求该抛物线的表达式2点Q在y轴上点P在抛物线上要使以点QPAB为顶点的四边形是平行四边形求所有满足条件的点P的坐标答案解1设该抛物线的表达式为根据题意得解之得∴所求抛物线的表达式为2①当AB为边时只要PQAB且PQ AB 4即可又知点Q在y轴上∴点P的横坐标为4或-4这时将合条件的点P有两个分别记为P1P2而当x 4时此时②当AB为对角线时只要线段PQ与线段AB互相平分即可又知点Q在y轴上且线段AB中点的横坐标为1∴点P的横坐标为2这时符合条件的点P只有一个记为P3而当x 2时y -1此时P32-1综上满足条件的点44.2010四川内江如图抛物线y=x2―2mx―3m m>0 与x轴交于AB两点与y轴交于C点1抛物线AB两点2△BCM与△A的面积比不变求出这个比值3抛物线答案解1y=x2―2mx―3m=m x2―2x―3 =m x-1 2―4m∴抛物线―4m 2分∵抛物线y=x2―2mx―3m m>0 与x轴交于AB两点∴当y=0时mx2―2mx―3m=0∵m>0∴x2―2x―3=0解得x1=-1x2=3∴AB两点2y=―3C的坐标为0-3∴S△ABC=××-3=6=6mMD⊥x轴于D ∴S△BCM=S△+SOCMD-S△= OC+DM ·OD-OB·OC=×2×4m+3m+4-=∴ S△BCMS△A=1 8分3抛物线CN=OD=1①如果△BCM是Rt△且∠BMC=90°时CM2+BM2=BC2 即1+m2+4+16m2=9+9m2解得m=±∵m>0∴m=∴存在抛物线y=x2-x使得△BCM是Rt△ 10分②①如果△BCM是Rt△且∠BCM=90°时BC2+CM2=BM2即9+9m2+1+m2=4+16m2解得m=±1∵m>0∴m=1∴存在抛物线y=x2-x-3使得△BCM是Rt△③如果△BCM是Rt△且∠CBM=90°时BC2+BM2=CM2即9+9m2+4+16m2=1+m2整理得m2=-此方程无解∴以∠CBM为直角的直角三角形不存在或∵9+9m2>1+m24+16m2>1+m2∴以∠CBM为直角的直角三角形不存在综上的所述存在抛物线y=x2-x和y=x2-x-3使得△BCM是Rt△45.2010广东东莞已知二次函数的图象如图所示它与轴的一个交点坐标为-10与轴的交点坐标为03⑴求出bc的值并写出此时二次函数的解析式⑵根据图象写出函数值y为正数时自变量x的取值范围.答案⑴根据题意得解得所以抛物线的解析式为⑵令解得根据图象可得当函数值y为正数时自变量x的取值范围是-1<<3.46.2010 福建三明已知抛物线经过点B20和点C08且它的对称轴是直线 1求抛物线与轴的另一交点A坐标2分2求此抛物线的解析式3分3连结ACBC若点E是线段AB上的一个动点与点A点B不重合过点E作EF‖AC交BC于点F连结CE设AE的长为m△CEF的面积为S求S与m之间的函数关系式4在3的基础上试说明S是否存在最大值若存在请求出S的最大值并求出此时点E的坐标判断此时△BCE的形状若不存在请说明理由答案1∵抛物线的对称轴是直线∴由对称性可得A点的坐标为-60 2分2∵点C08在抛物线的图象上将A-60B20代入表达式得解得∴所求解析式为[也可用] 5分3依题意AE m则BE 8-m∵OA 6OC 8∴AC 10∵EFAC ∴≌过点F作FG⊥AB垂足为G则10分4存在理由如下∴当m 4时S有最大值S最大值 8 12分∵m 4∴点E的坐标为-20为等腰三角形14分47.2010湖北襄樊如图7四边形ABCD是平行四边形AB 4OB 2抛物线过ABC 三点与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA 向点A运动运动到点A停止同时一动点Q从点D出发以每秒3个单位长度的速度沿DC向点C运动与点P同时停止.1求抛物线的解析式2若抛物线的对称轴与AB交于点E与x轴交于点F当点P运动时间t为何值时四边形POQE是等腰梯形3当t为何值时以PBO为顶点的三角形与以点QBO为顶点的三角形相似图7答案解得∴所求抛物线的解析式为.2将抛物线的解析式配方得.∴抛物线的对称轴为x 2.∴D80E22F20.欲使四边形POQE为等腰梯形则有OP QE.即BP FQ.∴t 6-3t即t .3欲使以PBO为顶点的三角形与以点QBO为顶点的三角形相似∵∠PBO ∠BOQ 90°∴有或即PB OQ或OB2 PB·QO.①若PQ在y轴的同侧.当PB OQ时t 8-3t∴t 2.时.②若PQ在y轴的侧.当PB OQ时∴t 4.时.∵t 0.故舍去∴t .∴当t 2或t 或t 4或t 秒时以PBO为顶点的三角形与以点QBO为顶点的三角形相似.48.2010 山东东营如图已知二次函数的图象与坐标轴交于点A-1 0和点B0-5.1求该二次函数的解析式2已知该函数图象的对称轴上存在一点P使得△ABP的周长最小.请求出点P的坐标.答案解1根据题意得2分 3分.4分的图象与x轴的另一个交点坐标C5 05分由于P是对称轴上一点连结AB由于要使△ABP的周长最小只要最小6分由于点A与点C关于对称轴对称连结BC交对称轴于点P则 BPPC BC根据两点之间线段最短可得的最小值为BC因而BC与对称轴的交点P就是所求的点8分设直线BC的解析式为根据题意可得解得所以直线BC的解析式为9分因此直线BC与对称轴的交点坐标是方程组的解解得所求的点P的坐标为2-310分49.2010 四川绵阳如图抛物线y ax2 bx 4与x轴的两个交点分别为A -40B20与y轴交于点C顶点为D.E12为线段BC的中点BC的垂直平分线与x 轴y轴分别交于FG.1求抛物线的函数解析式并写出顶点D的坐标2在直线EF上求一点H使△CDH的周长最小并求出最小周长3若点K在x轴上方的抛物线上运动当K运动到什么位置时△EFK的面积最大并求出最大面积.答案1由题意得解得b -1.所以抛物线的解析式为顶点D的坐标为-1.2设抛物线的对称轴与x轴交于点M.因为EF垂直平分BC即C关于直线EG 的对称点为B连结BD交于EF于一点则这一点为所求点H使DH CH最小即最小为DH CH DH HB BD .而.∴△CDH的周长最小值为CD DR CH .设直线BD的解析式为y k1x b则解得 b1 3.所以直线BD的解析式为y x 3.由于BC 2CE BC∕2 Rt△CEG∽△COB得 CE CO CG CB所以 CG 25GO 15.G015.同理可求得直线EF的解析式为y x .联立直线BD与EF的方程解得使△CDH的周长最小的点H.3设KtxF<t<xE.过K作x轴的垂线交EF于N.则 KN yK-yN -t .所以 S△EFK S△KFN S△KNE KNt 3KN1-t 2KN -t2-3t 5 -t 2 .即当t -时△EFK的面积最大最大面积为此时K-.50.2010 湖北孝感如图已知二次函数图像的顶点坐标为20直线与二次函数的图像交于AB两点其中点A在y轴上1二次函数的解析式为y 3分2证明点不在1中所求的二次函数的图像上3分3若C为线段AB的中点过C点作轴于E点CE与二次函数的图像交于D点①y轴上存在点K使以KADC为顶点的四边形是平行四边形则K点的坐标是 2分②二次函数的图像上是否存在点P使得若存在求出P点坐标若不存在请说明理由4分答案1解3分2证明设点的图像上则有4分整理得∴原方程无解5分的图象上6分说明由从而判断点不在二次函数图像上的同样给分3解①8分②二次函数的图象上存在点P使得如图过点B作轴于F则BFCEAO又C为AB中点9分设由题意有10分解得11分12分说明在求出得到△POE的边OE上的高为16即点P的纵坐标为16然后由可求出P点坐标2010 江苏镇江运算求解已知二次函数的图象C1与x轴有且只有一个公共点1求C1的顶点坐标2将C1向下平移若干个单位后得抛物线C2如果C2与x轴的一个交点为A30求C2的函数关系式并求C2与x轴的另一个交点坐标3若的取值范围答案1 1分轴有且只有一个公共点∴顶点的纵坐标为0∴C1的顶点坐标为10 2分2设C2的函数关系式为把A30代入上式得∴C2的函数关系式为 3分∵抛物线的对称轴为轴的一个交点为A30由对称性可知它与x轴的另一个交点坐标为10 4分3当的增大而增大当 5分52. 2010江苏苏州本题满分9分如图以A为顶点的抛物线与y轴交于点B.已知AB两点的坐标分别为 30 04 .1 求抛物线的解析式2 设M mn 是抛物线上的一点 mn为正整数且它位于对称轴的右侧.若以MBOA为顶点的四边形四条边的长度是四个连续的正整数求点M的坐标3 在 2 的条件下试问对于抛物线对称轴上的任意一点PPA2PB2PM2>28是否总成立请说明理由.答案53.2010广东广州2112分已知抛物线y=-x22x+2.1该抛物线的对称轴是顶点坐标选取适当的数据填入下表并在图7的直角坐标系内描点画出该抛物线的图象x y 若该抛物线上两点Ax1y1Bx2y2的横坐标满足x1>x2>1试比较y1与y2的大小答案解x=113x -1 0 1 2 3 y -1 2 3 2 -1因为在对称轴x=1右侧y随x的增大而减小又x1>x2>1所以y1<y2CCD 平行于轴交抛物线于点D写出D点的坐标并求ADBC的交点E的坐标3 若抛物线的顶点为PPCPD可设抛物线的解析式为则解得∴抛物线的解析式为4分⑵的坐标为 5分直线的解析式为直线的解析式为由求得交点的坐标为 8分⑶连结交于的坐标为又∵∴且∴四边形是菱形12分55.2010江苏南京7分已知点A11在二次函数图像上1用含的代数式表示2如果该二次函数的图像与轴只有一个交点求这个二次函数的图像的顶点坐标答案56.2010江苏盐城本题满分12分已知函数y ax2x1的图象与x轴只有一个公共点.1求这个函数关系式2如图所示设二次函数y ax2x1图象的顶点为B与y轴的交点为AP为图象上的一点若以线段PB为直径的圆与直线AB相切于点B求P点的坐标3在 2 中若圆与x轴另一交点关于直线PB的对称点为M试探索点M是否在抛物线y ax2x1上若在抛物线上求出M点的坐标若不在请说明理由.答案解1当a 0时y x1图象与x轴只有一个公共点 1分当a≠0时△ 1- 4a 0a 此时图象与x轴只有一个公共点.∴函数的解析式为y x1 或y x2x13分2设P为二次函数图象上的一点过点P作PC⊥x轴于点C.∵是二次函数由1知该函数关系式为y x2x1则顶点为B-20图象与y轴的交点坐标为A014分∵以PB为直径的圆与直线AB相切于点B ∴PB⊥AB 则∠PBC ∠BAO ∴Rt△PCB∽Rt△BOA∴故PC 2BC5分设P点的坐标为 xy ∵∠ABO是锐角∠PBA是直角∴∠PBO是钝角∴x -2 ∴BC -2-xPC -4-2x即y -4-2x P点的坐标为 x-4-2x∵点P在二次函数y x2x1的图象上∴-4-2x x2x16分解之得x1 -2x2 -10∵x -2 ∴x -10∴P点的坐标为 -1016 7分3点M不在抛物线上8分由2知C为圆与x 轴的另一交点连接CMCM与直线PB的交点为Q过点M作x 轴的垂线垂足为D取CD的中点E连接QE则CM⊥PB且CQ MQ∴QE‖MDQE MDQE⊥CE∵CM⊥PBQE⊥CE PC⊥x 轴∴∠QCE ∠EQB ∠CPB∴tan∠QCE tan∠EQB tan∠CPBCE 2QE 2×2BE 4BE又CB 8故BE QE∴Q点的坐标为 -可求得M点的坐标为 11分∵≠∴C点关于直线PB的对称点M不在抛物线上12分其它解法仿此得分57.2010辽宁市如图平面直角坐标系中有一直角梯形OMNH点H的坐标为-80点N的坐标为-6-4.1画出直角梯形OMNH绕点O旋转180°的图形OABC并写出顶点ABC的坐标点M的对应点为A 点N的对应点为B 点H的对应点为C2求出过ABC三点的抛物线的表达式3截取CE OF AG m且EFG分别在线段COOAAB上求四边形BEFG的面积S与m 之间的函数关系式并写出自变量m的取值范围面积S是否存在最小值若存在请求出这个最小值若不存在请说明理由4在3的情况下四边形BEFG是否存在邻边相等的情况若存在请直接写出此时m的值并指出相等的邻边若不存在说明理由.1 利用中心对称性质画出梯形OABC. 1分∵ABC三点与MNH分别关于点O中心对称∴A04B64C80 3分写错一个点的坐标扣1分2设过ABC三点的抛物线关系式为∵抛物线过点A04∴.则抛物线关系式为. 4分将B64 C80两点坐标代入关系式得解得所求抛物线关系式为.7分3∵OA 4OC 8∴AF 4-mOE 8-m. 8分∴OAABOCAFAGOE·OFCE·OA0<<4 10分∵.∴当时S的取最小值.又∵0<m<4∴不存在m值使S的取得最小值. 2分4当时GB GF当时BE BG.14分的抛物线交轴于点交轴于两点点在点的左侧已知点坐标为1求此抛物线的解析式2过点作线段的垂线交抛物线于点如果以点为圆心的圆与直线相切请判断抛物线的对称轴与⊙有怎样的位置关系并给出证明3已知点是抛物线上的一个动点且位于两点之间问当点运动到什么位置时的面积最大并求出此时点的坐标和的最大面积答案1解设抛物线为∵抛物线经过点03∴∴∴抛物线为 2 答与⊙相交证明当时∴为20为60∴设⊙与相切于点连接则∵∴又∵∴∴∽∴∴∴6分∵抛物线的对称轴为∴点到的距离为2∴抛物线的对称轴与⊙相交3 解过点作平行于轴的直线交于点求的解析式为设点的坐标为则点的坐标为∴∵∴当时的面积最大为此时点的坐标为359.2010甘肃兰州本题满分11分如图1已知矩形ABCD的顶点A与点O重合ADAB分别在x轴y轴上且AD 2AB 3抛物线经过坐标原点O和x轴上另一点E401当x取何值时该抛物线的最大值是多少2将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动同时一动点P也以相同的速度从点A出发向B匀速移动设它们运动的时间为t秒0≤t≤3直线AB与该抛物线的交点为N如图2所示①当时判断点P是否在直线ME上并说明理由②以PNCD为顶点的多边形面积是否可能为5若有可能求出此时N点的坐标若无可能请说明理由.图1 图2答案经过坐标原点O00和点E40故可得c 0b 4所以抛物线的解析式为1分由得当x 2时该抛物线的最大值是4 2分2①点P不在直线ME上已知M点的坐标为 24 E点的坐标为 40设直线ME的关系式为y kxb于是得解得所以直线ME的关系式为y -2x8 3分由已知条件易得当时OA AP 4分∵ P点的坐标不满足直线ME的关系式y -2x8 [来源ZxxkCom] ∴当时点P不在直线ME上 5分②以PNCD为顶点的多边形面积可能为5∵点A在x轴的非负半轴上且N在抛物线上∴ OA AP t∴点PN的坐标分别为 tt t-t 24t 6分∴ AN -t 24t 0≤t≤3∴ AN-AP -t 24 t - t -t 23 t t 3-t ≥0 ∴ PN -t 23 t7分ⅰ当PN 0即t 0或t 3时以点PNCD为顶点的多边形是三角形此三角形的高为AD∴ S DC·AD ×3×2 3ⅱ当PN≠0时以点PNCD为顶点的多边形是四边形∵ PN‖CDAD⊥CD∴ S CDPN ·AD [3 -t 23 t ]×2 -t 23 t38分当-t 23 t3 5时解得t 129分而12都在0≤t≤3范围内故以PNCD为顶点的多边形面积为5综上所述当t 12时以点PNCD为顶点的多边形面积为5当t 1时此时N点的坐标1310分当t 2时此时N点的坐标2411分说明ⅱ中的关系式当t 0和t 3时也适合故在阅卷时没有ⅰ只有ⅱ也可以不扣分60.2010山东青岛已知把Rt△ABC和Rt△DEF按如图1摆放点C与点E重合点BCEF在同一条直线上.∠ACB∠EDF 90°∠DF 45°AC 8 cmBC6 cmEF9 cm.△DEF从图1的位置出发以1 cms的速度沿CB△ABC匀速移在△DEF移的同时点P从△ABC的顶点B出发以2 cms的速度沿BA向点A动△DEF的顶点D移动到AC边上时△DEF停止移.DE与AC相交于点Q连接PQ设动时间为ts0<t<45.1当t为何值时点A在线段PQ的垂直平分线上2连接PE设四边形APE的面积为ycm2求y与之间的函数关系式是否存在某一时刻t使面积y最小若存在求出y的最小值若不存在说明理由.3是否存在某一时刻t使PQF三点在同一条直线上若存在求出此时t的值若不存在说明理由.答案解1∵点A在线段PQ的垂直平分线上∴AP AQ∵∠DEF 45°∠ACB 90°∠∠ACB+∠EQC 180°∴∠EQC 45°∴∠DEF ∠EQC∴CE CQ由题意知CE tBP 2 t。

2010年中考数学二次函数部分压轴题及解答

2010年中考数学二次函数部分压轴题及解答

x yO BCA图91、(2010湖南常德)如图9, 已知抛物线212y x bx c =++与x 轴交于A (-4,0) 和B (1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)设E 是线段AB 上的动点,作EF //AC 交BC 于F ,连接CE ,当△CEF 的面积是△BEF 面积的2倍时,求E 点的坐标; (3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.【答案】解:(1)由二次函数212y x bx c =++与x 轴交于(4,0)A -、(1,0)B 两点可得:221(4)4021102b c b c ⎧--+=⎪⎪⎨⎪⋅++=⎪⎩,. 解得: 322b c ⎧=⎪⎨⎪=-⎩,.故所求二次函数的解析式为213222y x x =+-.(2)∵S △CEF =2 S △BEF , ∴1,2BF CF =1.3BF BC =∵EF //AC , ∴B ,EF BAC BFE BCA ∠=∠∠=∠ , ∴△BEF ~△BAC ,∴1,3BE BF BA BC ==得5,3BE = 故E 点的坐标为(23-,0).(3)解法一:由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2).若设直线AC 的解析式为y kx b =+,则有20,04b k b -=+⎧⎨=-+⎩. 解得:1,22k b ⎧=-⎪⎨⎪=-⎩.故直线AC 的解析式为122y x =--.若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭,又Q 点是过点P 所作y 轴的平行线与直线AC 的交点,则Q 点的坐标为(1,2)2a a --.则有:2131[(2)](2)222PQ a a a =-+----=2122a a --=()21222a -++即当2a =-时,线段PQ 取大值,此时P 点的坐标为(-2,-3)解法二:延长PQ 交x 轴于D 点,则PD AB ⊥.要使线段PQ 最长,则只须△APC 的面积取大值时即可. 设P 点坐标为(),00y x ,则有:ACO DPCO S APC ADP S S S =+-梯形 =111()222AD PD PD OC OD OA OC ⋅++⋅-⋅ =()()000001112242222x y y y x --+-+⋅--⨯⨯=0024y x ---=20001322422x x x ⎛⎫-+--- ⎪⎝⎭=2004xx -- =-()22024x ++即02x =-时,△APC 的面积取大值,此时线段PQ 最长,则P 点坐标为(-2,-3)2、(2010湖南郴州)如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标; (2)当b =0时(如图(2)),ABE 与ACE 的面积大小关系如何?当4b >-时,上述关系还成立吗,为什么?(3)是否存在这样的b ,使得BOC 是以BC 为斜边的直角三角形,若存在,求出b ;若不存在,说明理由.【答案】(1)将x =0,代入抛物线解析式,得点A 的坐标为(0,-4) (2)当b =0时,直线为y x =,由24y xy x x =⎧⎨=+-⎩解得1122x y =⎧⎨=⎩,2222x y =-⎧⎨=-⎩所以B 、C 的坐标分别为(-2,-2),(2,2)14242ABES=⨯⨯=,14242ACES =⨯⨯= 所以ABEACESS=当4b >-时,仍有ABEACES S=成立. 理由如下由24y x b y x x =+⎧⎨=+-⎩,解得11x y b ⎧=⎪⎨=⎪⎩,22x y ⎧=⎪⎨=⎪⎩所以B 、C b 作BF y ⊥轴,CG y ⊥轴,垂足分别为F 、G ,则而ABE 和ACE 是同底的两个三角形, 所以ABEACESS=.(3)存在这样的b .因为90BF CG,BEF CEG,BFE CGE =∠=∠∠=∠=︒ 所以BEF CEG ≅所以BE CE =,即E 为BC 的中点所以当OE =CE 时,OBC 为直角三角形 因为GE b b GC =-== 所以 CE =OE b = b =,解得124,2b b ==-,所以当b =4或-2时,ΔOBC 为直角三角形.3、(2010湖南怀化)图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4). (1)求出图象与x 轴的交点A,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=45,若存在,求出P 点的 坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变, 得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此 图象有两个公共点时,b 的取值范围.【答案】解;(1) 因为M(1,-4) 是二次函数k m x y ++=2)(的顶点坐标,所以324)1(22--=--=x x x y 令,0322=--x x 解之得3,121=-=x x . ∴A ,B 两点的坐标分别为A (-1,0),B (3,0) (2) 在二次函数的图象上存在点P ,使MAB PAB S S ∆∆=45设),,(y x p 则y y AB S PAB 221=⨯=∆,又8421=-⨯=∆AB S MAB , ∴.5,8452±=⨯=y y 即 ∵二次函数的最小值为-4,∴5=y . 当5=y 时,4,2=-=x x 或.故P 点坐标为(-2,5)或(4,5)……………7分(3)如图1,当直线)1(<+=b b x y 经过A 点时,可得.1=b ……………8分 当直线)1(<+=b b x y 经过B 点时,可得.3-=b 由图可知符合题意的b 的取值范围为13<<-b图9图14、(2010湖北鄂州)如图,在直角坐标系中,A (-1,0),B (0,2),一动点P 沿过B 点且垂直于AB 的射线BM 运动,P 点的运动速度为每秒1个单位长度,射线BM 与x 轴交与点C .(1)求点C 的坐标.(2)求过点A 、B 、C 三点的抛物线的解析式.(3)若P 点开始运动时,Q 点也同时从C 出发,以P 点相同的速度沿x 轴负方向向点A 运动,t 秒后,以P 、Q 、C 为顶点的三角形为等腰三角形.(点P 到点C 时停止运动,点Q 也同时停止运动)求t 的值. (4)在(2)(3)的条件下,当CQ =CP 时,求直线OP 与抛物线的交点坐标.【答案】(1)点C 的坐标是(4,0);(2)设过点A 、B 、C 三点的抛物线的解析式为y =ax 2+bx +c (a ≠0),将点A 、B 、C 三点的坐标代入得:020164a b c ca b c =-+⎧⎪=⎨⎪=++⎩解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式是:y = 12-x 2+32x +2. (3)设P 、Q 的运动时间为t 秒,则BP =t ,CQ =t .以P 、Q 、C 为顶点的三角形为等腰三角形,可分三种情况讨论.①若CQ =PC ,如图所示,则PC = CQ =BP =t .∴有2t =BC=t②若PQ =QC ,如图所示,过点Q 作DQ ⊥BC 交CB 于点D ,则有CD =PD .由△ABC ∽△QDC ,可得出PD =CD=5,∴5t =,解得t=4011-PQ =PC ,如图,过点P 作PE ⊥AC 交AC 于点E ,则EC =QE,∴12tt ),解得t(4)当CQ =PC 时,由(3)知tP 的坐标是(2,1),∴直线OP 的解析式是:y =12x ,因而有12x =12-x 2+32x +2,即x 2-2x -4=0,解得x =1直线OP 与抛物线的交点坐标为()和(.5、(2010湖北省咸宁)已知二次函数2y x bx c =+-的图象与x 轴两交点的坐标分别为(m ,0),(3m -,0)(0m ≠).(1)证明243c b =;(2)若该函数图象的对称轴为直线1x =,试求二次函数的最小值.【答案】(1)证明:依题意,m ,3m -是一元二次方程20x bx c +-=的两根.根据一元二次方程根与系数的关系,得(3)m m b +-=-,(3)m m c ⨯-=-.∴2b m =,23c m =. ∴224312c b m ==. (2)解:依题意,12b -=,∴2b =-.由(1)得2233(2)344c b ==⨯-=.∴2223(1)4y x x x =--=--.∴二次函数的最小值为4-.6、(2010湖北恩施自治州) 如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.【答案】解:(1)将B 、C 两点的坐标代入得⎩⎨⎧-==+33c c b解得:⎩⎨⎧-=-=32c b所以二次函数的表达式为:322--=x x y(2)存在点P ,使四边形POP /C 为菱形.设P 点坐标为(x ,322--x x ), PP /交CO 于E若四边形POP /C 是菱形,则有PC =PO .连结PP / 则PE ⊥CO 于E ,∴OE=EC =23∴y =23-.∴322--x x =23-解得1x =2102+,2x =2102-(不合题意,舍去) ∴P 点的坐标为(2102+,23-)…………………………8分(3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,322--x x ),易得,直线BC 的解析式为3-=x y 则Q 点的坐标为(x ,x -3).EB QP OE QP OC AB S S S S CPQ BPQ ABC ABPC ⋅+⋅+⋅=++=∆∆∆212121四边形 3)3(2134212⨯+-+⨯⨯=x x =87523232+⎪⎭⎫ ⎝⎛--x当23=x 时,四边形ABPC 的面积最大 此时P 点的坐标为⎪⎭⎫⎝⎛-415,23,四边形ABPC 的面积875的最大值为.。

全国各地中考数学真题分类汇编:第13章---二次函数

全国各地中考数学真题分类汇编:第13章---二次函数

第13章 二次函数一、选择题1. (2011山东滨州,7,3分)抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位 【答案】B 【答案】D 2. (2011广东广州市,5,3分)下列函数中,当x >0时y 值随x 值增大而减小的是( ).A .y = x 2B .y = x -1C . y = 34 xD .y = 1x【答案】D3. (2011湖北鄂州,15,3分)已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .34. (2011山东德州6,3分)已知函数))((b x a x y --=(其中a b >)的图象如下面右图所示,则函数b ax y +=的图象可能正确的是【答案】D5. (2011山东菏泽,8,3分)如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是A .a +b =-1B . a -b =-1C . b <2aD . ac <0y x1 1Oy x1 -1 O yx-1 -1 O 1-1 xy O (D )第6题图【答案】B6. (2011山东泰安,20 ,3分)若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表:X -7 -6 -5 -4 -3 -2 y-27-13-3353则当x =1时,y 的值为A.5B.-3C.-13D.-27 【答案】D7. (2011山东威海,7,3分)二次函数223y x x =--的图象如图所示.当y <0时,自变量x 的取值范围是( ). A .-1<x <3B .x <-1C . x >3D .x <-1或x >3【答案】A8. (2011山东烟台,10,4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h【答案】A9. (2011浙江温州,9,4分)已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( )A .有最小值0,有最大值3B .有最小值-1,有最大值0C .有最小值-1,有最大值3D .有最小值-1,无最大值【答案】D10.(2011四川重庆,7,4分)已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . a >0B . b <0C . c <0D . a +b +c >0 【答案】D11. (2011台湾台北,6)若下列有一图形为二次函数y =2x 2-8x +6的图形,则此图为何?【答案】A12. (2011台湾台北,32)如图(十四),将二次函数228999931+-=x x y 的图形画在坐标平面上,判断方程式0899993122=+-x x 的两根,下列叙述何者正确?A .两根相异,且均为正根B .两根相异,且只有一个正根C .两根相同,且为正根D .两根相同,且为负根 【答案】A13. (2011台湾全区,28)图(十二)为坐标平面上二次函数c bx ax y ++=2的图形,且此图形通(-1 ,1)、(2 ,-1)两点.下列关于此二次函数的叙述,何者正确?A .y 的最大值小于0B .当x =0时,y 的值大于1C .当x =1时,y 的值大于1D .当x =3时,y 的值小于0 【答案】D14. (2011甘肃兰州,5,4分)抛物线221y x x =-+的顶点坐标是 A .(1,0) B .(-1,0)C .(-2,1)D .(2,-1)【答案】A15. (2011甘肃兰州,9,4分)如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。

中考数学复习 第3章 函数 第13讲 二次函数的应用课件

中考数学复习 第3章 函数 第13讲 二次函数的应用课件
一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个 月,第(m+1)个月的利润,再对它们的差的情况讨论.
2021/12/9
第四页,共二十六页。
(2)将n=1,x=120代入x=2n2-2kn+9(k+3),得120=2-2k+9k+27. 解得k=13. 将n=2,x=100代入x=2n2-26n+144也符合.∴k=13. 由题意,得18=6+ ,求得x=50. ∴50=2n2-26n+144,即n2-13n+47=0. ∵Δ=(-13)2-4×1×47<0,
解得x>22.
又∵x是5的倍数,
∴每辆车的日租金至少(zhìshǎo)应为25元.
(2)设每天的净收入为y元.
当0<x≤100时,y1=50x-1100. ∵y1随x的增大而增大,
∴当x=100时,y1的最大值为50×100-1100=3900(元). 当x>100时,
y2=(50-
当x=175时,y2的最大值为5025(元). ∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多是
1.55m.
(1)当a=- 时,①求h的值;②通过计算判断(pànduàn) 此球能否过网; (2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m, 离地面的高度为 m的Q处时,乙扣球成功,求a的值.
2021/12/9
第十页,共二十六页。
2021/12/9
第十一页,共二十六页。
变式运用►2.[2017·台州中考]交通工程学理论把在单向道路上行驶的 汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基 本特征.其中流量q(辆/小时(xiǎoshí))指单位时间内通过道路指定断面 的车辆数;速度v(千米/小时(xiǎoshí))指通过道路指定断面的车辆速度; 密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.

中考数学复习第三单元函数第13课时二次函数的图像及性质课件67

中考数学复习第三单元函数第13课时二次函数的图像及性质课件67

考点精讲
重难点突破
练习1 如图,抛物线y=x2-2x+k(k<0)与x轴相交于A(x1, 0)、B(x2,0)两点,其中x1<0<x2,当x=x1+2时,y____0(填 “>”“=”或“<”).
练习1题图
浙江近9年中考真题精选(2009-2017)
考点精讲
重难点突破
【解析】∵抛物线y=x2-2x+k(k<0)的对称轴方程是x=1, 又∵x1<0,∴x1与对称轴x=1距离大于1,∴x1+2<x2,∴当 x=x1+2时,抛物线图象在x轴下方,即y<0.
考点精讲
重难点突破
【解析】∵对于任意负实数k,当x<m时,y随x的增大而增
大,∵k为负数,即k<0,∴函数y=kx2+(3k+2)x+1表示的
是开口向下的二次函数,∴在对称轴的左侧,y随x的增大而
增大,∵对于任意负实数k,当x<m时,y随x的增大而增大,
∴x=- b =- 3k 2 ,∴m≤- 3k 2=- 3 - 1 .
2a
2k
2k
2k
浙江近9年中考真题精选(2009-2017)
考点精讲
重难点突破
∵k<0,∴- 1 >0,∴- 1 - 3 >- 3 ,∵m≤- 1 - 3 ,
k
k2
2
k2
对一切k<0均成立,∴m≤- 3k 2的最小值为- 3 ,∴m的最
2k
2
大整数值是-2.
浙江近9年中考真题精选(2009-2017)
浙江近9年中考真题精选(2009-2017)
考点精讲
重难点突破
第一部分 考点研究
第三单元 函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

375 2009年中考试题专题之13-二次函数试题及答案 一、选择题 1、(2009年台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2bx。若此炮弹在第7秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的? (A) 第8秒 (B) 第10秒 (C) 第12秒 (D) 第15秒 。

2、(2009年泸州)在平面直角坐标系中,将二次函数22xy的图象向上平移2个单位,所得图象的解析式为 A.222xy B.222xy

C.2)2(2xy D.2)2(2xy 3、 (2009年四川省内江市)抛物线3)2(2xy的顶点坐标是( ) A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3) 5、(2009年桂林市、百色市)二次函数2(1)2yx的最小值是( ). A.2 B.1 C.-3 D. 23

6、(2009年上海市)抛物线22()yxmn(mn,是常数)的顶点坐标是( )

A.()mn, B.()mn, C.()mn, D.()mn, 7、(2009年陕西省)根据下表中的二次函数cbxaxy2的自变量x与函数y的对应值,可判断二次函数的图像与x轴 【 】 x … -1 0 1 2 …

y … -1 47 -2 47 …

A.只有一个交点 B.有两个交点,且它们分别在y轴两侧 C.有两个交点,且它们均在y轴同侧 D.无交点

8、(2009威海)二次函数2365yxx的图象的顶点坐标是( )

A.(18), B.(18), C.(12), D.(14), 9、(2009湖北省荆门市)函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是( ) 375

解析:本题考查函数图象与性质,当0a时,直线从左向右是上升的,抛物线开口向上,D是错的,函数y=ax+1与y=ax2+bx+1(a≠0)的图象必过(0,1),所以C是正确的,故选C. 10、(2009年贵州黔东南州)抛物线的图象如图所示,根据图象可知,抛物线的解析式可.

能.是( )

A、y=x2-x-2 B、y=121212x C、y=121212xx D、y=22xx

11、(2009年齐齐哈尔市)已知二次函数2(0)yaxbxca

的图象如图所示,则下列结论:0ac①;②方程

20axbxc

的两根之和大于0;y③随x的增大而增大;④0abc,其中正确的个数() A.4个 B.3个 C.2个 D.1个

12、(2009年深圳市)二次函数cbxaxy2的图象如图2所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是( ) A.21yy B.21yy C.21yy D.不能确定

12、(2009桂林百色)二次函数2(1)2yx的最小值是( ).

x y O 1

A. B. C. D. 1111xo yyo xyo xxo

y 375 A.2 B.1 C.-3 D. 23 13、(2009丽水市)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论: ①a>0.

②该函数的图象关于直线1x对称. ③当13xx或时,函数y的值都等于0. 其中正确结论的个数是( ) A.3 B.2 C.1 D.0

14、(2009烟台市)二次函数2yaxbxc的图象如图所示,则一次函数24ybxbac

与反比例函数abcyx在同一坐标系内的图象大致为( )

15、(2009年甘肃庆阳)图6(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图6(2)建立平面直角坐标系,则抛物线的关系式是( )

A.22yx B.22yx C.212yx D.21

2yx

16、(2009年甘肃庆阳)将抛物线22yx向下平移1个单位,得到的抛物线是( ) A.22(1)yx B.22(1)yx C.221yx D.221yx 17、(2009年广西南宁)已知二次函数2yaxbxc(0a)的图象如图4所示,有下列四个结论:20040bcbac①②③④0abc,其中正确的个数有( ) A.1个 B.2个 C.3个 D.4个

图6(1) 图6(2)

1 1 O

x

y y x O y x O B. C. y

x O

A. y x O D.

O 375

18、(2009年鄂州)已知=次函数y=ax2+bx+c的图象如图.则下列5个代数式:ac,a+b+c,4a-2b+c, 2a+b,2a-b中,其值大于0的个数为( ) A.2 B 3 C、4 D、5

19、(2009年孝感)将函数2yxx的图象向右平移a(0)a个单位,得到函数232yxx

的图象,则a的值为

A.1 B.2 C.3 D.4

20、(2009泰安)抛物线1822xxy的顶点坐标为 (A)(-2,7) (B)(-2,-25) (C)(2,7) (D)(2,-9) 21、(2009年烟台市)二次函数2yaxbxc的图象如图所示,则一次函数

24ybxbac

与反比例函数abcyx在同一坐标系内的图象大致为( )

22、(2009年嘉兴市)已知0a,在同一直角坐标系中,函数axy与2axy的图象有可能是( ▲ )

1 图4 O

x

y 3

1 1 O

x

y y x O y x O B. C. y

x O

A. y x O D.

Oyx1

1

A. xyO11B. xyO11C. xyO11D. 375

23、(2009年新疆)如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正..

确.的是( )

A.hm B.kn C.kn D.00hk,

24、(2009年天津市)在平面直角坐标系中,先将抛物线22yxx关于x轴作轴对称变换,再将所得的抛物线关于y轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )

A.22yxx B.22yxx C.22yxx D.22yxx

25、(2009年南宁市)已知二次函数2yaxbxc(0a)的图象如图所示,有下列四个结论:20040bcbac①②③④0abc,其中正确的个数有( ) A.1个 B.2个 C.3个 D.4个

26、(2009年衢州)二次函数2(1)2yx的图象上最低点的坐标是 A.(-1,-2) B.(1,-2) C.(-1,2) D.(1,2) 27、(2009年舟山)二次函数2(1)2yx的图象上最低点的坐标是 A.(-1,-2) B.(1,-2) C.(-1,2) D.(1,2)

28、(2009年广州市)二次函数2)1(2xy的最小值是( ) A.2 (B)1 (C)-1 (D)-2 29、(2009年济宁市)小强从如图所示的二次函数2yaxbxc的图象中,观察得出了下面五条信息:(1)0a;(2) 1c;(3)0b;(4) 0abc; (5)0abc. 你认为其中正确信息的个数有 A.2个 B.3个 C.4个 D.5个 375

30、(2009年广西钦州)将抛物线y=2x2向上平移3个单位得到的抛物线的解析式是( ) A.y=2x2+3 B.y=2x2-3 C.y=2(x+3)2 D.y=2(x-3)2

31、(2009宁夏)二次函数2(0)yaxbxca的图象如图所示,对称轴是直线1x,则下列四个结论错误..的是( )D A.0c B.20ab

C.240bac D.0abc

32、(2009年南充)抛物线(1)(3)(0)yaxxa的对称轴是直线( ) A.1x B.1x C.3x D.3x 33、(2009年湖州)已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( ) A.6 B.7 C.8 D.9

34、(2009年兰州)在同一直角坐标系中,函数ymxm和函数222ymxx(m是常数,且0m)的图象可能..是

1 1 1 O

x

y

(8题图)

121

1O1x

y

(第12题)

相关文档
最新文档