高考数学大一轮复习(新课标,数学理)题组训练第九章解析几何题组53 含解析

合集下载

(新课标)高考数学一轮总复习 第九章 计数原理、概率、随机变量及其分布列 9-7 二项分布、正态分布

(新课标)高考数学一轮总复习 第九章 计数原理、概率、随机变量及其分布列 9-7 二项分布、正态分布

9-7 二项分布、正态分布及其应用课时规X 练(授课提示:对应学生用书第331页)A 组 基础对点练1.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是12,则μ等于( C ) A .1 B .2 C .4D .不能确定解析:当函数f (x )=x 2+4x +ξ没有零点时,Δ=16-4ξ<0,即ξ>4,根据正态曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是12时,μ=4.2.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A ) A .0.8 B .0.75 C .0.6D .0.453.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( B )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%) A .4.56% B .13.59% C .27.18%D .31.74%4.某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为 38.解析:依题意,元件的使用寿命超过1 000小时的概率为12,则该部件的使用寿命超过1 000小时的概率为12×⎣⎢⎡⎦⎥⎤12×12+12×⎝ ⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫1-12×12=38.5.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解析:设A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1BC +A 2B +A 2B -C ,P (B )=0.6,P (C )=0,4,P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1BC +A 2B +A 2B -C ) =P (A 1BC )+P (A 2B )+P (A 2B -C ) =P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B -)P (C )=0.31.(2)X 的可能取值为0,1,2,3,4,则有P (X =0)=P (B -A 0C -)=P (B -)P (A 0)P (C -)=(1-0.6)×0.52×(1-0.4)=0.06,P (X =1)=P (BA 0C -+B -A 0C +B -A 1C -)=P (B )P (A 0)P (C -)+P (B -)P (A 0)P (C )+P (B -)P (A 1)P (C -)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,P (X =3)=P (D )-P (X =4)=0.25,P (X =4)=P (A 2BC )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06. X 的分布列为P 0.06 0.25 0.38 0.25 0.06数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4) =0.25+2×0.38+3×0.25+4×0.06=2.6.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x -和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2. ①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求EX . 附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6,P (μ-2σ<Z <μ+2σ)=0.954 4. 解析:(1)抽取产品的质量指标值的样本平均数x -和样本方差s 2分别为x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X ~B (100,0.682 6),所以EX =100×0.682 6=68.26.B 组 能力提升练1.某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩近似服从正态分布,即X ~N (100,a 2)(a >0),试卷满分为150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分(包含100分和110分)之间的人数约为( A ) A .400 B .500 C .600D .8002.已知随机变量X 服从正态分布N (5,4),且P (X >k )=P (X <k -4),则k 的值为( B ) A .6 B .7 C .8D .93.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( B )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%,P (μ-3σ<ξ≤μ+3σ)=99.74%)A .17B .23C .34D .464.一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为( D ) A.23 B .512 C.79D .595.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( B )(附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4) A .1 193 B .1 359 C .2 718D .3 4136.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是②④.(写出所有正确结论的序号) ①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关. 解析:由题意知A 1,A 2,A 3是两两互斥的事件,P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3) =12×511+15×411+310×411=922. 7.袋中有三个白球,两个黑球,现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为 34.解析:记事件A 为“第一次摸到黑球”,事件B 为“第二次摸到白球”,则事件AB 为“第一次摸到黑球、第二次摸到白球”,依题意知P (A )=25,P (AB )=25×34=310,∴在第一次摸到黑球的条件下,第二次摸到白球的概率是P (B |A )=P AB P A =34.8.某学校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度,现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后一位数字为叶).(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.解析:(1)众数:8.6;中位数:8.75.(2)设A i (i =0,1,2,3)表示所取3人中有i 个人是“极幸福”,至多有1人是“极幸福”记为事件A ,则P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140.(3)ξ的所有可能取值为0,1,2,3.则ξ~B ⎝ ⎛⎭⎪⎫3,14, P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫14k ⎝ ⎛⎭⎪⎫343-k,k =0,1,2,3. ξ的分布列为:所以E (ξ)=3×14=0.75.9.挑选空军飞行员可以说是“万里挑一”,需要通过五关:目测、初检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析知甲、乙、丙三位同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响. (1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解析:(1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B -C -)+P (A -B C -)+P (A -B -C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)甲被录取的概率为P 甲=0.5×0.6=0.3, 同理P 乙=0.6×0.5=0.3,P 丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X ~B (3,0.3),X的可能取值为0,1,2,3,其中P(X=k)=C k3(0.3)k·(1-0.3)3-k. 故P(X=0)=C03×0.30×(1-0.3)3=0.343,P(X=1)=C13×0.3×(1-0.3)2=0.441,P(X=2)=C23×0.32×(1-0.3)=0.189,P(X=3)=C33×0.33=0.027,故X的分布列为。

(新课标)高考数学大一轮复习第九章解析几何题组51文

(新课标)高考数学大一轮复习第九章解析几何题组51文

原点到直线 AB的距离为
| - 3|
3
h=
42+(- 4
3)
= 2
8.
1
9
因此
S△ = OAB
|AB| 2
·
h=
. 4
2p
3
另解: |AB| = sin2 θ = 1 = 12,
( 2)2
1
13
19
S△ = ABO · |OF| · |AB| · sin θ= · · 12· = .
2
24
24
5.(2015 ·云南统一检测 ) 已知抛物线 C 的顶点是原点 O,焦点 F 在 x 轴的正半轴上,经过 F
y- 2=0.
2.设 O 为坐标原点, F 为抛物线 y2= 4x 的焦点, A 为抛物线上一点,若 O→A· A→F=- 4,则点
A 的坐标为 ( )
A. (2 ,± 2 2)
B. (1 ,± 2)
C. (1 ,2)
D. (2 ,2 2)
答案 B
解析 设 A(x 0, y0) ,F(1 , 0) , O→A= (x 0, y 0) ,
22 k= 3 .
22
22
把 k= 3 代入 (*) 式检验,不等式成立.所以 k= 3 ,故选 C.
11.已知抛物线 y 2= 4x,过点 P(4 , 0) 的直线与抛物线交于 + y22 的最小值是 ________.
A(x 1,y1 ) , B(x 2, y2 ) 两点,则
y
2 1
答案 32
解析 设直线方程为 x= ky+ 4,与抛物线联立得 y2- 4ky -16= 0,∴ y1+ y2= 4k,y 1y 2=- 16. ∴ y12+ y 22= (y 1+y 2) 2- 2y1y 2= 16k2+32.

高考一轮复习教案数学(理)新课标 第九篇 解析几何 2 两条直线的位置关系

高考一轮复习教案数学(理)新课标 第九篇 解析几何 2 两条直线的位置关系

第2讲 两条直线的位置关系【2013年高考会这样考】1.考查两直线的平行与垂直.2.考查两点间的距离公式、点到直线的距离公式、两平行直线间的距离公式.【复习指导】1.对两条直线的位置关系,求解时要注意斜率不存在的情况,注意平行、垂直时直线方程系数的关系.2.熟记距离公式,如两点之间的距离、点到直线的距离、两条平行线之间的距离.基础梳理1.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l 1、l 2,其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2,特别地,当直线l 1、l 2的斜率都不存在时,l 1与l 2的关系为平行.(2)两条直线垂直①如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则l 1⊥l 2⇔k 1k 2=-1.②如果l 1、l 2中有一条直线的斜率不存在,另一条直线的斜率为0时,l 1与l 2的关系为垂直.2.两直线相交交点:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解;平行⇔方程组无解;重合⇔方程组有无数个解.3.三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2. 特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.一条规律与直线Ax +By +C =0(A 2+B 2≠0)平行、垂直的直线方程的设法:一般地,平行的直线方程设为Ax +By +m =0;垂直的直线方程设为Bx -Ay +n =0.两个防范(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑. (2)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中的x ,y 系数化为分别相等.三种对称(1)点关于点的对称点P (x 0,y 0)关于A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)点关于直线的对称设点P (x 0,y 0)关于直线y =kx +b 的对称点P ′(x ′,y ′), 则有⎩⎪⎨⎪⎧ y ′-y 0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x 02+b ,可求出x ′,y ′.(3)直线关于直线的对称①若已知直线l 1与对称轴l 相交,则交点必在与l 1对称的直线l 2上,然后再求出l 1上任一个已知点P 1关于对称轴l 对称的点P 2,那么经过交点及点P 2的直线就是l 2;②若已知直线l 1与对称轴l 平行,则与l 1对称的直线和l 1分别到直线l 的距离相等,由平行直线系和两条平行线间的距离即可求出l 1的对称直线.双基自测1.(人教A 版教材习题改编)直线ax +2y -1=0与直线2x -3y -1=0垂直,则a的值为( ).A .-3B .-43C .2D .3解析 由⎝ ⎛⎭⎪⎫-a 2×23=-1,得:a =3. 答案 D2.原点到直线x +2y -5=0的距离为( ).A .1 B. 3 C .2 D. 5解析 d =|-5|1+22= 5. 答案 D3.(2012·银川月考)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ).A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0 解析 ∵所求直线与直线x -2y -2=0平行,∴所求直线斜率k =12,排除C 、D.又直线过点(1,0),排除B ,故选A.答案 A4.点(a ,b )关于直线x +y +1=0的对称点是( ).A .(-a -1,-b -1)B .(-b -1,-a -1)C .(-a ,-b )D .(-b ,-a )解析 设对称点为(x ′,y ′),则⎩⎪⎨⎪⎧ y ′-b x ′-a ×(-1)=-1,x ′+a 2+y ′+b 2+1=0,解得:x ′=-b -1,y ′=-a -1.答案 B5.平行线l 1:3x -2y -5=0与l 2:6x -4y +3=0之间的距离为________.解析 直线l 2变为:3x -2y +32=0,由平行线间的距离公式得:d =⎪⎪⎪⎪⎪⎪-5-3232+22=132.答案13 2考向一两条直线平行与垂直的判定及应用【例1】►(1)已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则实数a=________.(2)“ab=4”是直线2x+ay-1=0与直线bx+2y-2=0平行的().A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件[审题视点] (1)利用k1·k2=-1解题.(2)抓住ab=4能否得到两直线平行,反之两直线平行能否一定得ab=4.解析(1)由题意知(a+2)a=-1,所以a2+2a+1=0,则a=-1.(2)直线2x+ay-1=0与直线bx+2y-2=0平行的充要条件是-2a=-b2且-1a≠-1,即ab=4且a≠1,则“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要而不充分条件.答案(1)-1(2)C(1)充分掌握两直线平行与垂直的条件是解决本题的关键,对于斜率都存在且不重合的两条直线l1和l2,l1∥l2⇔k1=k2,l1⊥l2⇔k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率是多少一定要特别注意.(2)①若直线l1和l2有斜截式方程l1:y=k1x+b1,l2:y=k2x+b2,则:直线l1⊥l2的充要条件是k1·k2=-1.②设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0.则:l1⊥l2⇔A1A2+B1B2=0.(3)注意转化与化归思想的应用.【训练1】已知直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,求m的值,使得:(1)l1与l2相交;(2)l1⊥l2;(3)l1∥l2;(4)l1,l2重合.解(1)由已知1×3≠m(m-2),即m2-2m-3≠0,解得m≠-1且m≠3.故当m ≠-1且m ≠3时,l 1与l 2相交.(2)当1·(m -2)+m ·3=0,即m =12时,l 1⊥l 2.(3)当1×3=m (m -2)且1×2m ≠6×(m -2)或m ×2m ≠3×6,即m =-1时,l 1∥l 2.(4)当1×3=m (m -2)且1×2m =6×(m -2),即m =3时,l 1与l 2重合.考向二 两直线的交点【例2】►求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.[审题视点] 可先求出l 1与l 2的交点,再用点斜式;也可利用直线系方程求解.解 法一 先解方程组⎩⎨⎧3x +2y -1=0,5x +2y +1=0, 得l 1、l 2的交点坐标为(-1,2),再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l :y -2=-53(x +1),即5x +3y -1=0.法二 由于l ⊥l 3,故l 是直线系5x +3y +C =0中的一条,而l 过l 1、l 2的交点(-1,2),故5×(-1)+3×2+C =0,由此求出C =-1,故l 的方程为5x +3y -1=0.法三 由于l 过l 1、l 2的交点,故l 是直线系3x +2y -1+λ(5x +2y +1)=0中的一条,将其整理,得(3+5λ)x +(2+2λ)y +(-1+λ)=0.其斜率-3+5λ2+2λ=-53,解得λ=15, 代入直线系方程即得l 的方程为5x +3y -1=0.运用直线系方程,有时会给解题带来方便,常见的直线系方程有:(1)与直线Ax +By +C =0平行的直线系方程是:Ax +By +m =0(m ∈R 且m ≠C );(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.【训练2】 直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.解 法一 设直线l 与l 1的交点为A (x 0,y 0),由已知条件,得直线l 与l 2的交点为B (-2-x 0,4-y 0),并且满足⎩⎨⎧ 4x 0+y 0+3=0,3(-2-x 0)-5(4-y 0)-5=0, 即⎩⎨⎧ 4x 0+y 0+3=0,3x 0-5y 0+31=0,解得⎩⎨⎧ x 0=-2,y 0=5,因此直线l 的方程为y -25-2=x -(-1)-2-(-1),即3x +y +1=0. 法二 设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.由⎩⎨⎧ kx -y +k +2=0,4x +y +3=0,得x =-k -5k +4. 由⎩⎨⎧kx -y +k +2=0,3x -5y -5=0,得x =-5k -155k -3. 则-k -5k +4+-5k -155k -3=-2,解得k =-3. 因此所求直线方程为y -2=-3(x +1),即3x +y +1=0.法三 两直线l 1和l 2的方程为(4x +y +3)(3x -5y -5)=0,①将上述方程中(x ,y )换成(-2-x,4-y ),整理可得l 1与l 2关于(-1,2)对称图形的方程:(4x +y +1)(3x -5y +31)=0.②①-②整理得3x +y +1=0.考向三 距离公式的应用【例3】►(2011·北京东城模拟)若O (0,0),A (4,-1)两点到直线ax +a 2y +6=0的距离相等,则实数a =________.[审题视点] 由点到直线的距离公式列出等式求a .解析 由题意,得6a 2+a 4=|4a -a 2+6|a 2+a4,即4a -a 2+6=±6,解之得a =0或-2或4或6.检验得a =0不合题意,所以a =-2或4或6.答案 -2或4或6用点到直线的距离公式时,直线方程要化为一般式,还要注意公式中分子含有绝对值的符号,分母含有根式的符号.而求解两平行直线的距离问题也可以在其中一条直线上任取一点,再求这一点到另一直线的距离.【训练3】 已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为 5,求直线l 1的方程. 解 ∵l 1∥l 2,∴m 2=8m ≠n -1,∴⎩⎨⎧ m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2. (1)当m =4时,直线l 1的方程为4x +8y +n =0,把l 2的方程写成4x +8y -2=0.∴|n +2|16+64=5,解得n =-22或n =18. 所以,所求直线的方程为2x +4y -11=0或2x +4y +9=0.(2)当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为2x -4y -1=0,∴|-n +2|16+64=5,解得n =-18或n =22. 所以,所求直线的方程为2x -4y +9=0或2x -4y -11=0.考向四 对称问题【例4】►光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.[审题视点] 设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则直线A ′D ′经过点B 与C .解 作出草图,如图所示.设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.解决这类对称问题要抓住两条:一是已知点与对称点的连线与对称轴垂直;二是以已知点和对称点为端点的线段的中点在对称轴上.【训练4】 已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( ).A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析 l 1与l 2关于l 对称,则l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设其关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧ x +02-y -22-1=0,y +2x ×1=-1,得⎩⎨⎧x =-1,y =-1.即(1,0)、(-1,-1)为l 2上两点,可得l 2方程为x -2y -1=0. 答案 B难点突破19——两直线平行与垂直问题的求解策略从近两年新课标高考试题可看出高考主要以选择题、填空题的形式考查两直线的平行和垂直问题,往往是直线方程中一般带有参数,问题的难点就是确定这些参数值,方法是根据两直线平行、垂直时所满足的条件列关于参数的方程(组),通过解方程(组)求出参数值,但要使参数符合题目本身的要求,解题时注意直线方程本身的限制.【示例1】►(2011·浙江)若直线x-2y+5=0与直线2x+my-6=0互相垂直,则实数m=________.【示例2】►(2010·上海)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是().A.1或3 B.1或5 C.3或5 D.1或2。

高考数学一轮复习 第九章 平面解析几何9

高考数学一轮复习 第九章 平面解析几何9

高考数学一轮复习 第九章 平面解析几何9.1 直线的方程考试要求 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式).知识梳理 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)范围:直线的倾斜角α的取值范围为0°≤α<180°. 2.直线的斜率(1)定义:把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α(α≠90°). (2)过两点的直线的斜率公式如果直线经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2),其斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x =x 0 斜截式 y =kx +b不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2) 不含直线x =x 1 和直线y =y 1截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用常用结论直线的斜率k与倾斜角α之间的关系α0°0°<α<90°90°90°<α<180°k 0k>0不存在k<0牢记口诀:1.“斜率变化分两段,90°是分界线;遇到斜率要谨记,存在与否要讨论”.2.“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.3.直线Ax+By+C=0(A2+B2≠0)的一个法向量v=(A,B),一个方向向量a=(-B,A).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.(√)(2)若一条直线的倾斜角为α,则此直线的斜率为tan α.(×)(3)斜率相等的两直线的倾斜角不一定相等.(×)(4)截距可以为负值.(√)教材改编题1.若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或4答案 A解析 由题意得m -4-2-m=1,解得m =1.2.倾斜角为135°,在y 轴上的截距为-1的直线方程是( ) A .x -y +1=0 B .x -y -1=0 C .x +y -1=0 D .x +y +1=0答案 D解析 直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0. 3.过点P (2,3)且在两坐标轴上截距相等的直线方程为________________. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时, 设直线方程为x a +ya =1,则2a +3a =1,解得a =5. 所以直线方程为x +y -5=0.题型一 直线的倾斜角与斜率例1 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的变化范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2 D.⎣⎡⎦⎤π4,2π3答案 B解析 直线2x cos α-y -3=0的斜率k =2cos α. 由于α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3]. 由于θ∈[0,π), 所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的变化范围是⎣⎡⎦⎤π4,π3.(2)过函数f (x )=13x 3-x 2的图象上一个动点作函数图象的切线,则切线倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,3π4 B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎣⎡⎦⎤π2,3π4答案 B解析 设切线的倾斜角为α,则α∈[0,π), ∵f ′(x )=x 2-2x =(x -1)2-1≥-1, ∴切线的斜率k =tan α≥-1, 则α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 教师备选1.(2022·安阳模拟)已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是( ) A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12答案 D解析 直线l :y =k (x -2)+1经过定点P (2,1),∵k P A =3-11-2=-2,k PB =-1-1-2-2=12, 又直线l :y =k (x -2)+1与线段AB 相交, ∴-2≤k ≤12.2.若直线l 的斜率为k ,倾斜角为α,且α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是________. 答案 [-3,0)∪⎣⎡⎭⎫33,1解析 当α∈⎣⎡⎭⎫π6,π4时,k =tan α∈⎣⎡⎭⎫33,1; 当α∈⎣⎡⎭⎫2π3,π时,k =tan α∈[-3,0). 综上得k ∈[-3,0)∪⎣⎡⎭⎫33,1.思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论. 跟踪训练1 (1)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π答案 B解析 依题意,直线的斜率k =-1a 2+1∈[-1,0),因此其倾斜角的取值范围是⎣⎡⎭⎫3π4,π. (2)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为______,______. 答案 13-3解析 如图,在正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图所示的平面直角坐标系.设对角线OB 所在直线的倾斜角为θ,则tan θ=2,由正方形的性质可知,直线OA 的倾斜角为θ-45°,直线OC 的倾斜角为θ+45°,故k OA =tan(θ-45°)=tan θ-tan 45°1+tan θtan 45°=2-11+2=13, k OC =tan(θ+45°)=tan θ+tan 45°1-tan θtan 45°=2+11-2=-3. 题型二 求直线的方程例2 求满足下列条件的直线方程:(1)经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍; (2)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)当直线不过原点时, 设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0; 当直线过原点时,设直线方程为y =kx , 则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (2)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).所求直线的方程为 x -y +1=0或x +y -7=0.教师备选1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的边BC 上的高所在的直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0 D .x -y =0答案 B解析 因为B (3,1),C (1,3),所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A (-1,1),所以其所在的直线方程为x -y +2=0.2.已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( ) A .x +y -3=0 B .x -3y -2=0 C .3x -y +6=0 D .3x +y -6=0 答案 D解析 设直线l 的倾斜角为α,则tan α=k =2,直线l 绕点M 按逆时针方向旋转45°,所得直线的斜率k ′=tan ⎝⎛⎭⎫α+π4=2+11-2×1=-3, 又点M (2,0),所以y =-3(x -2),即3x +y -6=0. 思维升华 求直线方程的两种方法(1)直接法:由题意确定出直线方程的适当形式.(2)待定系数法:先由直线满足的条件设出直线方程,方程中含有待定的系数,再由题设条件求出待定系数.跟踪训练2 (1)已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0答案 C解析 由题知M (2,4),N (3,2),中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.(2)过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为______________. 答案 x +y -3=0或x +2y -4=0 解析 由题意可设直线方程为x a +yb =1.则⎩⎪⎨⎪⎧a +b =6,2a +1b=1,解得a =b =3或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0.题型三 直线方程的综合应用例3 已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为原点,当△AOB 面积最小时,求直线l 的方程. 解 方法一 设直线l 的方程为y -1=k (x -2)(k <0), 则A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ), S △AOB =12(1-2k )·⎝⎛⎭⎫2-1k =12⎣⎡⎦⎤4+-4k +⎝⎛⎭⎫-1k ≥12×(4+4)=4, 当且仅当-4k =-1k ,即k =-12时,等号成立.故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.方法二 设直线l :x a +yb =1,且a >0,b >0,因为直线l 过点M (2,1), 所以2a +1b =1,则1=2a +1b≥22ab,故ab ≥8, 故S △AOB 的最小值为12×ab =12×8=4,当且仅当2a =1b =12时取等号,此时a =4,b =2,故直线l 的方程为x 4+y2=1,即x +2y -4=0.延伸探究 1.在本例条件下,当|OA |+|OB |取最小值时,求直线l 的方程. 解 由本例方法二知,2a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝⎛⎭⎫2a +1b =3+a b +2ba≥3+22,当且仅当a =2+2,b =1+2时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y =2+ 2.2.本例中,当|MA |·|MB |取得最小值时,求直线l 的方程. 解 方法一 由本例方法一知A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0).所以|MA |·|MB |=1k 2+1·4+4k 2 =2×1+k 2|k |=2⎣⎡⎦⎤-k +1-k ≥4.当且仅当-k =-1k ,即k =-1时取等号.此时直线l 的方程为x +y -3=0.方法二 由本例方法二知A (a ,0),B (0,b ),a >0,b >0,2a +1b =1.所以|MA |·|MB |=|MA →|·|MB →| =-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2⎝⎛⎭⎫b a +a b ≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 教师备选如图所示,为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪,但△EF A 内部为文物保护区,不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解 如图所示,以A 为坐标原点建立平面直角坐标系,则E (30,0),F (0,20),∴直线EF 的方程为x 30+y20=1.易知当矩形草坪的两邻边在BC ,CD 上,且一个顶点在线段EF 上时,可使草坪面积最大,在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =|PQ |·|PR |=(100-m )(80-n ), 又m 30+n20=1(0≤m ≤30), ∴n =20-23m ,∴S =(100-m )⎝⎛⎭⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30),∴当m =5时,S 有最大值,此时|EP ||PF |=5,∴当矩形草坪的两邻边在BC ,CD 上,一个顶点P 在线段EF 上,且|EP |=5|PF |时,草坪面积最大.思维升华 直线方程综合问题的两大类型及解法(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识来解决. 跟踪训练3 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程. (1)证明 直线l 的方程可化为 k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线l 总经过定点(-2,1). (2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k <-2,1+2k >1, 解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0, 解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·1+2k 2k=12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.课时精练1.已知直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程是( )A .x +y +1=0B .y =-12xC .x +2=0D .y -1=0答案 C解析 由于直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程为x =-2,即x +2=0.2.(2022·清远模拟)倾斜角为120°且在y 轴上的截距为-2的直线方程为( ) A .y =-3x +2 B .y =-3x -2 C .y =3x +2 D .y =3x -2答案 B解析 斜率为tan 120°=-3,利用斜截式直接写出方程,即y =-3x -2. 3.直线l 经过点(1,-2),且在两坐标轴上的截距相等,则直线l 的方程为( ) A .x -y -1=0或x -2y =0 B .x +y +1=0或x +2y =0 C .x -y +1=0或2x -y =0 D .x +y +1=0或2x +y =0 答案 D解析 若直线l 过原点, 设直线l 的方程为y =kx , 则k =-2,此时直线l 的方程为y =-2x , 即2x +y =0; 若直线l 不过原点, 设直线l 的方程为x a +ya =1,则1a -2a =1,解得a =-1, 此时直线l 的方程为x +y +1=0.综上所述,直线l的方程为x+y+1=0或2x+y=0.4.若直线y=ax+c经过第一、二、三象限,则有()A.a>0,c>0 B.a>0,c<0C.a<0,c>0 D.a<0,c<0答案 A解析因为直线y=ax+c经过第一、二、三象限,所以直线的斜率a>0,在y轴上的截距c>0. 5.(2022·衡水模拟)1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,OO4分别是大星中心点与四颗小星中心点的连接线,α≈16°,则第三颗小星的一条边AB所在直线的倾斜角约为()A.0°B.1°C.2°D.3°答案 C解析∵O,O3都为五角星的中心点,∴OO3平分第三颗小星的一个角,又五角星的内角为36°,可知∠BAO3=18°,过O3作x轴的平行线O3E,如图,则∠OO 3E =α≈16°,∴直线AB 的倾斜角为18°-16°=2°.6.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ) A .-1<k <15B .k >1或k <12C .k >1或k <15D .k >12或k <-1答案 D解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得k >12或k <-1.7.直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞) 答案 C解析 令x =0,得y =b 2,令y =0,得x =-b , 所以所求三角形的面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,14b 2≤1, 所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].8.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴与y 轴上的截距之和的最小值为( )A .1B .2C .3D .4 答案 D解析 因为直线ax +by =ab (a >0,b >0), 当x =0时,y =a ,当y =0时,x =b ,所以该直线在x 轴与y 轴上的截距分别为b ,a , 又直线ax +by =ab (a >0,b >0)过点(1,1), 所以a +b =ab ,即1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ≥2+2b a ·ab=4, 当且仅当a =b =2时等号成立.所以直线在x 轴与y 轴上的截距之和的最小值为4.9.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________________. 答案 5x +3y =0或x -y +8=0解析 ①当直线过原点时,直线方程为y =-53x ,即5x +3y =0;②当直线不过原点时,设直线方程为x a +y-a =1,即x -y =a ,代入点(-3,5),得a =-8,即直线方程为x -y +8=0.综上,直线方程为5x +3y =0或x -y +8=0.10.直线l 过(-1,-1),(2,5)两点,点(1 011,b )在l 上,则b 的值为________. 答案 2 023解析 直线l 的方程为y --15--1=x --12--1,即y +16=x +13,即y =2x +1. 令x =1 011,得y =2 023, ∴b =2 023.11.设直线l 的方程为2x +(k -3)y -2k +6=0(k ≠3),若直线l 的斜率为-1,则k =________;若直线l 在x 轴、y 轴上的截距之和等于0,则k =______. 答案 5 1解析 因为直线l 的斜率存在,所以直线l 的方程可化为y =-2k -3x +2,由题意得-2k -3=-1,解得k =5.直线l 的方程可化为x k -3+y2=1,由题意得k -3+2=0,解得k =1.12.已知点M 是直线l :y =3x +3与x 轴的交点,将直线l 绕点M 旋转30°,则所得到的直线l ′的方程为________________________. 答案 x =-3或y =33(x +3) 解析 在y =3x +3中,令y =0,得x =-3,即M (-3,0).因为直线l 的斜率为3,所以其倾斜角为60°.若直线l 绕点M 逆时针旋转30°,则得到的直线l ′的倾斜角为90°,此时直线l ′的斜率不存在,故其方程为x =-3;若直线l 绕点M 顺时针旋转30°,则得到的直线l ′的倾斜角为30°,此时直线l ′的斜率为tan 30°=33,故其方程为y =33(x +3).13.直线(1-a 2)x +y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎭⎫π4,π2 B.⎣⎡⎭⎫0,3π4 C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,πD.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,3π4 答案 C解析 直线的斜率k =-(1-a 2)=a 2-1, ∵a 2≥0,∴k =a 2-1≥-1. 倾斜角和斜率的关系如图所示,∴该直线倾斜角的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 14.已知直线2x -my +1-3m =0,当m 变动时,直线恒过定点( ) A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3 D.⎝⎛⎭⎫-12,-3 答案 D解析 直线方程可化为2x +1-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0,y +3=0,得⎩⎪⎨⎪⎧x =-12,y =-3,∴直线恒过定点⎝⎛⎭⎫-12,-3.15.已知直线x sin α+y cos α+1=0(α∈R ),则下列命题正确的是( ) A .直线的倾斜角是π-αB .无论α如何变化,直线始终过原点C .直线的斜率一定存在D .当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积不小于1 答案 D解析 根据直线倾斜角的范围为[0,π),而π-α∈R ,所以A 不正确;当x =y =0时,x sin α+y cos α+1=1≠0,所以直线必不过原点,B 不正确;当α=π2时,直线斜率不存在,C 不正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积为S =12⎪⎪⎪⎪1-sin α·⎪⎪⎪⎪1-cos α=1|sin 2α|≥1,所以D 正确. 16.若ab >0,且A (a ,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 答案 16解析 根据A (a ,0),B (0,b )确定直线的方程为x a +yb =1,又因为C (-2,-2)在该直线上, 故-2a +-2b=1, 所以-2(a +b )=ab . 又因为ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号,即ab 的最小值为16.。

2024年高考数学总复习第九章《平面解析几何》复习试卷及答案解析

2024年高考数学总复习第九章《平面解析几何》复习试卷及答案解析

2024年高考数学总复习第九章《平面解析几何》复习试卷及答案解析一、选择题1.已知椭圆C:16x2+4y2=1,则下列结论正确的是()A.长轴长为12B.焦距为34C.短轴长为14D.离心率为32答案D解析由椭圆方程16x2+4y2=1化为标准方程可得x2 1 16+y214=1,所以a=12,b=14,c=34,长轴2a=1,焦距2c=32,短轴2b=12,离心率e=ca=32.故选D.2.双曲线x23-y29=1的渐近线方程是()A.y=±3x B.y=±13xC.y=±3x D.y=±33x 答案C解析因为x23-y29=1,所以a=3,b=3,渐近线方程为y=±ba x,即为y=±3x,故选C.3.已知双曲线my2-x2=1(m∈R)与抛物线x2=8y有相同的焦点,则该双曲线的渐近线方程为()A.y=±3x B.y=±3xC.y=±13x D.y=±33x答案A解析∵抛物线x 2=8y 的焦点为(0,2),∴双曲线的一个焦点为(0,2),∴1m +1=4,∴m =13,∴双曲线的渐近线方程为y =±3x ,故选A.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)和直线l :x 4+y3=1,若过C 的左焦点和下顶点的直线与l平行,则椭圆C 的离心率为()A.45B.35C.34D.15答案A解析直线l 的斜率为-34,过C 的左焦点和下顶点的直线与l 平行,所以b c =34,又b 2+c 2=a 2+c 2=a 2⇒2516c 2=a 2,所以e =c a =45,故选A.5.(2019·洛阳、许昌质检)若双曲线x 2-y 2b2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值范围是()A .(1,2]B .[2,+∞)C .(1,3]D .[3,+∞)答案A 解析双曲线x 2-y 2b2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆心(0,2)到bx -y =0的距离不小于1,即2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A.6.(2019·河北武邑中学调研)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若|FA |=2|FB |,则k 等于()A.13B.23C.23D.223答案D解析=k (x +2),2=8x ,消去y 得k 2x 2+(4k 2-8)x +4k 2=0,Δ=(4k 2-8)2-16k 4>0,又k >0,解得0<k <1,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=8k 2-4,①x 1x 2=4,②根据抛物线定义及|FA |=2|FB |得x 1+2=2(x 2+2),即x 1=2x 2+2,③且x 1>0,x 2>0,由②③解得x 1=4,x 2=1,代入①得k 2=89,∵0<k <1,∴k =223.故选D.7.(2019·唐山模拟)双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±7x ,则E 的离心率为()A .2 B.2147C .22D .23答案C解析由题意,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±7x ,即ba=7,所以双曲线的离心率为e =ca=a 2+b 2a2=22,故选C.8.(2019·河北衡水中学模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线,交双曲线右支于点M ,若∠F 1MF 2=45°,则双曲线的渐近线方程为()A .y =±2xB .y =±3xC .y =±xD .y =±2x答案A解析如图,作OA ⊥F 1M 于点A ,F 2B ⊥F 1M 于点B .因为F 1M 与圆x 2+y 2=a 2相切,∠F 1MF 2=45°,所以|OA |=a ,|F 2B |=|BM |=2a ,|F 2M |=22a ,|F 1B |=2b .又点M 在双曲线上,所以|F 1M |-|F 2M |=2a +2b -22a =2a .整理,得b =2a .所以ba= 2.所以双曲线的渐近线方程为y =±2x .故选A.9.(2019·湖南五市十校联考)在直角坐标系xOy 中,抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,PQ 垂直l 于点Q ,M ,N 分别为PQ ,PF 的中点,直线MN 与x 轴交于点R ,若∠NFR =60°,则|FR |等于()A .2 B.3C .23D .3答案A解析由抛物线C :y 2=4x ,得焦点F (1,0),准线方程为x =-1,因为M ,N 分别为PQ ,PF 的中点,所以MN ∥QF ,所以四边形QMRF 为平行四边形,|FR |=|QM |,又由PQ 垂直l 于点Q ,可知|PQ |=|PF |,因为∠NFR =60°,所以△PQF 为等边三角形,所以FM ⊥PQ ,所以|FR |=2,故选A.10.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为()A.2B.32C.3D .2答案A解析因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义,得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca= 2.11.(2019·湖南长沙长郡中学调研)已知点P (-1,0),设不垂直于x 轴的直线l 与抛物线y 2=2x交于不同的两点A ,B ,若x 轴是∠APB 的角平分线,则直线l 一定过点()B .(1,0)C .(2,0)D .(-2,0)答案B解析根据题意,直线的斜率存在且不等于零,设直线的方程为x =ty +m (t ≠0),与抛物线方程联立,消元得y 2-2ty -2m =0,设A (x 1,y 1),B (x 2,y 2),因为x 轴是∠APB 的角平分线,所以AP ,BP 的斜率互为相反数,所以y 1x 1+1+y 2x 2+1=0,所以2ty 1y 2+(m +1)(y 1+y 2)=0,结合根与系数之间的关系,整理得出2t (-2m )+2tm +2t =0,2t (m -1)=0,因为t ≠0,所以m =1,所以过定点(1,0),故选B.12.(2019·陕西四校联考)已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=2π3,记椭圆和双曲线的离心率分别为e 1,e 2,则3e 21+1e 22等于()A .4B .23C .2D .3答案A解析如图所示,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义:|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,∴|PF 1|=a 1+a 2,|PF 2|=a 1-a 2,设|F 1F 2|=2c ,∠F 1PF 2=2π3,则在△PF 1F 2中,由余弦定理得4c 2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos2π3,化简得3a 21+a 22=4c 2,该式可变成3e 21+1e 22=4.故选A.二、填空题13.已知双曲线C :x 2-y 2=1,则点(4,0)到C 的渐近线的距离为________.答案22解析双曲线C :x 2-y 2=1的渐近线方程为y =±x ,点(4,0)到C 的渐近线的距离为|±4|2=2 2.14.(2019·新乡模拟)设P 为曲线2x =4+y 2上一点,A (-5,0),B (5,0),若|PB |=2,则|PA |=________.答案4解析由2x =4+y 2,得4x 2=4+y 2(x >0),即x 2-y 24=1(x >0),故P 为双曲线x 2-y 24=1右支上一点,且A ,B 分别为该双曲线的左、右焦点,则|PA |-|PB |=2a =2,|PA |=2+2=4.15.已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,直线y =k (x -1)(k ≠0)自上而下顺次与上述两曲线交于点A ,B ,C ,D ,则|AB |·|CD |的值是________.答案1解析设A (x 1,y 1),D (x 2,y 2),则|AB |·|CD |=(|AF |-1)(|DF |-1)=(x 1+1-1)(x 2+1-1)=x 1x 2,由y =k (x -1)与y 2=4x 联立方程消y 得k 2x 2-(2k 2+4)x +k 2=0,x 1x 2=1,因此|AB |·|CD |=1.16.(2019·四省联考诊断)在平面上给定相异两点A ,B ,设P 点在同一平面上且满足|PA ||PB |=λ,当λ>0且λ≠1时,P 点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆,现有椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 为椭圆的长轴端点,C ,D为椭圆的短轴端点,动点P 满足|PA ||PB |=2,△PAB 的面积最大值为163,△PCD 面积的最小值为23,则椭圆的离心率为________.答案32解析依题意A (-a ,0),B (a ,0),设P (x ,y ),依题意得|PA |=2|PB |,(x +a )2+y 2=2(x -a )2+y 2,两边平方化简得-53a +y 2,r =4a3.所以△PAB 的最大面积为12·2a ·43a =163,解得a =2,△PCD 的最小面积为12·2b b ·a 3=23,解得b =1.故椭圆的离心率为e =1-14=32.三、解答题17.(2019·湖南长沙长郡中学调研)在平面直角坐标系xOy 中,已知圆M :(x -3)2+(y -b )2=r 2(r 为正数,b ∈R ).(1)若对任意给定的r ∈(0,+∞),直线l :y =-x +r +4总能把圆M 的周长分成3∶1的两部分,求圆M 的标准方程;(2)已知点A (0,3),B (1,0),且r =103,若线段AB 上存在一点P ,使得过点P 的某条直线与圆M 交于点S ,T (其中|PS |<|PT |),且|PS |=|ST |,求实数b 的取值范围.解(1)根据题意可得,圆心到直线的距离为22r 恒成立,即|3+b -r -4|2=22r ,整理得|b -1-r |=r ,去绝对值符号可得b -1-r =r 或b -1-r =-r ,根据恒成立,可得b =1,所以圆M 的标准方程为(x -3)2+(y -1)2=r 2.(2)根据题意,如果存在满足条件的点,对应的边界值为过圆心的弦,而从另一个角度,即为线段端点值满足条件即可,先考虑点A ,即为|AM |≤3r ,即(0-3)2+(b -3)2≤9×109,解得2≤b ≤4,再考虑点B ,即为|BM |≤3r ,即(1-3)2+b 2≤10,解得-6≤b ≤6,两者取并集,得到b 的取值范围是[-6,4].18.(2019·陕西四校联考)已知抛物线C :y 2=2px 过点A (1,1).(1)求抛物线C的方程;(2)若过点P(3,-1)的直线与抛物线C交于M,N两个不同的点(均与点A不重合).设直线AM,AN的斜率分别为k1,k2,求证:k1·k2为定值.(1)解由题意得2p=1,所以抛物线方程为y2=x.(2)证明设M(x1,y1),N(x2,y2),直线MN的方程为x=t(y+1)+3,代入抛物线方程得y2-ty-t-3=0.所以Δ=(t+2)2+8>0,y1+y2=t,y1y2=-t-3.所以k1·k2=y1-1x1-1·y2-1x2-1=y1-1y21-1·y2-1y22-1=1(y1+1)(y2+1)=1y1y2+y1+y2+1=1-t-3+t+1=-12,所以k1·k2是定值.。

高考数学一轮复习 第九章 平面解析几何9 (1)

高考数学一轮复习 第九章 平面解析几何9 (1)

高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。

高考数学一轮复习 第九章 平面解析几何9

高考数学一轮复习 第九章 平面解析几何9

高考数学一轮复习 第九章 平面解析几何9.2 两条直线的位置关系考试要求 1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两条直线的交点坐标.3.掌握平面上两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.知识梳理1.两条直线的位置关系平面内两条直线的位置关系包括平行、相交、重合三种情况. (1)两条直线平行对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1∥l 2⇔k 1=k 2,且b 1≠b 2.对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)两条直线垂直对于直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 1⊥l 2⇔k 1·k 2=-1.对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔A 1A 2+B 1B 2=0. 2.三种距离公式 (1)两点间的距离公式①条件:点P 1(x 1,y 1),P 2(x 2,y 2). ②结论:|P 1P 2|=x 2-x 12+y 2-y 12.③特例:点P (x ,y )到原点O (0,0)的距离|OP |=x 2+y 2(2)点到直线的距离点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2. (3)两条平行直线间的距离两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0之间的距离d =|C 1-C 2|A 2+B 2.常用结论 1.直线系方程(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +n =0(n ∈R ).(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.2.五种常用对称关系(1)点(x ,y )关于原点(0,0)的对称点为(-x ,-y ).(2)点(x ,y )关于x 轴的对称点为(x ,-y ),关于y 轴的对称点为(-x ,y ).(3)点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). (4)点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x ,2b -y ). (5)点(x ,y )关于点(a ,b )的对称点为(2a -x ,2b -y ). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( × ) (2)若两直线的方程组成的方程组有解,则两直线相交.( × ) (3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( × )(4)直线外一点与直线上点的距离的最小值就是点到直线的距离.( √ ) 教材改编题1.点A (2,5)到直线l :x -2y +3=0的距离为( ) A .2 5B.55C. 5D.255答案 C解析 点A (2,5)到直线l :x -2y +3=0的距离为d =|2-10+3|1+4= 5.2.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于( ) A .2 B .-3 C .2或-3 D .-2或-3答案 C解析 直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2(m ≠0),故m=2或-3.3.直线l 1:2x +y -1=0和l 2:x -2y +7=0的交点的坐标为________. 答案 (-1,3)解析 解方程组⎩⎪⎨⎪⎧ 2x +y -1=0,x -2y +7=0,得⎩⎪⎨⎪⎧x =-1,y =3,所以两条直线交点的坐标为(-1,3).题型一 两条直线的平行与垂直例1 (1)(2022·汉中模拟)已知直线l 1:ax +(a +2)y +1=0,l 2:x +ay +2=0(a ∈R ),则“e a =1e ”是“l 1∥l 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 当l 1∥l 2时,⎩⎪⎨⎪⎧a 2-a +2=0,2a -1≠0,解得a =-1或a =2. 而由e a =1e,解得a =-1,所以“e a =1e”是“l 1∥l 2”的充分不必要条件.(2)(2022·长春模拟)已知直线l 经过点(1,-1),且与直线2x -y -5=0垂直,则直线l 的方程为( )A .2x +y -1=0B .x -2y -3=0C .x +2y +1=0D .2x -y -3=0答案 C解析 ∵直线l 与直线2x -y -5=0垂直, ∴设直线l 的方程为x +2y +c =0, ∵直线l 经过点(1,-1), ∴1-2+c =0,即c =1. 直线l 的方程为x +2y +1=0.教师备选1.“m =3”是“直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A 解析 由l 1⊥l 2,得2(m +1)(m -3)+2(m -3)=0, ∴m =3或m =-2,∴“m =3”是“l 1⊥l 2”的充分不必要条件.2.已知三条直线2x -3y +1=0,4x +3y +5=0,mx -y -1=0不能构成三角形,则实数m 的取值集合为( )A.⎩⎨⎧⎭⎬⎫-43,23 B.⎩⎨⎧⎭⎬⎫-43,23,43 C.⎩⎨⎧⎭⎬⎫43,-23D.⎩⎨⎧⎭⎬⎫-43,-23,23答案 D解析 由题意得直线mx -y -1=0与2x -3y +1=0或4x +3y +5=0平行,或者直线mx -y -1=0过2x -3y +1=0与4x +3y +5=0的交点.当直线mx -y -1=0与2x -3y +1=0或4x +3y +5=0平行时,m =23或m =-43;当直线mx -y -1=0过2x -3y +1=0与4x +3y +5=0的交点时,m =-23.所以实数m 的取值集合为⎩⎨⎧⎭⎬⎫-43,-23,23.思维升华 判断两条直线位置关系的注意点 (1)斜率不存在的特殊情况.(2)可直接利用直线方程系数间的关系得出结论.跟踪训练1 (1)(2022·洛阳模拟)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△ABC 的顶点A (2,0),B (1,2),且AC =BC ,则△ABC 的欧拉线的方程为( )A .x -2y -4=0B .2x +y -4=0C .4x +2y +1=0D .2x -4y +1=0答案 D解析 由题设,可得k AB =2-01-2=-2, 且AB 的中点为⎝⎛⎭⎫32,1,∴AB 垂直平分线的斜率k =-1k AB =12,故AB 的垂直平分线方程为 y =12⎝⎛⎭⎫x -32+1=x 2+14, ∵AC =BC ,则△ABC 的外心、重心、垂心都在AB 的垂直平分线上, ∴△ABC 的欧拉线的方程为2x -4y +1=0.(2)已知两直线l 1:x +y sin α+1=0和l 2:2x sin α+y +1=0.若l 1∥l 2,则α=________. 答案 k π±π4,k ∈Z解析 由A 1B 2-A 2B 1=0, 得1-2sin 2α=0, 所以sin α=±22.又A 1C 2-A 2C 1≠0,所以1-2sin α≠0,即sin α≠12.所以α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.题型二 两直线的交点与距离问题例2 (1)两条平行直线2x -y +3=0和ax +3y -4=0间的距离为d ,则a ,d 的值分别为( ) A .a =6,d =63 B .a =-6,d =53 C .a =6,d =53D .a =-6,d =63答案 B解析 由题知2×3=-a ,解得a =-6, 又-6x +3y -4=0可化为2x -y +43=0,∴d =⎪⎪⎪⎪3-435=53. (2)已知直线经过点(1,2),并且与点(2,3)和(0,-5)的距离相等,则此直线的方程为________________. 答案 4x -y -2=0或x =1解析 若所求直线的斜率存在,则可设其方程为 y -2=k (x -1),即kx -y -k +2=0, 由题设有|2k -3-k +2|1+k 2=|0+5-k +2|1+k 2,即|k -1|=|7-k |,解得k =4. 此时直线方程为4x -y -2=0.若所求直线的斜率不存在,则直线方程为x =1,满足题设条件. 故所求直线的方程为4x -y -2=0或x =1. 教师备选1.经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.答案 4x +3y -6=0解析 由方程组⎩⎪⎨⎪⎧ x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2).因为l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.2.直线l 1经过点(3,0),直线l 2经过点(0,4),且l 1∥l 2,d 表示l 1和l 2之间的距离,则d 的取值范围是________. 答案 (0,5]解析 当直线l 1,l 2都与过(3,0),(0,4)两点的直线垂直时, d max =32+42=5;当直线l 1和l 2都经过(3,0),(0,4)两点时,两条直线重合. 所以0<d ≤5.思维升华 利用距离公式应注意的点(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |. (2)两条平行线间的距离公式要把两条直线方程中x ,y 的系数化为相等.跟踪训练2 (1)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( ) A.95 B.185 C.2910 D.295 答案 C解析 因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.(2)点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B. 2 C. 3 D .2 答案 B解析 由y =k (x +1)可知直线过定点P (-1,0),设A (0,-1),当直线y =k (x +1)与AP 垂直时,点A 到直线y =k (x +1)的距离最大, 即为|AP |= 2. 题型三 对称问题命题点1 点关于点中心对称例3 过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 命题点2 点关于直线对称例4 若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________. 答案345解析 由题可知纸的折痕应是点(0,2)与点(4,0)连线的垂直平分线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的垂直平分线, 于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎨⎧m =35,n =315,故m +n =345.命题点3 线关于线对称例5 直线2x -4y -1=0关于x +y =0对称的直线方程为( ) A .4x -2y -1=0 B .4x -2y +1=0 C .4x +2y +1=0 D .4x +2y -1=0答案 A解析 设直线2x -4y -1=0上一点P (x 0,y 0)关于直线x +y =0对称的点的坐标为P ′(x ,y ), 则⎩⎪⎨⎪⎧y -y 0x -x 0=1,x +x 02+y +y 02=0,整理可得⎩⎪⎨⎪⎧x 0=-y ,y 0=-x ,∴-2y +4x -1=0,即直线2x -4y -1=0关于x +y =0对称的直线方程为4x -2y -1=0. 教师备选1.在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图所示).若光线QR 经过△ABC 的重心,则AP 的长度为( )A .2B .1 C.83 D.43答案 D解析 以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴,建立如图所示的平面直角坐标系,由题意可知B (4,0),C (0,4),A (0,0),则直线BC 的方程为x +y -4=0.设P (t ,0)(0<t <4),可得点P 关于直线BC 的对称点P 1的坐标为(4,4-t ),点P 关于y 轴的对称点P 2的坐标为(-t ,0),根据反射定律可知直线P 1P 2就是光线RQ 所在的直线,由P 1,P 2两点的坐标可得直线P 1P 2的方程为y =4-t 4+t ·(x +t ).设△ABC 的重心为G ,易知G ⎝⎛⎭⎫43,43.因为重心G ⎝⎛⎭⎫43,43在光线RQ 上,所以43=4-t 4+t ·⎝⎛⎭⎫43+t ,得t =43(t =0舍去),即|AP |=43.2.已知三角形的一个顶点A (4,-1),它的两条角平分线所在的直线方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________. 答案 2x -y +3=0解析 易得A 不在l 1和l 2上,因此l 1,l 2为∠B ,∠C 的平分线,所以点A 关于l 1,l 2的对称点在BC 边所在的直线上,设点A 关于l 1的对称点为A 1(x 1,y 1),点A 关于l 2的对称点为A 2(x 2,y 2). 则⎩⎪⎨⎪⎧4+x 12-y 1-12-1=0,y 1+1x 1-4·1=-1,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,所以A 1(0,3),又易得点A 关于l 2的对称点A 2的坐标为(-2,-1), 所以BC 边所在直线的方程为y -3-1-3=x -0-2-0,即2x -y +3=0.思维升华 对称问题的求解策略(1)解决对称问题的思路是利用待定系数法将几何关系转化为代数关系求解.(2)中心对称问题可以利用中点坐标公式解题,两点轴对称问题可以利用垂直和中点两个条件列方程组解题.跟踪训练3 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 的对称直线l ′的方程. 解 (1)设A ′(x ,y ),由已知条件得 ⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设对称点M ′(a ,b ),则 ⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3). 又m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. (3)方法一 在l :2x -3y +1=0上任取两点,如P (1,1),Q (4,3),则P ,Q 关于点A (-1,-2)的对称点P ′,Q ′均在直线l ′上, 易得P ′(-3,-5),Q ′(-6,-7), 再由两点式可得l ′的方程为2x -3y -9=0. 方法二 ∵l ∥l ′,∴设l ′的方程为2x -3y +C =0(C ≠1). ∵点A (-1,-2)到两直线l ,l ′的距离相等, ∴由点到直线的距离公式, 得|-2+6+C |22+32=|-2+6+1|22+32,解得C =-9,∴l ′的方程为2x -3y -9=0.课时精练1.过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ) A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0 D .x -2y +5=0答案 A解析 由题意可设所求直线方程为x -2y +m =0,将A (2,3)代入上式得2-2×3+m =0,即m =4,所以所求直线方程为x -2y +4=0.2.过直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点,且过原点的直线的方程为( ) A .19x -9y =0 B .9x +19y =0 C .19x -3y =0 D .3x +19y =0答案 D解析 方法一 解方程组⎩⎪⎨⎪⎧x -3y +4=0,2x +y +5=0,可得直线l 1和l 2的交点坐标为⎝⎛⎭⎫-197,37,又所求直线过原点,所以所求的直线方程为y =-319x ,即3x +19y =0.方法二 根据题意可设所求的直线方程为x -3y +4+λ(2x +y +5)=0,因为此直线过原点,所以4+5λ=0,解得λ=-45,所以所求直线的方程为x -3y +4-45(2x +y +5)=0,即3x +19y=0.3.(2022·漳州质检)已知a 2-3a +2=0,则直线l 1:ax +(3-a )y -a =0和直线l 2:(6-2a )x +(3a -5)y -4+a =0的位置关系为( ) A .垂直或平行 B .垂直或相交 C .平行或相交 D .垂直或重合答案 D解析 因为a 2-3a +2=0,所以a =1或a =2. 当a =1时,l 1:x +2y -1=0,l 2:4x -2y -3=0, k 1=-12,k 2=2,所以k 1·k 2=-1 ,则两直线垂直;当a =2时,l 1:2x +y -2=0,l 2:2x +y -2=0,则两直线重合. 4.点P (2,5)关于x +y +1=0对称的点的坐标为( ) A .(6,3) B .(3,-6) C .(-6,-3) D .(-6,3) 答案 C解析 设点P (2,5)关于x +y +1=0的对称点为Q (a ,b ), 则⎩⎪⎨⎪⎧b -5a -2·-1=-1,a +22+b +52+1=0,解得⎩⎪⎨⎪⎧a =-6,b =-3,即P (2,5)关于x +y +1=0对称的点的坐标为(-6,-3).5.已知直线l 1:ax +2y +1=0与直线l 2:(3-a )x -y +a =0,若l 1∥l 2,则a 的值为( )A .1B .2C .6D .1或2 答案 C解析 ∵直线l 1:ax +2y +1=0与直线l 2:(3-a )x -y +a =0的斜率都存在,且l 1∥l 2, ∴k 1=k 2,即-a2=3-a ,解得a =6.6.已知直线l :x -2y +8=0和两点A (2,0),B (-2,-4),若直线l 上存在点P 使得|P A |+|PB |最小,则点P 的坐标为( ) A .(-2,-3) B .(-2,3) C .(2,3) D .(-2,2)答案 B解析 根据题意画出大致图象,如图.设点A 关于直线x -2y +8=0的对称点为A 1(m ,n ). 则有⎩⎪⎨⎪⎧n -0m -2·12=-1,m +22-2·n +02+8=0,解得⎩⎪⎨⎪⎧m =-2,n =8.故A 1(-2,8).此时直线A 1B 的方程为x =-2.所以当点P 是直线A 1B 与直线x -2y +8=0的交点时,|P A |+|PB |最小,将x =-2代入x -2y +8=0,得y =3,故点P 的坐标为(-2,3).7.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3 2B .2 2C .3 3D .4 2答案 A 解析 ∵l 1∥l 2,∴AB 的中点M 的轨迹是平行于l 1,l 2的直线,且到l 1,l 2的距离相等,易求得M 所在直线的方程为x +y -6=0.∴中点M 到原点的最小距离为原点到直线x +y -6=0的距离,即62=3 2. 8.(2022·苏州模拟)已知直线l 1:ax -y +1=0,l 2:x +ay +1=0,a ∈R ,以下结论不正确的是( )A .不论a 为何值时,l 1与l 2都互相垂直B .当a 变化时,l 1与l 2分别经过定点A (0,1)和B (-1,0)C .不论a 为何值,l 1与l 2都关于直线x +y =0对称D .如果l 1与l 2交于点M ,O 为坐标原点,则|MO |的最大值是 2 答案 C解析 对于A ,a ×1+(-1)×a =0恒成立,l 1与l 2互相垂直恒成立,故A 正确; 对于B ,直线l 1:ax -y +1=0,当a 变化时,x =0,y =1恒成立, 所以l 1恒过定点A (0,1);l 2:x +ay +1=0,当a 变化时,x =-1,y =0恒成立,所以l 2恒过定点B (-1,0),故B 正确; 对于C ,在l 1上任取点()x ,ax +1,其关于直线x +y =0对称的点的坐标为()-ax -1,-x , 代入l 2:x +ay +1=0,则左边不恒等于0,故C 不正确;对于D ,联立⎩⎪⎨⎪⎧ax -y +1=0,x +ay +1=0,解得⎩⎪⎨⎪⎧x =-a -1a 2+1,y =-a +1a 2+1,即M ⎝ ⎛⎭⎪⎫-a -1a 2+1,-a +1a 2+1, 所以|MO |=⎝ ⎛⎭⎪⎫-a -1a 2+12+⎝ ⎛⎭⎪⎫-a +1a 2+12=2a 2+1≤2, 所以|MO |的最大值是2,故D 正确.9.(2022·邯郸模拟)直线l 1:x +ay -2=0(a ∈R )与直线l 2:y =34x -1平行,则a =________,l 1与l 2的距离为________. 答案 -43 25解析 由题可知直线l 1的斜率为-1a (a ≠0),直线l 2的斜率为34,所以-1a =34,解得a =-43,则直线l 1:x -43y -2=0,即3x -4y -6=0,直线l 2:y =34x -1,即3x -4y -4=0,所以它们之间的距离为d =|-6+4|32+-42=25. 10.直线3x -4y +5=0关于直线x =1对称的直线的方程为________. 答案 3x +4y -11=0解析 直线3x -4y +5=0与x =1的交点坐标为(1,2),又直线3x -4y +5=0的斜率为34,所以关于直线x =1对称的直线的斜率为-34,故所求直线的方程为y -2=-34(x -1),即3x +4y -11=0.11.已知直线l 1:ax +y +3a -4=0,则原点O 到l 1的距离的最大值是________. 答案 5解析 直线l 1:ax +y +3a -4=0等价于a (x +3)+y -4=0, 则直线过定点A (-3,4),当原点到l 1的距离最大时,满足OA ⊥l 1,此时原点到l 1的距离的最大值为 |OA |=-32+42=5.12.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1与l 2之间的距离最大时,直线l 1的方程是____________. 答案 x +2y -3=0解析 当直线AB 与l 1,l 2垂直时,l 1,l 2之间的距离最大. 因为A (1,1),B (0,-1), 所以k AB =-1-10-1=2, 所以两平行直线的斜率k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.13.(2022·南通调研)在平面直角坐标系xOy 中,点P 在曲线y =x +1x (x >0)上,则点P 到直线3x -4y -2=0的距离的最小值为( ) A.45 B .1 C.65 D.75 答案 C解析 设点P (x 0,y 0), y =f (x )=x +1x(x >0),则f ′(x 0)=1-1x 20,点P 与直线3x -4y -2=0的最小距离,即为f (x )在点P 处的切线的斜率等于直线3x -4y -2=0的斜率时的情况,即满足1-1x 20=34,解得x 0=2,所以y 0=2+12=52,所以点P ⎝⎛⎭⎫2,52, 所以点P 到直线3x -4y -2=0的距离的最小值为d =⎪⎪⎪⎪2×3-4×52-242+32=65.14.若两条平行直线l 1:x -2y +m =0(m >0)与l 2:2x +ny -6=0之间的距离是25,则直线l 1关于直线l 2对称的直线方程为( ) A .x -2y -13=0 B .x -2y +2=0 C .x -2y +4=0 D .x -2y -6=0答案 A解析 因为直线l 1:x -2y +m =0(m >0)与l 2:2x +ny -6=0平行, 所以n =-2×2=-4,又两条平行直线l 1:x -2y +m =0(m >0)与l 2:2x +ny -6=0之间的距离是25, 所以|2m +6|4+16=25,解得m =7,即直线l 1:x -2y +7=0,l 2:x -2y -3=0,设直线l 1关于直线l 2对称的直线方程为x -2y +c =0, 则|-3-7|5=|-3-c |5,解得c =-13, 故所求直线方程为x -2y -13=0.15.定义点P (x 0,y 0)到直线l :ax +by +c =0(a 2+b 2≠0)的有向距离为d =ax 0+by 0+c a 2+b 2.已知点P 1,P 2到直线l 的有向距离分别是d 1,d 2.以下命题正确的是( ) A .若d 1=d 2=1,则直线P 1P 2与直线l 平行 B .若d 1=1,d 2=-1,则直线P 1P 2与直线l 垂直 C .若d 1+d 2=0,则直线P 1P 2与直线l 垂直 D .若d 1·d 2≤0,则直线P 1P 2与直线l 相交答案 A解析 设P 1(x 1,y 1),P 2(x 2,y 2), 对于A ,若d 1=d 2=1,则ax 1+by 1+c =ax 2+by 2+c =a 2+b 2,直线P 1P 2与直线l 平行,正确;对于B ,点P 1,P 2在直线l 的两侧且到直线l 的距离相等,直线P 1P 2不一定与l 垂直,错误; 对于C ,若d 1=d 2=0,满足d 1+d 2=0, 即ax 1+by 1+c =ax 2+by 2+c =0,则点P 1,P 2都在直线l 上,所以此时直线P 1P 2与直线l 重合,错误; 对于D ,若d 1·d 2≤0,即(ax 1+by 1+c )(ax 2+by 2+c )≤0,所以点P 1,P 2分别位于直线l 的两侧或在直线l 上,所以直线P 1P 2与直线l 相交或重合,错误.16.(2022·武汉调研)台球运动已有五、六百年的历史,参与者用球杆在台上击球.若和光线一样,台球在球台上碰到障碍物后也遵从反射定律.如图,有一张长方形球台ABCD ,AB =2AD ,现从角落A 沿角α的方向把球打出去,球经2次碰撞球台内沿后进入角落C 的球袋中,则tan α的值为( )A.16或12B.12或1C.16或32 D .1或32答案 C解析 如图1,作A 关于DC 的对称点为E ,D 关于AB 的对称点为G ,C 关于AB 的对称点为F ,连接GF ,EF , 由题可得tan α=EG GF =3AD 2AD =32.图1 图2 如图2,作A 关于BC 的对称点为G ,B 关于AD 的对称点为F ,C 关于AD 的对称点为E , 连接EF ,EG ,由题可得tan α=EF GF =AD6AD =16.综上,tan α的值为16或32.。

高考(新课标)数学(理)大一轮复习检测:第九章 平面解析几何 9-9-3 Word版含答案

高考(新课标)数学(理)大一轮复习检测:第九章 平面解析几何 9-9-3 Word版含答案

A 组 专项基础训练(时间:40分钟)1.(2017·衡水模拟)已知F 1,F 2为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过椭圆右焦点F 2且斜率为k (k ≠0)的直线l 与椭圆C 相交于E ,F 两点,△EFF 1的周长为8,且椭圆C 与圆x 2+y 2=3相切.(1)求椭圆C 的方程;(2)设A 为椭圆的右顶点,直线AE ,AF 分别交直线x =4于点M ,N ,线段MN 的中点为P ,记直线PF 2的斜率为k ′,求证:k ·k ′为定值.【解析】 (1)因为△EFF 1的周长为8, 所以4a =8,所以a 2=4,又椭圆C 与圆x 2+y 2=3相切,故b 2=3, 所以椭圆C 的方程为x 24+y 23=1.(2)证明由题意知过点F 2(1,0)的直线l 的方程为y =k (x -1),设E (x 1,y 1),F (x 2,y 2), 将直线l 的方程y =k (x -1)代入椭圆C 的方程x 24+y 23=1,整理得(4k 2+3)x 2-8k 2x +4k 2-12=0, Δ=64k 4-4(4k 2+3)(4k 2-12)>0恒成立, 且x 1+x 2=8k24k 2+3,x 1x 2=4k 2-124k 2+3.直线AE 的方程为y =y 1x 1-2(x -2),令x =4,得点M ⎝⎛⎭⎪⎫4,2y 1x 1-2, 直线AF 的方程为y =y 2x 2-2(x -2).令x =4,得点N ⎝⎛⎭⎪⎫4,2y 2x 2-2, 所以点P 的坐标为⎝ ⎛⎭⎪⎫4,y 1x 1-2+y 2x 2-2. 所以直线PF 2的斜率为k ′=y 1x 1-2+y 2x 2-2-04-1=13⎝ ⎛⎭⎪⎫y 1x 1-2+y 2x 2-2=13·y 2x 1+x 2y 1-2(y 1+y 2)x 1x 2-2(x 1+x 2)+4 =13·2kx 1x 2-3k (x 1+x 2)+4k x 1x 2-2(x 1+x 2)+4, 将x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3代入上式得:k ′=13·2k ·4k 2-124k 2+3-3k ·8k 24k 2+3+4k4k 2-124k 2+3-2×8k 24k 2+3+4=-1k, 所以k ·k ′为定值-1.2.(2015·四川雅安重点中学1月月考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两焦点在x轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形.(1)求椭圆的方程;(2)过点S ⎝ ⎛⎭⎪⎫0,-13的动直线l 交椭圆C 于A ,B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】 (1)∵椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,∴b =c ,又斜边长为2,即2c =2,故c =b =1,a =2,椭圆方程为x 22+y 2=1.(2)当l 与x 轴平行时,以线段AB 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +132=169;当l 与y 轴平行时,以线段AB 为直径的圆的方程为x 2+y 2=1. 由⎩⎨⎧x 2+⎝ ⎛⎭⎪⎫y +132=169,x 2+y 2=1,得⎩⎪⎨⎪⎧x =0,y =1,故若存在定点Q ,则Q 的坐标只可能为Q (0,1). 下面证明Q (0,1)为所求:若直线l 的斜率不存在,上述已经证明. 若直线l 的斜率存在,设直线l :y =kx -13,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 2+2y 2-2=0,得(9+18k 2)x 2-12kx -16=0,Δ=144k 2+64(9+18k 2)>0,x 1+x 2=12k 18k 2+9,x 1x 2=-1618k 2+9, QA →=(x 1,y 1-1),QB →=(x 2,y 2-1), QA →·QB →=x 1x 2+(y 1-1)(y 2-1)=(1+k 2)x 1x 2-4k 3(x 1+x 2)+169=(1+k 2)·-169+18k 2-4k 3·12k 9+18k 2+169=0, ∴QA →⊥QB →,即以线段AB 为直径的圆恒过点Q (0,1).3.(2017·河南郑州二模)已知曲线C 的方程是mx 2+ny 2=1(m >0,n >0),且曲线C 过A ⎝⎛⎭⎪⎫24,22,B ⎝ ⎛⎭⎪⎫66,33两点,O 为坐标原点. (1)求曲线C 的方程;(2)设M (x 1,y 1),N (x 2,y 2)是曲线C 上的两点,且OM ⊥ON ,求证:直线MN 恒与一个定圆相切.【解析】 (1)由题意可得⎩⎪⎨⎪⎧18m +12n =1,16m +13n =1,解得m =4,n =1.所以曲线C 的方程为y 2+4x 2=1.(2)证明由题意得y 21+4x 21=1,y 22+4x 22=1,x 1x 2+y 1y 2=0, 原点O 到直线MN 的距离d =|OM |·|ON ||MN |=(x 21+y 21)(x 22+y 22)(x 1-x 2)2+(y 1-y 2)2=(x 21+y 21)(x 22+y 22)x 21+x 22+y 21+y 22 =(1-3x 21)(1-3x 22)2-3(x 21+x 22) =1-3(x 21+x 22)+9x 21x 222-3(x 21+x 22).由x 1x 2+y 1y 2=0得x 21x 22=y 21y 22=(1-4x 21)(1-4x 22)=1-4(x 21+x 22)+16x 21x 22,所以x 21x 22=415(x 21+x 22)-115,所以d =-3(x 21+x 22)+125(x 21+x 22)+252-3(x 21+x 22)=25-35(x 21+x 22)2-3(x 21+x 22)=55. 所以直线MN 恒与定圆x 2+y 2=15相切.B 组 专项能力提升 (时间:30分钟)4.(2017·河南洛阳模拟)设M 是焦距为2的椭圆E :x 2a 2+y 2b2=1(a >b >0)上一点,A ,B是椭圆E 的左、右顶点,直线MA 与MB 的斜率分别为k 1,k 2,且k 1k 2=-12.(1)求椭圆E 的方程;(2)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)上点N (x 0,y 0)处的切线方程为x 0x a 2+y 0yb2=1.若点P是直线x =2上任意一点,从P 向椭圆E 作切线,切点分别为C ,D ,求证:直线CD 恒过定点,并求出该定点的坐标.【解析】 (1)设A (-a ,0),B (a ,0),M (m ,n ),则m 2a 2+n 2b 2=1,即n 2=b 2·a 2-m 2a2.由k 1k 2=-12,即n m +a ·n m -a =-12,故n 2m 2-a 2=-12,则a 2=2b 2,又c 2=a 2-b 2=1,解得a 2=2,b 2=1.所以椭圆E 的方程为x 22+y 2=1.(2)证明设点P (2,t ),切点C (x 1,y 1),D (x 2,y 2), 则两切线PC ,PD 的方程分别为x 1x2+y 1y =1,x 2x2+y 2y =1.由于点P 在切线PC ,PD 上,故P (2,t )满足x 1x2+y 1y =1,x 2x2+y 2y =1,得x 1+y 1t =1,x 2+y 2t =1,故C (x 1,y 1),D (x 2,y 2)均满足方程x +ty =1,即x +ty =1为直线CD 的方程.令y =0,得x =1,故直线CD 过定点(1,0).5.(2017·湖北黄冈二模)如图,已知点F 1,F 2是椭圆C 1:x 22+y 2=1的两个焦点,椭圆C 2:x 22+y 2=λ经过点F 1,F 2,点P 是椭圆C 2上异于F 1,F 2的任意一点,直线PF 1和PF 2与椭圆C 1的交点分别是A ,B 和C ,D .设AB ,CD 的斜率分别为k ,k ′.(1)求证:k ·k ′为定值; (2)求|AB |·|CD |的最大值.【解析】 (1)证明因为点F 1,F 2是椭圆C 1的两个焦点,故F 1,F 2的坐标是F 1(-1,0),F 2(1,0).而点F 1,F 2是椭圆C 2上的点,将F 1,F 2的坐标代入C 2的方程得,λ=12.设点P 的坐标是(x 0,y 0),∵直线PF 1和PF 2的斜率分别是k ,k ′(k ≠0,k ′≠0), ∴kk ′=y 0x 0+1·y 0x 0-1=y 20x 20-1,①又点P 是椭圆C 2上的点,故x 202+y 20=12,②联立①②两式可得kk ′=-12,即k ·k ′为定值.(2)直线PF 1的方程可表示为y =k (x +1)(k ≠0), 与椭圆C 1的方程联立,得到方程组⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1, 由方程组得(1+2k 2)x 2+4k 2x +2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=22(1+k 2)1+2k2.同理可求得|CD |=2(1+4k 2)1+2k 2, 则|AB |·|CD |=4(4k 4+5k 2+1)(1+2k 2)2=4⎝ ⎛⎭⎪⎪⎫1+11k 2+4k 2+4≤92, 当且仅当k =±22时等号成立. 故|AB |·|CD |的最大值等于92.6.(2016·豫北名校4月联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线2x -2y +6=0相切.(1)求椭圆C 的标准方程;(2)已知点A ,B 为动直线y =k (x -2)(k ≠0)与椭圆C 的两个交点,问在x 轴上是否存在定点E ,使得EA →2+EA →·AB →为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由.【解析】 (1)由e =63,即c a =63, 得c =63a ,(*) 由已知得圆的方程为x 2+y 2=a 2, 又圆与直线2x -2y +6=0相切, 所以a =622+(-2)2=6,代入(*)式得c =2, 所以b 2=a 2-c 2=2.所以椭圆C 的标准方程为x 26+y 22=1.(2)存在.由⎩⎪⎨⎪⎧x 26+y 22=1,y =k (x -2)得(1+3k 2)x 2-12k 2x +12k 2-6=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=12k 21+3k 2,x 1x 2=12k 2-61+3k2,假设在x 轴上存在定点E (m ,0),使得EA →2+EA →·AB →=(EA →+AB →)·EA →=EA →·EB →为定值, 则EA →·EB →=(x 1-m ,y 1)·(x 2-m ,y 2) =(x 1-m )(x 2-m )+y 1y 2=(k 2+1)x 1x 2-(2k 2+m )(x 1+x 2)+(4k 2+m 2) =(3m 2-12m +10)k 2+(m 2-6)1+3k 2的值与k 无关, ∴3m 2-12m +10=3(m 2-6),得m =73.此时,EA →2+EA →·AB →=m 2-6=-59,所以在x 轴上存在定点E ⎝ ⎛⎭⎪⎫73,0,使得EA →2+EA →·AB →为定值,且定值为-59.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题组层级快练(五十三)1.双曲线x 236-m 2-y 2m 2=1(0<m<3)的焦距为( )A .6B .12C .36D .236-2m 2答案 B解析 c 2=36-m 2+m 2=36,∴c =6.双曲线的焦距为12. 2.双曲线8kx 2-ky 2=8的一个焦点是(0,3),则k 的值是( ) A .1 B .-1 C.653D .-63答案 B解析 kx 2-ky 28=1,焦点在y 轴上,c =3,解得k =-1.3.已知双曲线x 2a 2-y 23=1(a>0)的离心率为2,则a =( )A .2 B.62C.52D .1答案 D解析 因为双曲线的方程为x 2a 2-y 23=1,所以e 2=1+3a 2=4,因此a 2=1,a =1.选D.4.双曲线x 24-y 2=1的焦点到渐近线的距离为( )A .2 B. 2 C .1 D .3答案 C解析 在双曲线方程中,b =1,焦点到渐近线的距离d =b =1. 5.与椭圆x 24+y 2=1共焦点且过点P(2,1)的双曲线方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1答案 B解析 椭圆x 24+y 2=1的焦点为(±3,0).因为双曲线与椭圆共焦点,所以排除A ,C. 又双曲线x 22-y 2=1经过点(2,1),所以选B.6.(2015·天津)已知双曲线x 2a 2-y 2b 2=1()a>0,b>0的一条渐近线过点()2,3,且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( ) A.x 221-y 228=1 B.x 228-y 221=1 C.x 23-y 24=1 D.x 24-y 23=1 答案 D解析 将点()2,3代入渐近线方程得b a =32,抛物线的准线方程为x =-7,所以c =7,解得a =2,b = 3.故选D 项.7.设F 1,F 2分别是双曲线x 2a 2-y 2b 2=1的左、右焦点,若双曲线上存在点A ,使∠F 1AF 2=90°且|AF 1|=3|AF 2|,则双曲线的离心率为( ) A. 5 B.152 C.102D.52答案 C解析 由双曲线的定义:|AF 1|-|AF 2|=2a 和|AF 1|=3|AF 2|,得|AF 1|=3a ,|AF 2|=a.在△AF 1F 2中,由勾股定理4c 2=(3a)2+a 2解出答案.8.已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( ) A.x 29-y 2=1 B .x 2-y 29=1C.x 29-y 27=1 D.x 27-y 23=1 答案 A解析 ∵MF 1→·MF 2→=0,∴MF 1→⊥MF 2→. ∴|MF 1→|2+|MF 2→|2=40.∵||MF 1→|-|MF 2→||=2a ,∴|MF 1→|·|MF 2→|=20-2a 2=2,∴a 2=9,b 2=1. ∴所求双曲线的方程为x 29-y 2=1.9.(2014·山东理)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A .x ±2y =0 B.2x ±y =0 C .x ±2y =0 D .2x ±y =0答案 A解析 椭圆C 1的离心率为a 2-b 2a,双曲线C 2的离心率为a 2+b 2a,所以a 2-b 2a·a 2+b 2a=32,所以a 4-b 4=34a 4,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x±2y =0.10.焦点为(0,6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=1 答案 B解析 x 22-y 2=1的渐近线方程为y =±22x.11.(2015·北京理)已知双曲线x 2a 2-y 2=1(a>0)的一条渐近线为3x +y =0,则a =________.答案33解析 因为双曲线x 2a 2-y 2=1(a>0)的一条渐近线为y =-3x ,所以1a =3,故a =33.12.(2015·新课标全国Ⅱ文)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________. 答案 x 24-y 2=1解析 方法一:因为双曲线过点(4,3),且渐近线方程为y =±12x ,故点(4,3)在直线y=12x 的下方.设该双曲线的标准方程为x 2a 2-y 2b 2=1(a>0,b>0),所以⎩⎪⎨⎪⎧42a 2-(3)2b 2=1,b a =12,解得⎩⎪⎨⎪⎧a =2,b =1,故双曲线方程为x 24-y 2=1. 方法二:因为双曲线的渐近线方程为y =±12x ,故可设双曲线为x 24-y 2=λ(λ>0),又双曲线过点(4,3),所以424-(3)2=λ,所以λ=1,故双曲线方程为x 24-y 2=1.13.(2015·山东文)过双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C 于点P.若点P 的横坐标为2a ,则C 的离心率为________. 答案 2+ 3解析 设直线方程为y =ba(x -c),由⎩⎨⎧x 2a 2-y 2b 2=1,y =b a (x -c ),得x =a 2+c 22c ,由a 2+c 22c =2a ,e =ca,解得e =2+3(e =2-3舍去).14.如图所示,双曲线的中心在坐标原点,焦点在x 轴上,F 1,F 2分别为左、右焦点,双曲线的左支上有一点P ,∠F 1PF 2=π3,且△PF 1F 2的面积为23,又双曲线的离心率为2,求该双曲线的方程.答案 3x 22-y 22=1解析 设双曲线的方程为x 2a 2-y 2b 2=1,∴F 1(-c ,0),F 2(c ,0),P(x 0,y 0). 在△PF 1F 2中,由余弦定理,得 |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos π3=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|.即4c 2=4a 2+|PF 1|·|PF 2|. 又∵S △PF 1F 2=23, ∴12|PF 1|·|PF 2|·sin π3=2 3. ∴|PF 1|·|PF 2|=8.∴4c 2=4a 2+8,即b 2=2. 又∵e =c a =2,∴a 2=23.∴所求双曲线方程为3x 22-y 22=1.15.已知双曲线的方程是16x 2-9y 2=144. (1)求此双曲线的焦点坐标、离心率和渐近线方程;(2)点P 在双曲线上,满足|PF 1|·|PF 2|=32,求∠F 1PF 2的大小. 答案 (1)焦点坐标为(±5,0),e =53,y =±43x (2)π2解析 (1)双曲线方程化为标准方程为x 29-y 216=1,所以a =3,b =4,c =5.所以焦点坐标为(±5,0),离心率e =53,渐近线方程为y =±43x.(2)因为点P 在双曲线上,所以||PF 1|-|PF 2||=6. 在△PF 1F 2中, cos ∠F 1PF 2=|PF 1|2+|PF 2|2-1002|PF 1|·|PF 2|=(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|-10064=0,∴∠F 1PF 2=π2.16.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P(4,-10). (1)求双曲线的方程;(2)若点M(3,m)在双曲线上,求证:MF 1→·MF 2→=0; (3)在(2)的条件下求△F 1MF 2的面积. 答案 (1)x 2-y 2=6 (2)略 (3)6解析 (1)∵e =2,∴可设双曲线方程为x 2-y 2=λ(λ≠0). ∵过点P(4,-10),∴16-10=λ,即λ=6. ∴双曲线方程为x 2-y 2=6.(2)方法一:由(1)可知,在双曲线中,a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0). ∴k MF 1=m 3+23,k MF 2=m3-23.∴k MF 1·k MF 2=m 29-12=-m 23.∵点M(3,m)在双曲线上, ∴9-m 2=6,m 2=3.故k MF 1·k MF 2=-1,∴MF 1⊥MF 2. ∴MF 1→·MF 2→=0.方法二:∵MF 1→=(-3-23,-m), MF 2→=(23-3,-m),∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2. ∵M(3,m)在双曲线上, ∴9-m 2=6,即m 2-3=0. ∴MF 1→·MF 2→=0.(3)△F 1MF 2的底|F 1F 2|=43, △F 1MF 2的边F 1F 2上的高h =|m|=3, ∴S △F 1MF 2=6.1.(2016·济宁模拟)如图所示,正六边形ABCDEF 的两个顶点A ,D 为双曲线的两个焦点,其余4个顶点都在双曲线上,则该双曲线的离心率是( )A.3+1B.3-1C. 3D. 2答案 A解析 令正六边形的边长为m ,则有|AD|=2m ,|AB|=m ,|BD|=3m ,该双曲线的离心率等于|AD|||AB|-|BD||=2m3m -m=3+1.2.(2013·全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x答案 C解析 ∵e =c a =52,∴e 2=c 2a 2=a 2+b 2a 2=54.∴a 2=4b 2,b a =12.∴渐近线方程为y =±12x.3.(2014·天津)已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1 答案 A解析 根据双曲线的渐近线与直线l 平行得到渐近线的斜率,由双曲线的一个焦点在直线l 上求出c ,然后解方程组即可求出a ,b 的值.双曲线的渐近线方程为y =±b a x ,因为一条渐近线与直线y =2x +10平行,所以ba =2.又因为双曲线的一个焦点在直线y =2x +10上, 所以-2c +10=0,所以c =5.由⎩⎪⎨⎪⎧b a =2,c =a 2+b 2=5,得⎩⎪⎨⎪⎧a 2=5,b 2=20.故双曲线的方程为x 25-y 220=1.4.(2013·天津)已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的两条渐近线与抛物线y 2=2px(p>0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( ) A .1 B.32 C .2 D .3答案 C解析 设A 点坐标为(x 0,y 0),则由题意,得S △AOB =|x 0|·|y 0|= 3.抛物线y 2=2px 的准线为x =-p 2,所以x 0=-p 2,代入双曲线的渐近线的方程y =±b a x ,得|y 0|=bp 2a .由⎩⎪⎨⎪⎧c a=2,a 2+b 2=c 2,得b=3a ,所以|y 0|=32p.所以S △AOB =34p 2=3,解得p =2或p =-2(舍去). 5.(2015·浙江理)双曲线x 22-y 2=1的焦距是________,渐近线方程是________.答案 23 y =±22x解析 因为a 2=2,b 2=1,c 2=3,故焦距为2c =23,渐近线方程为x 22-y 2=0,即y =±22x.6.(2015·山东理)平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b 2=1(a>0,b>0)的渐近线与抛物线C 2:x 2=2py(p>0)交于O ,A ,B 三点,若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 答案 32解析 设OA 所在的直线方程为y =b a x ,则OB 所在的直线方程为y =-ba x ,解方程组⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得⎩⎨⎧x =2pba ,y =2pb 2a 2,所以点A 的坐标为⎝⎛⎭⎫2pb a ,2pb 2a 2.抛物线的焦点F 的坐标为⎝⎛⎭⎫0,p 2, 因为F 是△ABC 的垂心,所以k OB ·k AF =-1. 所以-b a ⎝ ⎛⎭⎪⎫2pb 2a 2-p22pb a=-1⇒b 2a 2=54. 所以e 2=c 2a 2=1+b 2a 2=94⇒e =32.7.双曲线x 29-y 216=1上一点P 到它的一个焦点的距离等于10,那么点P 到另一个焦点的距离等于________. 答案 4或16解析 设点P 到另一焦点距离等于d ,则依双曲线的定义可得|d -10|=6,解得d =4或16. 8.已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,求双曲线方程.答案 x 236-y 264=1或y 264-x 236=1解析 方法一:①当焦点在x 轴上时, 设双曲线的方程为x 2a 2-y 2b 2=1(a>0,b>0),因渐近线的方程为y =±43x ,并且焦点都在圆x 2+y 2=100上, ∴⎩⎪⎨⎪⎧b a =43,a 2+b 2=100,解得⎩⎪⎨⎪⎧a =6,b =8.∴双曲线的方程为x 236-y 264=1.②当焦点在y 轴上时,设双曲线的方程为y 2a 2-x 2b 2=1(a>0,b>0),因渐近线的方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,∴⎩⎪⎨⎪⎧a b =43,a 2+b 2=100,解得⎩⎪⎨⎪⎧a =8,b =6.∴双曲线的方程为y 264-x 236=1.综上,双曲线的方程为x 236-y 264=1或y 264-x 236=1.方法二:设双曲线的方程为42·x 2-32·y 2=λ(λ≠0), 从而有(|λ|4)2+(|λ|3)2=100,解得λ=±576. ∴双曲线的方程为x 236-y 264=1或y 264-x 236=1.9.已知点M(-2,0),N(2,0),动点P 满足条件|PM|-|PN|=22,记动点P 的轨迹为W. (1)求W 的方程;(2)若A 和B 是W 上的不同两点,O 是坐标原点,求OA →·OB →的最小值.解析 (1)由|PM|-|PN|=22知动点P 的轨迹是以M ,N 为焦点的双曲线的右支,实半轴长a = 2.又焦距2c =4,所以虚半轴长b =c 2-a 2= 2.所以W 的方程为x 22-y 22=1(x ≥2).(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 当AB ⊥x 轴时,x 1=x 2,y 1=-y 2, 从而OA →·OB →=x 1x 2+y 1y 2=x 12-y 12=2.当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m(k ≠±1),与W 的方程联立,消去y 得(1-k 2)x 2-2kmx -m 2-2=0,则x 1+x 2=2km 1-k 2,x 1x 2=m 2+2k 2-1,所以OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(kx 1+m)(kx 2+m) =(1+k 2)x 1x 2+km(x 1+x 2)+m 2=(1+k 2)(m 2+2)k 2-1+2k 2m 21-k 2+m 2=2k 2+2k 2-1=2+4k 2-1. 又因为x 1x 2>0,所以k 2-1>0. 所以OA →·OB →>2.综上所述,当AB ⊥x 轴时,OA →·OB →取得最小值2.。

相关文档
最新文档