高一数学强化重点练习5

合集下载

高一数学压轴题强化训练题学生版

高一数学压轴题强化训练题学生版

高一数学压轴题强化训练题1.已知集合P={x|x 2≤1},M={a}.若P∪M=P,则a 的取值范围是()A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)2.已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则m 的取值范围是()A .-3≤m ≤4B .-3<m <4C .2<m <4D .2<m ≤43.已知非空集合A,B 满足以下两个条件:(i)A∪B={1,2,3,4,5,6},A∩B=∅(ii)若x∈A,则x+1∈B.则有序集合对(A,B)的个数为()A.12B.13C.14D.154.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“好元素”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“好元素”的集合共有().A .6个B .12个C .9个D .5个5.如果具有下述性质的x 都是集合M 中的元素,其中:),,(2Q b a b a x ∈+=则下列元素中不属于集合M 的元素的个数是由()①.,0=x ②,2=x ③,223π-=x ④,2231-=x ⑤246246++-=x .A.1个 B.2个 C.3个 D.4个6.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是()A .x 0∈NB .x 0∉NC .x 0∈N 或x 0∉ND .不能确定7.已知z y x ,,是非零实数,代数式xyz z z y y x x +++的值所组成的集合为M,则下列判断正确的是()A.M ∉0B.M ∈2C.M ∉-4D.M∈48.已知集合M ={x |x x -1≥0,x ∈R },N ={y |y =3x 2+1,x ∈R },则M ∩N 等于()A .∅B .{x |x ≥1}C .{x |x >1}D .{x |x ≥1或x <0}9.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是()A .-1<a ≤2B .a >2C .a ≥-1D .a >-110.对于集合A ,定义了一种运算“⊕”,使得集合A 中的元素间满足条件:如果存在元素e ∈A ,使得对任意a ∈A ,都有e ⊕a =a ⊕e =a ,则称元素e 是集合A 对运算“⊕”的单位元素.例如:A =R ,运算“⊕”为普通乘法:存在1∈R ,使得对任意a ∈R 都有1×a =a ×1=a ,所以元素1是集合R 对普通乘法的单位元素.下面给出三个集合及相应的运算“⊕”:①A =R ,运算“⊕”为普通减法;②A =R ,运算“⊕”为普通加法;③A ={X |X ⊆M }(其中M 是任意非空集合),运算“⊕”为求两个集合的交集.其中对运算“⊕”有单位元素的集合序号为()A .①②B .①③C .①②③D .②③11.已知集合{}|1A x x a =-≤,{}2540B x x x =-+≥.若A B =∅ ,则实数a 的取值范围是.12.设全集{1,2,3,4,5,6}U =,用U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.①若}6,3,2{=M ,则C U M 表示的6位字符串为;②若{1,3}A =,集合A B 表示的字符串为101001,则满足条件的集合B 的个数是.13.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么称k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有个.14.设P 是一个数集,且至少含有两个数,若对任意,P b a ∈,都有P b a ab b a b a ∈-+,,,(除数),0≠b 则称P 是一个数域.例如有理数Q 是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③数域必为无限集.其中正确的命题的序号是(把你认为正确的命题的序号都填上)15.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有种;②这三天售出的商品最少有种.16.已知集合{1,2,,}U n = ,n *∈N .设集合A 同时满足下列三个条件:①A U ⊆;②若x A ∈,则2x A ∉;③若U x C A ∈,则2U x C A ∉.(1)当4n =时,一个满足条件的集合A 是;(写出一个即可)(2)当7n =时,满足条件的集合A 的个数为.17.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数。

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版

高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。

高中数学(人教A版)必修5能力强化提升及单元测试1-1-2

高中数学(人教A版)必修5能力强化提升及单元测试1-1-2

1.1.2 余弦定理双基达标(限时20分钟)1.在△ABC 中,已知a =9,b =23,C =150°,则c 等于( ).A.39B .8 3C .10 2D .7 3解析 c 2=a 2+b 2-2ab cos C =92+(23)2-2×9×23cos 150°=147=(73)2,∴c =7 3. 答案 D2.在△ABC 中,若a =7,b =43,c =13,则△ABC 的最小角为( ).A.π3B.π6C.π4D.π12解析 ∵c <b <a ,∴最小角为角C . ∴cos C =a 2+b 2-c 22ab =49+48-132×7×43=32.∴C =π6,故选B.答案 B3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab>0,则△ABC( ).A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形解析 ∵c 2-a 2-b 22ab>0,∴c 2-a 2-b 2>0.∴a 2+b 2<c 2.∴△ABC 为钝角三角形.故选C. 答案 C4.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________. 解析 ∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 120°=a 2+c 2+ac . ∴原式为0. 答案 05.在△ABC 中,若(a -c )(a +c )=b (b +c ),则A =________. 解析 ∵(a -c )(a +c )=b (b +c ), ∴a 2-c 2=b 2+bc ,即b 2+c 2-a 2=-bc . ∴cos A =b 2+c 2-a 22bc =-12.∵0°<A <180°,∴A =120°. 答案 120°6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A =14,a =4,b +c =6,且b <c ,求b ,c 的值.解 由余弦定理a 2=b 2+c 2-2bc cos A , ∴16=(b +c )2-2bc -12bc∴bc =8,又∵b +c =6,b <c ,解方程组⎩⎪⎨⎪⎧b +c =6,bc =8,得b =2,c =4或b =4,c =2(舍). ∴b =2,c =4.综合提高(限时25分钟)7.在△ABC 中,B =60°,b 2=ac ,则三角形一定是( ).A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形 解析 由余弦定理b 2=a 2+c 2-ac , ∴a 2+c 2-2ac =0,∴(a -c )2=0,∴a =c . ∵B =60°,∴A =C =60°.最新整理故△ABC 为等边三角形. 答案 B8.在△ABC 中,AB =5,AC =3,BC =7,则AB →·A C →等于 ( ).A.152 B .-152 C.1532D .15 解析 ∵cos A =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴AB →·AC →=|AB →|·|AC →|·cos ∠BAC =5×3×⎝⎛⎭⎫-12=-152,故选B. 答案 B9.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是________. 解析 ∵c 2=a 2+b 2-2ab ·cos C =1+4-4cos C =5-4cos C . 又∵0<C <π2,∴cos C ∈(0,1).∴c 2∈(1,5).∴c ∈(1,5). 答案 (1,5)10.已知等腰△ABC 的底边BC =2,腰AB =4,则腰上的中线长为________. 解析 ∵cos A =b 2+c 2-a 22bc =42+42-222×4×4=78.设其中一腰中线长为x ,则x 满足:x 2=42+22-2×4×2cos A =20-16×78=6.∴x = 6.答案611.已知a ,b ,c 分别是△ABC 中角A ,B ,C 的对边,且a 2+c 2-b 2=ac . (1)求角B 的大小;(2)若c =3a ,求tan A 的值.解 (1)由余弦定理,得cos B =a 2+c 2-b 22ac =12.∵0<B <π,∴B =π3.(2)法一 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a . 由余弦定理,得cos A =b 2+c 2-a 22bc =5714.最新整理∵0<A <π,∴sin A =1-cos 2A =2114. ∴tan A =sin A cos A =35.法二 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a . 由正弦定理,得sin B =7sin A . ∵B =π3,∴sin A =2114.又∵b =7a >a ,则B >A , ∴cos A =1-sin 2A =5714.∴tan A =sin A cos A =35.12.(创新拓展)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 解 (1)由已知,根据正弦定理得 2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理a 2=b 2+c 2-2bc cos A , 故cos A =-12.又A ∈(0,π),∴A =2π3.(2)由(1)中a 2=b 2+c 2+bc 及正弦定理,可得 sin 2A =sin 2B +sin 2C +sin B sin C , 即⎝⎛⎭⎫322=sin 2B +sin 2C +sin B sin C , 又sin B +sin C =1,得sin B =sin C =12,又0<B ,C <π3,∴B =C ,∴△ABC 为等腰的钝角三角形.。

专题05 函数:定义域归类大全-2023学年高一数学培优练(人教A版2019第一册)(解析版)

专题05 函数:定义域归类大全-2023学年高一数学培优练(人教A版2019第一册)(解析版)

专题5函数:定义域归类大全目录【题型一】开偶次方根函数定义域............................................................................................................................2【题型二】解绝对值函数不等式求定义域................................................................................................................3【题型三】抽象函数定义域1:(x)→f(g(x))型.........................................................................................................4【题型四】抽象函数定义域2:f(g(x))→f(x)型........................................................................................................6【题型五】抽象函数定义域3:f(g(x))→f(h (x ))型..............................................................................................7【题型六】抽象函数定义域4:f(x)→f(g(x))+f(h(x)).............................................................................8【题型七】抽相与具体函数混合型............................................................................................................................9【题型八】嵌入型(内外复合)函数型定义域......................................................................................................11【题型九】恒成立含参型..........................................................................................................................................12【题型十】对数函数定义域......................................................................................................................................14【题型十一】定义域:解指数函数不等式..............................................................................................................15【题型十二】正切函数定义域................................................................................................................................16【题型十三】解正弦函数不等式求定义域..............................................................................................................17【题型十四】解余弦函数不等式求定义域..............................................................................................................18【题型十五】求分段函数定义域..............................................................................................................................20【题型十六】实际应用题中的定义域应用..............................................................................................................21培优第一阶——基础过关练......................................................................................................................................23培优第二阶——能力提升练......................................................................................................................................26培优第三阶——培优拔尖练.. (30)综述:常考函数的定义域:1.()()00f x f x ⇒≠⎡⎤⎣⎦;②.()()10f x f x ⇒≠;③()0f x ⇒≥;④.()()log 0a f x f x ⇒>;⑤.()()tan ,2f x f x k k Z ππ⇒≠+∈;⑥.实际问题中,需根据实际问题限制范围.【题型一】开偶次方根函数定义域【典例分析】(2021·福建·厦门市海沧中学高一期中)函数()f x =的定义域为()A .[]0,3B .[]1,3C .[)3,+∞D .(]1,3【答案】D【分析】根据二次根式的性质及二次不等式的解法即可得出结果.【详解】解:由题意可得()3010x x x ⎧-≥⎨->⎩,解得13x <≤.1.(2022·全国·高一专题练习)已知函数()f x =(,1]-∞,则实数a 的取值集合为()A .{1}B .(,1]-∞C .[1,)+∞D .(,1)(1,)-∞⋃+∞【答案】A【分析】求出函数的定义域,对比即可得出.【详解】由0a x -≥可得x a ≤,即()f x 的定义域为(,]a -∞,所以1a =,则实数a 的取值集合为{}1.故选:A.2.(2022·山东·临沂二十四中高一阶段练习)函数31y x =的定义域是()A .(],1-∞B .()()1,00,1-U C .[)(]1,00,1- D .(]0,1【答案】C【分析】函数定义域满足23100x x ⎧-≥⎨≠⎩,求解即可【详解】由题,函数定义域满足23100x x ⎧-≥⎨≠⎩,解得[)(]1,00,1x ∈- .故选:C3.(2022·全国·高一专题练习)函数()0(1)f x x =-的定义域为()A .2,3⎛⎫+∞ ⎪⎝⎭B .()2,11,3∞⎛⎫⋃+ ⎪⎝⎭C .()2,11,3∞⎡⎫⋃+⎪⎢⎣⎭D .2,3⎡⎫-+∞⎪⎢⎣⎭【答案】B【分析】根据二次根式的被开方数大于等于0,分式的分母不为0,以及零次幂的底数不等于0,建立不等式组,求解即可.【详解】解:由已知得32>010x x -⎧⎨-≠⎩,解得2>3x 且1x ≠,所以函数()0(1)f x x =-的定义域为()2,11,3∞⎛⎫⋃+ ⎪⎝⎭,故选:B.【题型二】解绝对值函数不等式求定义域【典例分析】.(2022·江苏·高一)函数y =)A .()0,∞+B .(),0∞-C .()()0,11,+∞ D .()()(),11,00,-∞-⋃-⋃+∞【答案】C【分析】根据0次幂的底数不等于0,偶次根式的被开方数非负,分母不等于0列不等式,解不等式即可求解.【详解】由题意可得:1000x x x x x ⎧-≠⎪+≥⎨⎪+≠⎩,解得:0x >且1x ≠,所以原函数的定义域为()()0,11,+∞ ,1.(2022·广东·广州六中高一期末)函数y ___________.【答案】[2,0)-【分析】利用根式、分式的性质求函数定义域即可.【详解】由解析式知:240||0x x x ⎧-≥⎨-≠⎩,则220x x -≤≤⎧⎨<⎩,可得20x -≤<,∴函数的定义域为[2,0)-.故答案为:[2,0)-.2.(2021·江苏·常州市第二中学高一期中)函数()f x =________.【答案】13,22⎡⎤-⎢⎥⎣⎦##1322x x ⎧⎫-≤≤⎨⎬⎩⎭【分析】根据解析式的形式得到关于x 的不等式,解不等式后可得函数的定义域.【详解】解:由题设可得2120x --≥,即122x -≤,故2122x -≤-≤,所以1322x -≤≤,故答案为:13,22⎡⎤-⎢⎥⎣⎦.3.(2021·北京市第九中学高一期中)函数y =________.【答案】(,1][2,)-∞⋃+∞【分析】满足函数有意义的条件,即2310x --≥,解得定义域.【详解】由题知,2310x --≥,解得2x ≥或1x ≤,故函数的定义域为:(,1][2,)-∞⋃+∞故答案为:(,1][2,)-∞⋃+∞【题型三】抽象函数定义域1:(x)→f(g(x))型【典例分析】(2022·江西·修水中等专业学校模拟预测)已知函数()y f x =的定义域为[]1,5-,则函数()221y f x =-的定义域为()A .[]0,3B .[]3.3-C .[D .[]3,0-【答案】C【分析】由题可知解21215x -≤-≤即可得答案.【详解】解:因为函数()y f x =的定义域为[]1,5-,所以,21215x -≤-≤,即203x ≤≤,解得x ≤≤所以,函数()221y f x =-的定义域为[故选:C基本规律已知()f x 的定义域为[,]a b ,求(())f g x 的定义域:解不等式()a g x b ≤≤即可得解【变式训练】1.(2022·全国·高一专题练习)已知()()013x f x x-=-,则()1f x +的定义域为()A .()(),11,3-∞⋃B .()(),22,4-∞⋃C .()(),00,2-∞ D .(),2-∞【答案】C【分析】先求得()f x 的定义域,然后将1x +看作一个整体代入计算即可.【详解】由题可知:10330x x x -≠⎧⇒<⎨->⎩且1x ≠所以函数定义域为{3x x <且}1x ≠令13x +<且11x +≠,所以2x <且0x ≠所以()(),00,2x ∈-∞ ,所以()1f x +的定义域为()(),00,2-∞ 故选:C2.(2015·上海·闵行中学高一期中)已知函数()1y f x =+的定义域为[]23-,,则函数()21y f x =-的定义域为()A .502⎡⎤⎢⎥⎣⎦,B .[]14-,C .5522⎡⎤-⎢⎥⎣⎦,D .3722⎡⎤-⎢⎥⎣⎦,【答案】C【分析】先求1x +取值范围,再根据两函数关系得21x -取值范围,解得结果为所求定义域.【详解】因为函数()1y f x =+的定义域为[]23-,,所以1[1,4]x +∈-,因此55[1,4]02||51222x x x ∈-∴≤≤∴≤≤--即函数()21y f x =-的定义域为5522⎡⎤-⎢⎥⎣⎦,故选:C3.(2018·江西·南康中学高一期中)已知函数()f x 的定义域为[3,)+∞,则函数1(1)f x+的定义域为()A .4(,]3-∞B .4(1,]3C .1(0,]2D .1(,]2-∞【答案】C【分析】由已知函数定义域,可得113x+≥,求解分式不等式得答案.【详解】解:∵函数()f x 的定义域为[3,)+∞,∴由113x +≥,得12x ≥,则102x <≤.∴函数1(1)f x +的定义域为1(0,]2.故选:C .【题型四】抽象函数定义域2:f(g(x))→f(x)型【典例分析】(2023·全国·高一专题练习)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【分析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,f x ∴的定义域为(]1,21,21.(2019·陕西·渭南市尚德中学高一阶段练习)若函数(1)f x -的定义域为[1,2]-,那么函数()f x 中的x 的取值范围是________.【答案】[2,1]-【分析】根据函数(1)f x -的定义域求出()f x 的定义域即可.【详解】解: 函数(1)f x -的定义域为[1-,2],即12x -≤≤211x ∴-≤-≤1[2x ∴-∈-,1],故函数()f x 的定义域为[2,1]-,故答案为:[2,1]-.2.(2020·山西·太原五中高一阶段练习)若函数(21)f x -的定义域为[0,1],则函数()f x 的定义域为()A .[1,0]-B .[3,0]-C .[0,1]D .[1,1]-【答案】D【解析】由函数(21)f x -的定义域为[0,1],可求出1211-≤-≤x ,令x 代替21x -,可得11x -≤≤,即可求出函数()f x 的定义域.【详解】因为函数(21)f x -的定义域为[0,1],由01x ,得1211-≤-≤x ,所以()y f x =的定义域是[1,1]-,故选:D3.(2023·全国·高一专题练习)已知()21f x -的定义域为⎡⎣,则()f x 的定义域为()A .[]22-,B .[]0,2C .[]1,2-D .⎡⎣【答案】C【分析】由x ≤≤2x -.【详解】因为2(1)f x -的定义域为[,所以x ≤≤所以2112x -≤-≤,所以()f x 的定义域为[1,2]-.故选:C【题型五】抽象函数定义域3:f(g(x))→f(h (x ))型【典例分析】(2022·全国·高一课时练习)函数()3=-y f x 的定义域为[]4,7,则()2y f x =的定义域为()A .()1,4B .[]1,2C .()()2,11,2--⋃D .[][]2,11,2-- 【答案】D【分析】利用抽象函数的定义域解法结合一元二次不等式的解法即可求解.【详解】解:因为函数()3=-y f x 的定义域为[]4,7所以47x ≤≤即134x ≤-≤所以214x ≤≤解得:[][]2,11,2x ∈--⋃所以()2y f x =的定义域为[][]2,11,2-- 故选:D.1.(2021·辽宁·沈阳市第一中学高一期中)函数()1f x +的定义域为[]1,2-,则函数()2f x 的定义域为()A .1,12⎡⎤-⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .31,2⎡⎤⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦【答案】D【分析】当[]1,2x ∈-得到[]1,13x +∈,根据123x ≤≤解得答案.【详解】函数()1f x +的定义域为[]1,2-,即[]1,2x ∈-,故[]0,2x ∈,[]1,13x +∈.123x ≤≤,解得13,22x ⎡⎤∈⎢⎥⎣⎦.故选:D.2.(2022·全国·高一课时练习)若函数()22f x -的定义域为[]1,3-,则函数()f x 的定义域为______;若函数()23f x -的定义域为[)1,3,则函数()13f x -的定义域为______.【答案】[]2,7-22,33⎛⎤-⎥⎝⎦【分析】根据抽象函数定义域求解即可.【详解】因为函数()22f x -的定义域为[]1,3-,即13x -≤≤,所以209x ≤≤,2227x -≤-≤,故函数()f x 的定义域为[]2,7-.因为函数()23f x -的定义域为[)1,3,即13x ≤<,所以1233x -≤-<,则函数()f x 的定义域为[)1,3-,令1133x -≤-<,得2233x -<≤,所以函数()13f x -的定义域为22,33⎛⎤- ⎥⎝⎦.故答案为:[]2,7-,22,33⎛⎤- ⎥⎝⎦3.(2022·黑龙江·牡丹江市第三高级中学高一阶段练习)(21)f x -的定义域为[0,1),则(13)f x -的定义域为()A .(2,4]-B .12,2⎛⎤- ⎥⎝⎦C .20,3⎛⎤ ⎥⎝⎦D .10,6⎛⎤⎥⎝⎦【答案】C【分析】先由[0,1)x ∈,求出21x -的范围,可求出()f x 的定义域,而对于相同的对应关系,21x -的范围和13x -相同,从而可求出(13)f x -的定义域.【详解】因为01x ≤<,所以022x ≤<,所以1211x -≤-<,所以()f x 的定义域为[1,1)-,所以由1131x -≤-<,得203x <≤,所以(13)f x -的定义域为20,3⎛⎤⎥⎝⎦,故选:C 【题型六】抽象函数定义域4:f(x)→f(g(x))+f(h(x))【典例分析】(2021·全国·高一单元测试)已知函数()f x 的定义域为()0,1,若10,2c ⎛⎫∈ ⎪⎝⎭,则函数()()()g x f x c f x c =++-的定义域为()A .(),1c c --B .(),1c c -C .()1,c c -D .(),1c c +【答案】B【分析】由已知函数的定义域有0101x c x c <+<⎧⎨<-<⎩,即可求复合函数的定义域.【详解】由题意得:0101x c x c <+<⎧⎨<-<⎩,即11c x c c x c-<<-⎧⎨<<+⎩,又10,2c ⎛⎫∈ ⎪⎝⎭,∴1c x c <<-.故选:B1.(2021·安徽蚌埠·高一期末)已知函数()f x 的定义域是[]0,2,则函数()1122g x f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的定义域是()A .13,22⎡⎤⎢⎥⎣⎦B .15,22⎡⎤⎢⎥⎣⎦C .13,22⎡⎤-⎢⎥⎣⎦D .[]0,2【答案】A【解析】根据函数定义域的性质进行求解即可.【详解】因为函数()f x 的定义域是[]0,2,所以有:102132122022x x x ⎧≤+≤⎪⎪⇒≤≤⎨⎪≤-≤⎪⎩.故选:A2.(2020·安徽·繁昌皖江中学高一期中)已知函数()f x 的定义域为[0,4],求函数2(3)()y f x f x =++的定义域为()A .[2,1]--B .[1,2]C .[2,1]-D .[1,2]-【答案】C【分析】根据抽象函数的定义域得到关于x 的不等式组,解出即可【详解】函数()f x 的定义域为[0,4],所以函数2(3)()y f x f x =++的定义域满足:203404x x ≤+≤⎧⎨≤≤⎩解得3122x x -≤≤⎧⎨-≤≤⎩,即21x -≤≤所以函数2(3)()y f x f x =++的定义域为[2,1]-故选::C3.(2021·江西·黎川县第一中学高一阶段练习)若函数()y f x =的定义域是[0,1],则函数()()(2)(01)F x f x a f x a a =+++<<的定义域是()A .1,22a a -⎡⎤-⎢⎥⎣⎦B .,12a a ⎡⎤--⎢⎥⎣⎦C .[,1]a a --D .1,2a a -⎡⎤-⎢⎥⎣⎦【答案】A【分析】根据抽象函数定义域的求法列不等式组,解不等式组求得()F x 的定义域.【详解】依题意101102122a x a x a a a x a x ⎧-≤≤-⎧≤+≤⎪⎪⇒⎨⎨-≤+≤-≤≤⎪⎪⎩⎩,由于01a <<,所以111101222a a a a a -----=>⇒->,0222a a a a a ⎛⎫---=-<⇒-<- ⎪⎝⎭,所以由1122a x aa a x -≤≤-⎧⎪⎨--≤≤⎪⎩解得122a a x --≤≤.所以()F x 的定义域为1,22a a -⎡⎤-⎢⎣⎦.故选:A【题型七】抽相与具体函数混合型【典例分析】(2022·黑龙江·铁人中学高一期末)已知函数()22f x -的定义域为{}|1x x <,则函数()211f x x --的定义域为()A .(,1)-∞B .(,1)-∞-C .()(),11,0-∞--U D .()(),11,1-∞-- 【答案】D【分析】先求出()f x 的定义域,再根据分母不为零和前者可求题设中函数的定义域.【详解】因为函数()22f x -的定义域为{}|1x x <,故220x -<,所以()f x 的定义域为(),0-∞,故函数()211f x x --中的x 需满足:21010x x -<⎧⎨-≠⎩,故1,1x x <≠-,故函数()211f x x --的定义域为()(),11,1-∞-- ,故选:D.1.(2021·河南·高一期中)已知函数()21y f x =-的定义域是[]2,3-,则y =是()A .[]2,5-B .(]2,3-C .[]1,3-D .(]2,5-【答案】D【分析】根据给定复合函数求出()f x 的定义域,再列式求解作答.【详解】因函数()21y f x =-的定义域是[]2,3-,即()21f x -中[]2,3x ∈-,则21[5,5]x -∈-,因此,y =5520x x -≤≤⎧⎨+>⎩,解得25x -<≤,所以y =(]2,5-.故选:D2.(2022·全国·高一专题练习)设()f x 22x f f x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的定义域为.A .(-4,0)∪(0,4)B .(-4,-1)∪(1,4)C .(-2,-1)∪(1,2)D .(-4,-2)∪(2,4)【答案】B【详解】试题分析:要使函数有意义,则2>02x x +-解得22x ∈-(,),22x f f x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭有意义,须确保两个式子都要有意义,则222{222x x-<<-<<⇒4114x ∈--⋃(,)(,),故选B .考点:1.函数的定义域;2.简单不等式的解法.3.2021·江西·赣州市赣县第三中学高一阶段练习)若函数()1f x +的定义域为[]1,15-,则函数()2f x g x =)A .[]1,4B .(]1,4C .[]1,14D .(]1,14【答案】B【分析】首先根据函数()1f x +的定义域求出函数()y f x =的定义域,然后再列出()2f x g x =x 所满足的条件,从而可求出函数()2f x g x =.【详解】因为函数()1f x +的定义域为[]1,15-,所以115x -≤≤,所以0116x ≤+≤,所以函数()y f x =的定义域为[]0,16,所以要使函数()2f x g x =201610x x ⎧≤≤⎨->⎩,解得14x <≤,所以函数()2f x g x =(]1,4.故选:B .【题型八】嵌入型(内外复合)函数型定义域【典例分析】(2021·全国·高一课时练习)已知()11f x x =+,则()()f f x 的定义域为()A .{}|2x x ≠-B .{}|1x x ≠-C .{1x x ≠-且}2x ≠-D .{0x x ≠且}1x ≠-【答案】C【分析】利用分母不为0及复合函数的内层函数不等于0求解具体函数定义域【详解】因为1()1f x x =+,所以1x ≠-,又因为在(())f f x 中,()1f x ≠-,所以111x ≠-+,所以2x ≠-,所以(())f f x 的定义域为{1x x ≠-且}2x ≠-.故选:C1.(2020·江西省临川第二中学高一阶段练习)已知函数()f x 的定义域为(0,1],()g 2x x =+,那么()()f g x 的定义域是()A .(2,3]B .[0,1)C .(0,1]D .(2,1]--【答案】D【解析】本题首先可根据题意得出()01g x <≤,然后通过计算即可得出结果.【详解】因为函数()f x 的定义域为(0,1],()g 2x x =+,所以函数()()f g x 需要满足()01g x <≤,即021x <+≤,解得21x -<≤-,()()f g x 的定义域是(2,1]--,故选:D.2.(2020·全国·高一)设()11f x x-=,则()f f x ⎡⎤⎣⎦=________.【答案】1x x-(0x ≠,且1x ≠)【分析】将()f x 的解析表达式中的x 用()f x 替换,然后化简整理即得,注意根据原函数的定义域确定复合函数()()f f x 的定义域【详解】∵()11f x x=-,∴()()1111111111x 1x f f x x f x x x-⎡⎤===⎣⎦------=.由于()11f x x =-中1x ≠,∴()f f x ⎡⎤⎣⎦中()1f x ≠,即111x≠-,∴0x ≠,且1x ≠,故答案为:1x x-(0x ≠,且1x ≠)【题型九】恒成立含参型【典例分析】(2022·全国·高一专题练习)若函数()f x =的定义域为R ,则a 的范围是()A .[0,4]B .[0,4)C .D .(0,4)【答案】A【分析】根据给定条件,可得210ax ax ++≥,再分类讨论求解作答.【详解】依题意,R x ∀∈,210ax ax ++≥成立,当0a =时,10≥成立,即0a =,当0a ≠时,2Δ40a a a >⎧⎨=-≤⎩,解得04a <≤,因此得04a ≤≤,所以a 的范围是[0,4].故选:A1.(2021·四川·遂宁中学高一阶段练习)已知函数()f x =的定义域是R ,则m的取值范围是()A .04m ≤<B .01m ≤≤C .4m ≥D .04m ≤≤【答案】A【分析】对m 分0,0m m =≠两种情况讨论得解.【详解】解:由题得210mx mx ++≠的解集为R .当0m =时,10≠,符合题意;当0m ≠时,240,04m m m ∆=-<∴<<.综合得04m ≤<.故选:A2.(2022·全国·高一专题练习)已知y =的定义域是R ,则实数a 的取值范围是()A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.33,22⎛⎛⎫-∞+∞ ⎪⎝⎭⎝⎭D.3322⎛-+ ⎝⎭【答案】D【分析】结合函数特征和已知条件可得到21(1)04ax a x +-+>解集为R ,当0a =时,可得到与已知条件矛盾;当0a ≠时,结合一元二次函数图像即可求解.【详解】由题意可知,21(1)04ax a x +-+>的解集为R ,①当0a =时,易知211(1)044ax a x x +-+=-+>,即14x <,这与21(1)04ax a x +-+>的解集为R 矛盾;②当0a ≠时,若要21(1)04ax a x +-+>的解集为R ,则只需21(1)4y ax a x =+-+图像开口向上,且与x 轴无交点,即判别式小于0,即20(1)0a a a >⎧⎨∆=--<⎩a <<综上所述,实数a的取值范围是33,22⎛+ ⎝⎭.故选:D.3.(2021·广东·深圳市南山外国语学校(集团)高级中学高一阶段练习)若函数()f x =R ,则实数m 的取值范围是()A .(0,4B .[)0,4C .[]0,4D .(]0,4【答案】B【分析】由题意可知224mx mx ++>0的解集为R ,分0m =,0m <,0m >三种情况讨论,即可求解.【详解】解:函数的定义域为R ,即不等式的解集224mx mx ++>0的解集为R 当0m =时,得到40>,显然不等式的解集为R ;当0m <时,二次函数224y mx mx =++开口向下,函数值y 不恒大于0,故不等式的解集不可能为R ;当0m >时,二次函数224y mx mx =++开口向上,由不等式的解集为R ,等到二次函数与x 轴没有交点,24160m m ∆=-<,解得04m <<;综上所述,实数m 的取值范围[)0,4.故选:B【题型十】对数函数定义域【典例分析】(2020·黑龙江哈尔滨·高一阶段练习(理))函数y =R ,则实数a 的取值范围是A .[0,)+∞B .[1,0)(0,)-⋃+∞C .(,1)-∞-D .[1,1)-【答案】A【详解】当0a =时,y =R ;当0a ≠时,函数的值域为R ,则221ax x +-的开口向上,且判别式大于等于零,即0{440a a >+≥,解得0a >.故实数a 的取值范围是[0,)+∞.故选:A.1.(2022·山东·枣庄市第三中学高一开学考试)已知函数()f x 的定义域为()0,1,则()12log 21y f x ⎡⎤=-⎢⎥⎣⎦的定义域为___________.【答案】3,14⎛⎫⎪⎝⎭【分析】根据()f x 的定义域,求得()12log 21x -的取值范围,由此求得x 的取值范围,也即求得函数()12log 21y f x ⎡⎤=-⎢⎥⎣⎦的定义域.【详解】由于函数()f x 的定义域为()0,1,所以()12log 2011x <-<,即()111222log log 21lo 112g x -<<,由于12log y x =在定义域上递减,所以12112x <-<,解得314x <<.所以函数()12log 21y f x ⎡⎤=-⎢⎥⎣⎦的定义域为3,14⎛⎫ ⎪⎝⎭.故答案为:3,14⎛⎫⎪⎝⎭2.(2021·山东省实验中学高一阶段练习)函数()f x =的定义域为___________.【答案】(]1,3##{|13}x x <≤【分析】由函数的解析式中含有二次根式和对数式,可由二次根式的被开方数非负及对数式的真数大于零联立不等式组,解之即可.需注意不等式的定义域须写成集合或区间形式.【详解】解:由题意可得,自变量x 须满足不等式组:41log (1)0210x x ⎧--≥⎪⎨⎪->⎩41log (1)210x x ⎧-≤⎪⇔⎨⎪->⎩1210x x -≤⎧⇔⎨->⎩13x ⇔<≤所以函数()f x ={|13}x x <≤.故答案为:{|13}x x <≤.3.(2019·黑龙江·哈九中高一阶段练习(文))已知集合{}10A x x =->,22log 1x B x y x ⎧⎫-==⎨⎬+⎩⎭,则()A B =R ð()A .[)0,1B .()1,2C .(]1,2D .[)2,+∞【答案】C【分析】求出集合A 、B ,再利用补集和交集的定义可求出集合()R A B ð.【详解】{}()101,A x x =->=+∞ ,()()222log 0,12,11x x B x y xx x ⎧⎫⎧⎫--===>=-∞-⋃+∞⎨⎬⎨⎬++⎩⎭⎩⎭,则[]1,2R B =-ð,因此,()(]1,2R A B = ð.故选:C.【题型十一】定义域:解指数函数不等式【典例分析】(2022·全国·高一专题练习)已知函数()f x =[)2,+∞,则=a _________.【答案】4【分析】由已知可得不等式20x a -≥的解集为[)2,+∞,可知2x =为方程20x a -=的根,即可求得实数a 的值.【详解】由题意可知,不等式20x a -≥的解集为[)2,+∞,则220a -=,解得4a =,当4a =时,由240x -≥,可得2242x ≥=,解得2x ≥,合乎题意.故答案为:4.1.(2023·全国·高一专题练习)已知函数()ln f x x =()2f x 的定义域为()A .()01,B .()12,C .(]04,D .(]02,【答案】D【分析】通过求解f (x )的定义域,确定f (2x )的中2x 的范围,求出x 范围,就可确定f (2x )定义域【详解】要使函数()ln f x x =+01620xx >⎧⎨-≥⎩,解得04x <≤,()f x 的定义域为(]0,4,由024x <≤,解得02x <≤,()2f x 的定义域为(]0,2,故选D.2.(2022·全国·高一专题练习)函数()f x =___________.【答案】(,0]-∞【分析】根据具体函数的定义域求法,结合指数函数的单调性求解.【详解】解:由1102x ⎛⎫-≥ ⎪⎝⎭,得011122⎛⎫⎛⎫≥= ⎪ ⎪⎝⎭⎝⎭x ,所以0x ≤,所以函数的定义域为(,0]-∞,故答案为:(,0]-∞3.(2022·全国·高一专题练习)函数y ________.【答案】(-∞,-2]∪[2,+∞)【分析】根据开偶数次方根号里的数大于等于零,结合指数函数的单调性解之即可得解.【详解】由题意有22390x --≥,即22233x -≥,所以222x -≥,即24x ≥,所以2x ≥或2x -≤,故所求函数的定义域为(-∞,-2]∪[2,+∞).故答案为:(-∞,-2]∪[2,+∞).【题型十二】正切函数定义域【典例分析】(2022·安徽·泾县中学高一开学考试)函数()f x 的定义域为___________.【答案】|,Z 44x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭【分析】根据开偶数次发,根号里的数大于等于零,解正切函数不等式即可得解.【详解】解:由21tan 0x -≥,有1tan 1x -≤≤,可得ππππ44k x k -+≤≤,k ∈Z ,所以函数()f x 的定义域为|,Z 44x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭.故答案为:|,Z 44x k x k k ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭.1.(2022·云南昭通·高一期末)函数3tan 24y x π⎛⎫=-- ⎪⎝⎭的定义域为___________.【答案】5|,Z 82k x x k ππ⎧⎫≠+∈⎨⎬⎩⎭【分析】先得到使函数有意义的关系式32,Z 42x k k πππ-≠+∈,求解即可.【详解】若使函数有意义,需满足:32,Z 42x k k πππ-≠+∈,解得5,Z 82k x k ππ≠+∈;故答案为:5|,Z 82k x x k ππ⎧⎫≠+∈⎨⎬⎩⎭2.(2022·全国·高一课时练习)函数tan(6)4y x π=+的定义域为________.【答案】{|,Z}624k x x k ππ≠+∈【分析】由6,Z 42x k k πππ+≠+∈,即得.【详解】由题意,要使函数tan(6)4y x π=+的解析式有意义,自变量x 须满足:6,Z 42x k k πππ+≠+∈,解得,Z 624k x k ππ≠+∈,故函数tan(6)4y x π=+的定义域为{|,Z}624k x x k ππ≠+∈,故答案为:{|,Z}624k x x k ππ≠+∈【题型十三】解正弦函数不等式求定义域【典例分析】(2022·北京八中高一期中)函数()2()lg 14sin f x x =-的定义域为________.【答案】,,66k k k Zππππ⎛⎫-++∈ ⎪⎝⎭【分析】根据对数的真数大于0,解不等式即可得出答案.【详解】由题意得:214sin 0x ->,所以sin 1122x <-<,所以,66k x k k Z ππππ-+<<+∈,函数()f x 的定义域为:,,66k k k Zππππ⎛⎫-++∈ ⎪⎝⎭1.(2023·全国·高一专题练习)函数y =___________.【答案】5(2,2Z)66k k k ππππ++∈【分析】根据给定条件,列出不等式,解正弦不等式即可作答.【详解】依题意,1sin 02x ->,即1sin 2x >,解得522,Z 66k x k k ππππ+<<+∈,所以所求定义域为5(2,2Z)66k k k ππππ++∈.故答案为:5(2,2Z)66k k k ππππ++∈2.(2023·全国·高一专题练习)函数()f x =________________.【答案】(][]4,0,ππ-- 【分析】根据f(x )解析式列出不等式组,解不等式组即可得到定义域﹒【详解】()f x = 2sin 0160x x ⎧∴⎨->⎩ ,解得22,44k x k k Zx πππ+∈⎧⎨-<<⎩ ,对于22,k x k k Z πππ+∈ ,当0k =时,0x π ,当1k =时,23x ππ ,当1k =-时,2x ππ-- ,当2k =-时,43x ππ-- ,∴不等式组的解为:4x π-<- 或0.x π ()f x ∴的定义域为][(4,0,.ππ⎤--⋃⎦故答案为:][(4,0,.ππ⎤--⋃⎦3..(2023·全国·高一专题练习)函数()f x =的定义域为__________.【答案】5{|22,}44x k x k k Z ππππ-≤≤+∈【分析】由二次根式中被开方数非负,结合正弦函数性质可得.【详解】由题意10x ≥,sin 2x ≤,所以52244k x k ππππ-≤≤+,k Z ∈.故答案为:5{|22,}44x k x k k Z ππππ-≤≤+∈.【题型十四】解余弦函数不等式求定义域【典例分析】(2022·陕西省安康中学高一期末)函数1()ln cos 2f x x ⎛⎫=- ⎪⎝⎭的定义域为_______________.【答案】ππ2π,2π,33⎛⎫-+∈ ⎪⎝⎭k k k Z【分析】由题可知,解不等式1cos 2x >即可得出原函数的定义域.【详解】对于函数1()ln cos 2f x x ⎛⎫=- ⎪⎝⎭,有1cos 02x ->,即1cos 2x >,解得()ππ2π2π33-<<+∈k x k k Z ,因此,函数1()ln cos 2f x x ⎛⎫=- ⎪⎝⎭的定义域为ππ2π2π,33x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z .故答案为:ππ2π,2π,33⎛⎫-+∈ ⎪⎝⎭k k k Z .【提分秘籍】基本规律余弦函数定义域是全体实数,本身没有限制。

人教A版数学必修一河北省衡水中学高一数学强化作业:指数函数习题课.docx

人教A版数学必修一河北省衡水中学高一数学强化作业:指数函数习题课.docx

高中数学学习材料马鸣风萧萧*整理制作1.化简[32)5(-]43的结果为 A .5B .5C .-5D .-52.将322-化为分数指数幂的形式为 A .212- B .312- C .212-- D .652-3.下列等式一定成立的是 A .2331a a ⋅=a B .2121a a ⋅-=0C .329()a a=D .613121a a a =÷4.下列命题中,正确命题的个数为 ①nna =a ②若a ∈R ,则20(1)1a a -+= ③y x y x +=+34334 ④623)5(5-=-A .0B .1C .2D .35.若a 2x=2-1,则xx xx a a a a --++33等于A .22-1B .2-22C .22+1D .2+1 6.使代数式(|x |-1)31-有意义的x 的取值范围为A .|x |≥1B .-1<x <1C .|x |>1D .x ≠±1 二、填空题.7.若103,104x y==,则210x y-=__________.8.+-+----1432313256)71(027.0 1=__________.9.321132132)(----÷ab b a bab a =__________.10.设α、β为方程2x 2+3x +1=0的两个根,则(41)α+β=______________. 11.已知31x a -+=(a 为常数),则2362a ax x---+=______________.三、解答题.12.化简111113131313132---+++++-x xx x x x xx .13.已知,32121=+-x x 求3212323++++--x x x x 的值.14.(10分)已知x =)55(2111n n --,n N *∈,求2(1)n x x ++值.15.(1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|3X-1|=k 无解?有一解?有两解?指数函数习题课 一、1.B 2.A 3.D 4.B 5.A 6.D 二、7.498.30479147/10 9.6561-b a 10.8 11.1三、12.解:原式=313131313231)1(11x x x x x x -=+-+-+-13.解:由,9)(22121=+-xx可得x +x -1=7∵27)(32121=+-xx∴23121212333---++⋅+xx x x x x =27∴2323-+xx =18,故原式=214.解:由已知得1+x 2=n n y22525(1-++)=211)55(41n n -+ 5)5()]55(21)55(21[)1(111112==++-=++--n n n n n n n nx x15.解: (1)常数m =1(2)当k <0时,直线y =k 与函数|13|-=xy 的图象无交点,即方程无解;直线y =k 与函数|13|-=xy 的图当k =0或k ≥1时, 象有唯一的交点,所以方程有一解;y =k 与函数|13|-=xy 的图象 当0<k <1时, 直线有两个不同交点,所以方程有两解。

高一数学强化训练五

高一数学强化训练五

高一数学强化训练五 一、选择题 1. 若α是第二象限的角,且sinα=23,则cosα=( )A. 13B. −13C. √53D. −√53 2. 函数y =sin2x •cos2x 的最小正周期是( )A. 2πB. 4πC. π4D. π2 3. 下列函数中,定义域是R 且为增函数的是( )A. y =3−xB. y =x 3C. y =lnxD. y =|x| 4. 如图所示,D 是△ABC 的边AB 的中点,则向量CD ⃗⃗⃗⃗⃗ =( )A. −BC ⃗⃗⃗⃗⃗ +12BA ⃗⃗⃗⃗⃗ B. −BC ⃗⃗⃗⃗⃗ −12BA ⃗⃗⃗⃗⃗C. BC ⃗⃗⃗⃗⃗ −12BA ⃗⃗⃗⃗⃗D. BC ⃗⃗⃗⃗⃗ +12BA ⃗⃗⃗⃗⃗5. 已知平面向量a ⃗ =(1,−3),b ⃗ =(4,−2),λa ⃗ +b ⃗ 与a⃗ 垂直,则实数λ的值为( ) A. −1 B. 1 C. −2 D. 26. 设a ⃗ =(32,sin a ),b ⃗ =(cos a ,13)且a ⃗ ∥b ⃗ ,则锐角a 为( ) A. 30∘ B. 60∘ C. 45∘ D. 75∘7. a ⃗ =(2,1),b ⃗ =(3,4),则向量a ⃗ 在向量b ⃗ 方向上的投影为( )A. 2√5B. √5C. 2D. 10 8. 若x log 34=1,则4x +4-x =( )A. 1B. 2C. 83D. 1039. 函数y =sin x +cos 2x 的值域是( )A. [−1,54]B. [−1,1]C. [1,45]D. (−∞,45] 10. 下列函数中,既不是奇函数,也不是偶函数的是( )A. y =x +sin2xB. y =x 2−cosxC. y =2x +12x D. y =x 2+sinx11. 若2x -5-x ≤2-y -5y ,则有( )A. x +y ≥0B. x +y ≤0C. x −y ≤0D. x −y ≥0 12. 已知函数f (x )=ln (√1+9x 2-3x )+1,则f (lg2)+f (lg 12)=( )A. −1B. 0C. 1D. 2二、填空题13. lg20+lg5=______.14. 若向量a ⃗ 、b ⃗ 的夹角为150°,|a ⃗ |=√3,|b ⃗ |=4,则|2a ⃗ +b ⃗ |=______.15. 已知α,β都是锐角,sinα=45,cos (α+β)=513,则sinβ的值等于______.16. 已知函数f (x )=sin2x -k cos2x 的图象关于直线x =π8对称,则k 的值是______.三、解答题17. 已知函数f(α)=cos(π2+α)cos(2π+α)sin(−α+32π)sin(α+7π2)sin(−3π−α).(1)化简f (α);(2)若α是第三象限角,且tanα=34,求f (2α).18. 已知函数f (x )=sin 2x +2sin x cosx+3cos 2x ,x ∈R .求:(1)函数f (x )的最大值及取得最大值时自变量x 的集合; (2)求函数f (x )在[0,π2]上的值域.19.设向量a ⃗ =(4cosα,sinα),b ⃗ =(sinβ,4cosβ),c ⃗ =(cosβ,−4sinβ)(1)若a ⃗ 与b ⃗ −2c ⃗ 垂直,求tan (α+β)的值;(2)求|b ⃗ +c ⃗ |的最大值;(3)若tanαtanβ=16,求证:a ⃗ ∥b ⃗ .。

高一数学课时同步练习第5课全集,补集及综合应用

高一数学课时同步练习第5课全集,补集及综合应用

精品基础教育教学资料,仅供参考,需要可下载使用!第一单元集合与常用逻辑用语第5课全集,补集及综合应用一、基础巩固1.设集合U={1,2,3,4,5,6},集合A={1,3,5},B={3,4,5},则∁U(A∪B)=() A.{2,6}B.{3,6}C.{1,3,4,5} D.{1,2,4,6}【答案】A【解析】由题知A∪B={1,3,4,5},所以∁U(A∪B)={2,6}.故选A.2.已知集合A={x|x是菱形或矩形},B={x|x是矩形},则∁A B=()A.{x|x是菱形}B.{x|x是内角都不是直角的菱形}C.{x|x是正方形}D.{x|x是邻边都不相等的矩形}【答案】B【解析】由集合A={x|x是菱形或矩形},B={x|x是矩形},则∁A B={x|x是内角都不是直角的菱形}.3. 若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个【答案】C【解析】A={0,1,3},真子集有23-1=7个.4.设全集U为实数集R,M={x|x>2或x<-2},N={x|x≥3或x<1}都是全集U的子集,则图中阴影部分所表示的集合是()A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}【答案】A【解析】阴影部分表示的集合为N∩(∁U M)={x|-2≤x<1},故选A.5.设全集U={0,1,2,3},集合A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.【答案】-3【解析】由题意可知,A={x∈U|x2+mx=0}={0,3},即0,3为方程x2+mx=0的两根,所以m=-3.6.已知全集U=R,A={x|1≤x<b},∁U A={x|x<1或x≥2},则实数b=________.【答案】2【解析】因为∁U A={x|x<1或x≥2},所以A={x|1≤x<2}.所以b=2.7.设全集U=R,则下列集合运算结果为R的是________.(填序号)①Z∪∁U N;②N∩∁U N;③∁U(∁U∅);④∁U Q.【答案】①【解析】结合常用数集的定义及交、并、补集的运算,可知Z∪∁U N=R,故填①.8.已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B),∁U(A∪B).【答案】见解析【解析】如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},U={x|x≤4},∴∁U A={x|x≤-2,或3≤x≤4},∁U B={x|x<-3,或2<x≤4}.A∩B={x|-2<x≤2},A∪B={x|-3≤x<3}.故(∁U A)∪B={x|x≤2,或3≤x≤4},A∩(∁U B)={x|2<x<3},∁U(A∪B)={x|x<-3,或3≤x≤4}.二、拓展提升9.设全集U={1,2,x2-2},A={1,x},则∁U A=________.【答案】{2}【解析】[若x=2,则x2-2=2,与集合中元素的互异性矛盾,故x≠2,从而x=x2-2,解得x=-1或x=2(舍去).故U={1,2,-1},A={1,-1},则∁U A={2}.10. 已知集合M={x|x<-2或x≥3},N={x|x-a≤0},若N∩∁R M≠∅(R为实数集),则a的取值范围是________.【答案】a≥-2【解析】由题意知∁R M={x|-2≤x<3},N={x|x≤a}.因为N ∩∁R M ≠∅,所以a ≥-2.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁R A )∩B ={2},A ∩(∁R B )={4},求实数a ,b 的值.【答案】a =87,b =-127【解析】由条件(∁R A )∩B ={2}和A ∩(∁R B )={4},知2∈B ,但2∉A ;4∈A ,但4∉B .将x =2和x =4分别代入B ,A 两集合中的方程得⎩⎪⎨⎪⎧22-2a +b =0,42+4a +12b =0,即⎩⎪⎨⎪⎧4-2a +b =0,4+a +3b =0. 解得a =87,b =-127即为所求. 12.已知全集U ={不大于20的质数},若M ,N 为U 的两个子集,且满足M ∩(∁U N )={3,5},(∁U M )∩N ={7,19},(∁U M )∩(∁U N )={2,17},则M =________,N =________.【答案】{3,5,11,13} {7,11,13,19}【解析】法一:U ={2,3,5,7,11,13,17,19},如图所示,所以M ={3,5,11,13},N ={7,11,13,19}.法二:因为M ∩(∁U N )={3,5},所以3∈M ,5∈M 且3∉N ,5∉N .又因为(∁U M )∩N ={7,19},所以7∈N ,19∈N 且7∉M ,19∉M .又因为(∁U M )∩(∁U N )={2,17},所以∁U (M ∪N )={2,17},所以M ={3,5,11,13},N ={7,11,13,19}.。

高一数学(必修一)《第五章 任意角》练习题及答案解析-人教版

高一数学(必修一)《第五章 任意角》练习题及答案解析-人教版

高一数学(必修一)《第五章 任意角》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.喜洋洋从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是( )A .30°B .﹣30°C .60°D .﹣60°2.将880-︒化为360k α+⨯︒(0360α︒≤<︒,Z k ∈)的形式是( )A .()1603360︒+-⨯︒B .()2002360︒+-⨯︒C .()1602360︒+-⨯︒D .()2003360︒+-⨯︒3.下列角中终边在y 轴非负半轴上的是( )A .45︒B .90︒C .180︒D .270︒4.下列说法中正确的是( )A .锐角是第一象限的角B .终边相同的角必相等C .小于90︒的角一定为锐角D .第二象限的角必大于第一象限的角 5.在0°到360范围内,与405终边相同的角为( )A .45-B .45C .135D .2256.若750︒角的终边上有一点(),3P a ,则a 的值是( )AB .C .D .-7.下列命题:①钝角是第二象限的角;②小于90的角是锐角;③第一象限的角一定不是负角;④第二象限的角一定大于第一象限的角;⑤手表时针走过2小时,则时针转过的角度为60;⑥若 4.72α=-,则α是第四象限角.其中正确的命题的个数是( )A .1B .2C .3D .48.角296π-的终边所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 9.下列命题中正确的是( ).A .第一象限角一定不是负角B .小于90°的角一定是锐角C .钝角一定是第二象限角D .第一象限角一定是锐角 10.已知α为第三象限角,cos 02α>和tan 3α=,则tan 2α的值为( )A .13-B .13C .13-D .13-+13-11.下列与94π的终边相同的角的集合中正确的是( ) A .(){}245Z k k ααπ=+︒∈ B .()9360Z 4k k ααπ⎧⎫=⋅︒+∈⎨⎬⎩⎭C .(){}360315Z k k αα=⋅︒-︒∈D .()5Z 4k k πααπ⎧⎫=+∈⎨⎬⎩⎭12.已知集合{}9045,M x x k k ==⋅︒+︒∈Z ,集合{}4590,N x x k k ==⋅︒+︒∈Z ,则有( )A .M NB .N MC .M ND .M N ⋂=∅13.若角α的终边与函数()1f x x =-的图象相交,则角α的集合为( )A .π5π|2π+2π,Z 44k k k αα⎧⎫<<+∈⎨⎬⎩⎭B .3π7π|2π+2π,Z 44k k k αα⎧⎫<<+∈⎨⎬⎩⎭C .3ππ|2π2π,Z 44k k k αα⎧⎫-<<+∈⎨⎬⎩⎭D .5ππ|2π2π,Z 44k k k αα⎧⎫-<<+∈⎨⎬⎩⎭二、双空题14.与角-2021°终边重合的最大负角是__________,与角2022°终边重合的最小正角是__________.三、填空题15.如图,终边落在阴影部分(不含边界)的角的集合是________.16.若角α的终边在函数y x =-的图象上,试写出角α的集合为_________.四、多选题17.如果2θ是第四象限角,那么θ可能是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角参考答案与解析1.D【分析】根据分针旋转方向结合任意角的定义即可求出【详解】因为分针为顺时针旋转,所以10分钟时间钟表的分针走过的角度是 360606︒-=-︒. 故选:D .2.D【分析】根据给定条件直接计算即可判断作答.【详解】880200()3360-︒=︒+-⨯︒.故选:D3.B【分析】求出以x 轴的非负半轴为始边,终边在y 轴非负半轴上的一个角即可判断作答.【详解】因x 轴的非负半轴绕原点逆时针旋转90°即可与y 轴非负半轴重合因此,以x 轴的非负半轴为始边,y 轴非负半轴为终边的一个角是90°于是得:终边在y 轴非负半轴上的角的集合为{|36090,Z}k k αα=⋅+∈显然,A ,C ,D 不满足,符合条件的是B.故选:B4.A【分析】根据锐角的定义,可判定A 正确;利用反例可分别判定B 、C 、D 错误,即可求解.【详解】对于A 中根据锐角的定义,可得锐角α满足090α︒<<︒是第一象限角,所以A 正确; 对于B 中例如:30α=与390β=的终边相同,但αβ≠,所以B 不正确;对于C 中例如:30α=-满足90α<,但α不是锐角,所以C 不正确;对于D 中例如:390α=为第一象限角,120β=为第二象限角,此时αβ>,所以D 不正确.故选:A.5.B【分析】根据终边相同角的概念判断即可;【详解】解:因为40536045=+,所以在0°到360范围内与405终边相同的角为45;故选:B6.B【分析】结合已知条件可求得750与30的终边相同,然后利用三角函数值的定义即可求解.【详解】因为750236030=⨯+所以750与30的终边相同从而223cos750cos3023a a ===+,解得a =故选:B.7.A【分析】利用任意角的定义逐项判断可得出合适的选项. 【详解】①因为大于90小于180的角为钝角,所以钝角的终边在第二象限,钝角是第二象限的角对; ②小于90的角包含负角,负角不是锐角,所以小于90的角是锐角错;③330-是第一象限角,所以第一象限角一定不是负角错;④120是第二象限角,390是第一象限角120390<,所以第二象限角一定大于第一象限角错; ⑤因为时针顺时针旋转,所以针转过的角为负角23060-⨯=-,⑤错; ⑥3 4.7124 4.722π-≈->-,且 4.722π->-,即32 4.722ππ-<-<-,所以α是第四象限角错. 故正确的命题只有①故选:A.8.C 【分析】将角化为k πα+(k Z ∈)的形式,由此确定正确选项.【详解】29566πππ-=-+,在第三象限. 故选:C9.C【分析】明确锐角、钝角、象限角的定义,通过举反例排除错误的选项,得到正确的选项.【详解】解:A 不正确,如330-︒就是第一象限角.B 不正确,如30-︒是小于90︒的角,但30-︒并不是锐角.C 正确,因为钝角大于90︒且小于180︒,它的终边一定在第二象限.D 不正确,如330-︒就是第一象限角,但330-︒并不是锐角.故选:C .10.A 【分析】利用正切的二倍角公式可得23tan 2tan 3022αα+-=,求出tan 2α,再根据α的范围可得答案.【详解】∵tan 3α=,∴22tan231tan 2αα=- 即23tan2tan 3022αα+-=∴1tan 23α=-1tan 23α=-α为第三象限角,所以()3ππ2π2π2k k k α+<<+∈Z ()π3πππ224k k k α+<<+∈Z ∵cos02α>,∴2α为第四象限角 ∴tan 02α<,∴1tan23α=-故选:A.11.C【分析】由任意角的定义判断 【详解】94057203154rad π︒=︒=-︒,故与其终边相同的角的集合为9{|2,}4k k Z πααπ=+∈或{|315360,}k k Z αα=-︒+⋅︒∈角度制和弧度制不能混用,只有C 符合题意故选:C12.CN ∴中存在元素x M ∉;M N ∴.故选:C .13.C【分析】只有当角α的终边与在直线y x =上时,则与函数()1f x x =-的图象无交点,其余情况一直有交点,结合选项可得答案.【详解】当角α的终边与直线y x =重合时,则角α的终边与函数()1f x x =-的图象无交点.又因为角α的终边为射线 所以3ππ2π2π44k k α-<<+ k ∈Z . 故选:C14. -221° 222°【分析】根据终边相同的角相差360︒的整数倍,利用集合的描述法可写出符合条件的集合,给k 赋值进行求解即可.【详解】解:根据终边相同的角相差360︒的整数倍故与-2021°终边相同的角可表示为:{|3602021k αα=︒-︒ }k Z ∈则当4k =时,则53602021221α=⨯︒-︒=-︒,此时为最大的负角.与角2022°终边相同的角可表示为:{|3602022k αα=︒+︒ }k Z ∈当5k =-时,则53602022222α=-⨯︒+︒=︒,此时为最小的正角.故答案为:-221°,222°15.{}|36045360120,k k k Z αα︒︒︒︒⋅-<<⋅+∈ 【解析】写出与OA 终边相同的角的集合和与OB 终边相同的角的集合,根据区域角的表示方法即可得解.【详解】由题图可知与OA 终边相同的角的集合为{}|360120,k k Z αα︒︒=⋅+∈与OB 终边相同的角的集合为(){}|36045,k k Z αα︒︒=⋅+-∈,故终边落在阴影部分(不含边界)的角的集合是{}|36045360120,k k k Z αα︒︒︒︒⋅-<<⋅+∈.故答案为:{}|36045360120,k k k Z αα︒︒︒︒⋅-<<⋅+∈ 【点睛】此题考查区域角的表示方法,关键在于准确找准区域边界所对应的角的表示方式.16.{|180135,}k k αα=⋅︒+︒∈Z【解析】函数y x =-的图象是第二、四象限的平分线,可以先在0︒~360︒范围内找出满足条件的角,再进一步写出满足条件的所有角,并注意化简.【详解】解:函数y x =-的图象是第二、四象限的平分线,在0︒~360︒范围内,以第二象限射线为终边的角为135︒,以第四象限射线为终边的角为315︒∴α的集合为{|360135k αα=⋅︒+︒或360315,}k k Z α=⋅︒+︒∈{|180135,}k k Z αα==⋅︒+︒∈故答案为:{|180135,}k k Z αα=⋅︒+︒∈【点睛】本题考查终边相同角的表示,角的终边是以原点为顶点的一条射线,因此当只有角的终边在直线上时,则要分类讨论.由原点把直线分成两条射线.17.BD【解析】依题意求出2θ的取值范围,从而得出θ的取值范围,即可判断θ所在的象限; 【详解】解:由已知得2222k k ππθπ-<<,k Z ∈所以4k k ππθπ-<<,k Z ∈当k 为偶数时,则θ在第四象限,当k 为奇数时,则θ在第二象限,即θ在第二或第四象限.故选:BD .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校 班级 考号 姓名_________________ 装订线内不要答题 ♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉装♉♉♉♉♉♉♉♉♉♉♉♉订♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉线♉♉♉♉♉♉♉♉♉♉♉
2008-2009学年度下学期四校期中联考
高二数学(理科)试题
命题人:鄢陵县二高 赵红凯
第Ⅰ卷
一、选择题(每小题5分,共60分) 1、下列命题中,真命题的个数为( )

1如果两个平面有三个不同的公共点,那么这两个平面重合; ○
2两条相交直线的直观图可能平行; ○
3一个角一定是平面图形; ○
4过直线外一点可以作无数个平面平行于已知直线; ○
5平行于同一平面的两直线互相平行。

A 2 B 3 C 4 D 5 2、18×17×16×…×9×8等于( )
A 818A
B 918A
C 1018A
D 11
18A
3、下列各式中,不等于n!的是( ) A n n A B
1
11
1+++n n A n
C n n A 1+
D 11--n n nA
4、对两条不相交的空间直线a ,b ,必定存在平面α,使得( )
A αα⊂⊂b a ,
B b a ,α⊂∥α
C αα⊥⊥b a ,
D αα⊥⊂b a ,
5、已知)1 ,0 ,1(),1 ,1,1(-=--=b a
,则两向量夹角的余弦值为(

A
3
3 B 0 C
3
6 D 3
1
6、已知)4 ,1,6( ),3 ,2 ,4( ),11 ,2,1(--C B A ,则△ABC 为( )三角形 A 等腰 B 直角 C 等腰直角 D 以上都不对
7、平行六面体ABCD —''''D C B A 中,AB=4,AD=3,'AA =5, 90=∠BAD ,
60
''=∠=∠DAA BAA ,则'AC =( )
A 85
B 9
C 27
D 54
8、用一个平面截半径为25cm 的球,截面面积是2 49cm π,则球心到截面的距离
学校 班级 考号 姓名_________________
装订线内不要答题 ♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉装♉♉♉♉♉♉♉♉♉♉♉♉订♉♉♉♉♉♉♉♉♉♉♉♉♉♉♉线♉♉♉♉♉♉♉♉♉♉♉
为( )cm
A 1114
B 18
C 23
D 24 9、平面的一条斜线和它在平面内射影的夹角为 45,又知平面内一条直线和斜线在平面内射影的夹角也为 45,则平面的斜线与平面内的直线所成的角为( ) A 60 B 30 C 45 D 90
10、点A(3,3,1),B(1,0,5),则与A 、B 距离相等的点P (z y x ,,)的坐标z y x ,,满足的条件是( )
A 07864=-++z y x
B 07864=+-+z y x
C 071264=+++z y x
D 071264=-++z y x
11、在三棱锥P-ABC 中,PA=PB=8,△ABC 是边长为4的正三角形,则该三棱锥体积的最大值为( ) A 332 B
3
3
32 C 58 D 524
12、要排出某班一天中语文、数学、政治、英语、体育、艺术6堂课的课程表,要求数学课排在上午(前4节),体育课排在下午(后2节),不同排法有( )种
A 720
B 120
C 480
D 192 二、填空(每小题5分,共20分)
13、有5种不同的书,要买三本送给3名同学,每人各一本,共有______种不同的送法。

14、三个平面OAB 、OBC 、OCA 相交于点O , 60=∠=∠=∠COA BOC AOB ,则交线OA 与平面OBC 所成的角为_________。

15、设地球半径为R ,在北纬 30纬线上有甲、乙两地,它们的经度差为 120,则这两地间的纬线长为_________。

16、一块三角板ABC ,
90,30=∠=∠C A ,BC 边在桌面上,当三角板和桌面成
45角时,AB 与桌面所成角的正弦值是__________。

2008-2009学年下学期四校期中联考
高二数学答题卷
题 号



总 分
17
18 19 20 21
22
座号:
第Ⅰ卷答题卡:
一、选择题:每小题5分,共12题,计60分。


得分
评卷

二、填空题:(每空5分,计20分,) 13、 14、
15、 16、
第Ⅱ卷
三、解答题(共70分) 17、(10分)正四面体OABC 的棱长为1,D 、E 分别为OA 、BC 之中点,连结DE

1求证:DE 是异面直线OA 与BC 的公垂线段; ○2求O 到平面ABC 的距离OH 。

18、(12分)○
17个人站成一排,如果甲必须站在正中间,有多少种排法? ○
27个人站成一排,如果甲、乙两人必须站在两端,有多少种排法? ○37个人站成两排,其中三个女孩站在前排,4个男孩站在后排,有多少种排法?
○47个人站成两排,其中前排站3人,后排站4人,有多种排法?
得 分
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
19、(12分)如图,△ABC 为正三角形,ABC EC 平面⊥,BD ∥CE ,且CE = 2BD ,M 为EA 之中点。

求证:○
1DM ∥平面ABC ○2平面ADE ⊥平面ACE 20、(12分)求证:三个两两垂直的平面的交线两两垂直。

M C E
A
D
B
21、(12分)用1,2,3,4,5,6组成没有重复数字的6位数

1若为奇数,有多少种不同的6位数? ○
2若小于230000,有多少种不同的6位数? ○3若要求任何相邻两个数字的奇偶性不同,且1与2相邻,有多少种不同的6位数? 22、(12分)如图,在四棱锥P —ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA=PD=
2,底面ABCD 是直角梯形,其中BC ∥AD ,
AD
AB ⊥,AD=2AB=2BC=2,O 为AD 之中点

1求异面直线PB 与CD 所成角的大小; ○
2求二面角C —PD —A 的大小; ○3线段AD 上是否存在点Q ,使得它到平面PCD 的 距离为
2
3?若存在,求出
QD
AQ 的值;若不存
在,请说明理由。

北京给孩子找家教-给孩子找一对一辅导老师NO.1:本人成绩优异,踏实负责,擅长初高中数理化家教及英语家教,有家教经验,有一套自己的学习方法。

北京给孩子找家教-给孩子找一对一辅导老师NO.2:本人有流利的普通话,授课
P
C
B
A
D
清晰,讲题明白,一年的家教经经验,有能力与信心胜任初高中理综家教,希望家长与学生给予信任。

北京给孩子找家教-给孩子找一对一辅导老师NO.3:山东考生,文科643,大一新生,北外学习小语种,擅长英语家教,发音标准。

有过三年家教经验。

北京给孩子找家教-给孩子找一对一辅导老师NO.4:责任心强,有丰富的家教经验,有足够的耐心给学生讲解知识点及各类题目。

文章来源:/jjxg/4258.html。

相关文档
最新文档