高一数学选择填空题难题精选及答案(必修一)

合集下载

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。

2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。

4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。

5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。

高中必修1习题及答案

高中必修1习题及答案

一.选择题(共36小题)1.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)2.若全集U=R,集合M={x|lg(x﹣1)<0},则∁U M为()A.[2,+∞)B.(﹣∞,1]∪[2,+∞)C.(2,+∞)D.(﹣∞,1)∪(2,+∞)3.已知集合A={x|﹣2<x<4},B={x|y=lg(x﹣2)},则A∩(∁R B)=()A.(2,4) B.(﹣2,4)C.(﹣2,2)D.(﹣2,2]4.已知集合M={x|≤0},N={x|y=log3(﹣6x2+11x﹣4)},则M∩N=()A.[1,]B.(,3]C.(1,)D.(,2)5.已知集合A={x|x2﹣x﹣6<0},B={x|3x>1},则A∩B=()A.(1,2) B.(1,3) C.(0,2) D.(0,3)6.已知集合A={x|x2﹣2x﹣3<0},,则A∩B=()A.{x|1<x<3}B.{x|﹣1<x<3}C.{x|﹣1<x<0或0<x<3}D.{x|﹣1<x<0或1<x<3}7.已知集合A={0,1,2,3,4,5},集合B={x|x2<10},则A∩B=()A.{0,2,4}B.{3}C.{0,1,2,3}D.{1,2,3}8.设集合A={x∈N||x|≤2},B={y|y=1﹣x2},则A∩B=()A.{x|﹣2≤x≤1}B.{0,1}C.{1,2}D.{x|0≤x≤1}9.已知集合A={x∈Z||x|<4},B={x|x﹣1≥0},则A∩B等于()A.(1,4) B.[1,4) C.{1,2,3}D.{2,3,4}10.已知全集U=R,集合A={x|y=lg(x﹣1)},集合,则A ∩B=()A.∅B.(1,2]C.[2,+∞)D.(1,+∞)11.已知集合A={x∈Z|(x+1)(x﹣2)≤0},B={x|﹣2<x<2},则A∩B=()A.{x|﹣1≤x<2}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,1}12.命题“∀x∈[1,2],x2﹣3x+2≤0”的否定是()A.∀x∈[1,2],x2﹣3x+2>0 B.∀x∉[1,2],x2﹣3x+2>0C. D.13.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题14.已知命题p:∀x>1,log2x+4log x2>4,则¬p为()A.¬p:∀x≤1,log2x+4log x2≤4 B.¬p:∃x≤1,log2x+4log x2≤4C.¬p:∃x>1,log2x+4log x2=4 D.¬p:∃x>1,log2x+4log x2≤415.下列说法错误的是()A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.命题p:“∃x∈R,使得x2+x+1<0”,则綈p:“∀x∈R,x2+x+1≥0”D.若p∧q为假命题,则p、q均为假命题16.下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件17.命题P:“若x>1,则x2>1”,则命题P:以及它的否命题、逆命题、逆否命题这四个命题中真命题的个数为()A.1 B.2 C.3 D.418.下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1 D.f(x)=•,g(x)=19.函数f(x)=+的定义域是()A.[﹣2,2]B.(﹣1,2]C.[﹣2,0)∪(0,2]D.(﹣1,0)∪(0,2]20.函数f(x)=的定义域为()A.{x|x>0}B.{x|x>1}C.{x|x≥1}D.{x|0<x≤1}21.函数定义域为()A.(0,1000]B.[3,1000]C.D.22.要得到函数y=log3(1﹣x)的图象,只需将函数y=log3x的图象()A.先关于x轴对称,再向右平移1个单位B.先关于x轴对称,再向左平移1个单位C.先关于y轴对称,再向右平移1个单位D.先关于y轴对称,再向左平移1个单位23.若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.24.函数f(x)=2|x|﹣x2的图象为()A.B.C.D.25.已知图①中的图象对应的函数y=f(x),则图②中的图象对应的函数是()A.y=f(|x|)B.y=|f(x)|C.y=f(﹣|x|)D.y=﹣f(|x|)26.函数f(x)的导函数f′(x)的图象如图所示,则下列说法正确的是()A.函数f(x)在(﹣2,3)内单调递减B.函数f(x)在x=3处取极小值C.函数f(x)在(﹣4,0)内单调递增D.函数f(x)在x=4处取极大值27.函数,满足f(x)>1的x的取值范围()A.(﹣1,1)B.(﹣1,+∞)C.{x|x>0或x<﹣2}D.{x|x>1或x<﹣1}28.函数y=的递增区间是()A.(﹣∞,﹣2)B.[﹣5,﹣2]C.[﹣2,1]D.[1,+∞)29.函数的单调递增区间是()A.[﹣1,+∞)B.(﹣∞,﹣1]C.[1,+∞)D.(﹣∞,1]30.函数f(x)=|x2﹣6x+8|的单调递增区间为()A.[3,+∞)B.(﹣∞,2),(4,+∞)C.(2,3),(4,+∞)D.(﹣∞,2],[3,4]31.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)32.函数y=log(2x﹣x2)的单调减区间为()A.(0,1]B.(0,2) C.(1,2) D.[0,2]33.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)34.若函数y=(x+1)(x﹣a)为偶函数,则a=()A.﹣2 B.﹣1 C.1 D.235.下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx36.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣2二.填空题(共4小题)37.已知全集U=R,集合,则集合∁U A=.38.函数f(x)=lgx2的单调递减区间是.39.已知函数f(x)=a﹣,若f(x)为奇函数,则a=.40.若函数f(x)=x2﹣|x+a|为偶函数,则实数a=.参考答案与试题解析一.选择题(共36小题)1.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)【专题】11 :计算题;37 :集合思想;4A :数学模型法;5J :集合.【解答】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.2.若全集U=R,集合M={x|lg(x﹣1)<0},则∁U M为()A.[2,+∞)B.(﹣∞,1]∪[2,+∞)C.(2,+∞)D.(﹣∞,1)∪(2,+∞)【专题】5J :集合.【解答】解:集合M={x|lg(x﹣1)<0}={x|0<x﹣1<1}={x|1<x<2},∴则∁U M=(﹣∞,1]∪[2,+∞},故选:B.3.已知集合A={x|﹣2<x<4},B={x|y=lg(x﹣2)},则A∩(∁R B)=()A.(2,4) B.(﹣2,4)C.(﹣2,2)D.(﹣2,2]【专题】11 :计算题;37 :集合思想;49 :综合法;5J :集合.【解答】解:B={x|x>2};∴∁R B={x|x≤2};∴A∩(∁R B)=(﹣2,2].故选:D.4.已知集合M={x|≤0},N={x|y=log3(﹣6x2+11x﹣4)},则M∩N=()A.[1,]B.(,3]C.(1,)D.(,2)【专题】37 :集合思想;4O:定义法;5J :集合.【解答】解:∵集合M={x|≤0}={x|1<x≤3},N={x|y=log3(﹣6x2+11x﹣4)}={x|﹣6x2+11x﹣4>0}={x|},∴M∩N={x|1<x≤3}∩{x|}=(1,).故选:C.5.已知集合A={x|x2﹣x﹣6<0},B={x|3x>1},则A∩B=()A.(1,2) B.(1,3) C.(0,2) D.(0,3)【专题】35 :转化思想;4O:定义法;59 :不等式的解法及应用.【解答】解:集合A={x|x2﹣x﹣6<0}={x|﹣2<x<3},B={x|3x>1}={x|x>0},∴A∩B={x|0<x<3}=(0,3).故选:D.6.已知集合A={x|x2﹣2x﹣3<0},,则A∩B=()A.{x|1<x<3}B.{x|﹣1<x<3}C.{x|﹣1<x<0或0<x<3}D.{x|﹣1<x<0或1<x<3}【专题】11 :计算题;35 :转化思想;4O:定义法;5J :集合.【解答】解:由A={x|﹣1<x<3},B={x|x<0,或x>1},故A∩B={x|﹣1<x<0,或1<x<3}.故选:D.7.已知集合A={0,1,2,3,4,5},集合B={x|x2<10},则A∩B=()A.{0,2,4}B.{3}C.{0,1,2,3}D.{1,2,3}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:∵集合A={0,1,2,3,4,5},集合B={x|x2<10}={x|﹣},∴A∩B={0,1,2,3}.故选:C.8.设集合A={x∈N||x|≤2},B={y|y=1﹣x2},则A∩B=()A.{x|﹣2≤x≤1}B.{0,1}C.{1,2}D.{x|0≤x≤1}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:∵集合A={x∈N||x|≤2}={x∈N|﹣2≤x≤2}={0,1,2},B={y|y=1﹣x2}={y|y≤1},∴A∩B={0,1}.故选:B.9.已知集合A={x∈Z||x|<4},B={x|x﹣1≥0},则A∩B等于()A.(1,4) B.[1,4) C.{1,2,3}D.{2,3,4}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:∵A={x∈Z||x|<4}={x∈Z|﹣4<x<4}={﹣3,﹣2,﹣1,0,1,2,3},B={x|x﹣1≥0}={x|x≥1},∴A∩B={1,2,3},故选:C.10.已知全集U=R,集合A={x|y=lg(x﹣1)},集合,则A ∩B=()A.∅B.(1,2]C.[2,+∞)D.(1,+∞)【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:由A中y=lg(x﹣1),得到x﹣1>0,即x>1,∴A=(1,+∞),由B中y==≥=2,得到B=[2,+∞),则A∩B=[2,+∞),故选:C.11.已知集合A={x∈Z|(x+1)(x﹣2)≤0},B={x|﹣2<x<2},则A∩B=()A.{x|﹣1≤x<2}B.{﹣1,0,1}C.{0,1,2}D.{﹣1,1}【专题】11 :计算题;37 :集合思想;4O:定义法;5J :集合.【解答】解:由A中不等式解得:﹣1≤x≤2,x∈Z,即A={﹣1,0,1,2},∵B={x|﹣2<x<2},∴A∩B={﹣1,0,1},故选:B.12.命题“∀x∈[1,2],x2﹣3x+2≤0”的否定是()A.∀x∈[1,2],x2﹣3x+2>0 B.∀x∉[1,2],x2﹣3x+2>0C. D.【专题】11 :计算题;38 :对应思想;4O:定义法;5L :简易逻辑.【解答】解:命题:“∀x∈[1,2],x2﹣3x+2≤0的否定是,故选:C.13.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题【解答】解:对于A:命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”.因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件.因为x=﹣1⇒x2﹣5x﹣6=0,应为充分条件,故错误.对于C:命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”.因为命题的否定应为∀x∈R,均有x2+x+1≥0.故错误.由排除法得到D正确.故选:D.14.已知命题p:∀x>1,log2x+4log x2>4,则¬p为()A.¬p:∀x≤1,log2x+4log x2≤4 B.¬p:∃x≤1,log2x+4log x2≤4C.¬p:∃x>1,log2x+4log x2=4 D.¬p:∃x>1,log2x+4log x2≤4【专题】38 :对应思想;4O:定义法;5L :简易逻辑.【解答】解:命题是全称命题,则命题的否定是特称命题,即:¬p:∃x>1,log2x+4log x2≤4,故选:D.15.下列说法错误的是()A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.命题p:“∃x∈R,使得x2+x+1<0”,则綈p:“∀x∈R,x2+x+1≥0”D.若p∧q为假命题,则p、q均为假命题【专题】15 :综合题;38 :对应思想;49 :综合法;5L :简易逻辑.【解答】解:命题“若x2﹣4x+3=0,则x=3”的逆否命题是“若x≠3,则x2﹣4x+3≠0”,故A正确;由x>1,可得|x|>1>0,反之,由|x|>0,不一定有x>1,如x=﹣1,∴“x>1”是“|x|>0”的充分不必要条件,故B正确;命题p:“∃x∈R,使得x2+x+1<0”,则¬p:“∀x∈R,x2+x+1≥0”,故C正确;若p∧q为假命题,则p、q中至少有一个为假命题,故D错误.故选:D.16.下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件【解答】A“若am2<bm2,则a<b”的逆命题是“若a<b,则am2<bm2”,m=0时不正确;B中“∃x∈R,x2﹣x>0”为特称命题,否定时为全称命题,结论正确;C命题“p∨q”为真命题指命题“p”或命题“q”为真命题,只要有一个为真即可,错误;D应为必要不充分条件.故选:B.17.命题P:“若x>1,则x2>1”,则命题P:以及它的否命题、逆命题、逆否命题这四个命题中真命题的个数为()A.1 B.2 C.3 D.4【专题】38 :对应思想;4O:定义法;5L :简易逻辑.【解答】解:命题P:“若x>1,则x2>1”,它是真命题;它的否命题是:“若x≤1,则x2≤1”,它是假命题;逆命题是:“若x2>1,则x>1”,它是假命题;逆否命题是:“若x2≤1,则x≤1”,它是真命题;综上,这四个命题中真命题的个数为2.故选:B.18.下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1 D.f(x)=•,g(x)=【专题】51 :函数的性质及应用.【解答】解:对于A,∵g(x)=,f(x)=|x|,∴两函数为同一函数;对于B,函数f(x)的定义域为{x|x≠0},而函数g(x)的定义域为{x|x>0},两函数定义域不同,∴两函数为不同函数;对于C,函数f(x)的定义域为{x|x≠1},而函数g(x)的定义域为R,两函数定义域不同,∴两函数为不同函数;对于D,函数f(x)的定义域为{x|x>1},而函数g(x)的定义域为{x|x<﹣1或x>1},两函数定义域不同,∴两函数为不同函数.故选:A.19.函数f(x)=+的定义域是()A.[﹣2,2]B.(﹣1,2]C.[﹣2,0)∪(0,2]D.(﹣1,0)∪(0,2]【专题】33 :函数思想;4O:定义法;51 :函数的性质及应用.【解答】解:f(x)=+有意义,可得,即为,解得﹣1<x<0或0<x≤2,则定义域为(﹣1,0)∪(0,2].故选:D.20.函数f(x)=的定义域为()A.{x|x>0}B.{x|x>1}C.{x|x≥1}D.{x|0<x≤1}【专题】33 :函数思想;4A :数学模型法;51 :函数的性质及应用.【解答】解:由log3x≥0,得x≥1.∴函数f(x)=的定义域为{x|x≥1}.故选:C.21.函数定义域为()A.(0,1000]B.[3,1000]C.D.【专题】33 :函数思想;4O:定义法;51 :函数的性质及应用.【解答】解:函数有意义,可得3﹣lgx≥0,且x>0,解得0<x≤1000,则定义域为(0,1000].故选:A.22.要得到函数y=log3(1﹣x)的图象,只需将函数y=log3x的图象()A.先关于x轴对称,再向右平移1个单位B.先关于x轴对称,再向左平移1个单位C.先关于y轴对称,再向右平移1个单位D.先关于y轴对称,再向左平移1个单位【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【解答】解:得到函数y=log3(1﹣x)的图象,只需将函数y=log3x的图象先关于y轴对称,再向右平移1个单位,故选:C.23.若函数y=f(x)的图象如图所示,则函数y=f(1﹣x)的图象大致为()A.B.C.D.【专题】16 :压轴题;31 :数形结合.【解答】解:因为从函数y=f(x)到函数y=f(1﹣x)的平移变换规律是:先关于y轴对称得到y=f(﹣x),再整体向右平移1个单位即可得到.即图象变换规律是:①→②.故选:A.24.函数f(x)=2|x|﹣x2的图象为()A.B.C.D.【专题】51 :函数的性质及应用.【解答】解:∵函数f(x)是偶函数,图象关于y轴对称,∴排除B,D.∵f(0)=1﹣0=0>0,∴排除C,故选:A.25.已知图①中的图象对应的函数y=f(x),则图②中的图象对应的函数是()A.y=f(|x|)B.y=|f(x)|C.y=f(﹣|x|)D.y=﹣f(|x|)【专题】11 :计算题.【解答】解:设所求函数为g(x),g(x)==f(﹣|x|),C选项符合题意.故选:C.26.函数f(x)的导函数f′(x)的图象如图所示,则下列说法正确的是()A.函数f(x)在(﹣2,3)内单调递减B.函数f(x)在x=3处取极小值C.函数f(x)在(﹣4,0)内单调递增D.函数f(x)在x=4处取极大值【专题】53 :导数的综合应用.【解答】解:函数f(x)的导函数f′(x)的图象如图所示,可得x∈(﹣4,0),f′(x)>0,函数是增函数.x∈(0,4),f′(x)<0,函数是减函数.x=4时,f′(4)=0,函数取得极小值,所以选项C正确.故选:C.27.函数,满足f(x)>1的x的取值范围()A.(﹣1,1)B.(﹣1,+∞)C.{x|x>0或x<﹣2}D.{x|x>1或x<﹣1}【专题】11 :计算题;32 :分类讨论.【解答】解:当x≤0时,f(x)>1 即2﹣x﹣1>1,2﹣x>2=21,∴﹣x>1,x<﹣1,当x>0时,f(x)>1 即>1,x>1,综上,x<﹣1 或x>1,故选:D.28.函数y=的递增区间是()A.(﹣∞,﹣2)B.[﹣5,﹣2]C.[﹣2,1]D.[1,+∞)【专题】51 :函数的性质及应用.【解答】解:由5﹣4x﹣x2≥0,得函数的定义域为{x|﹣5≤x≤1}.∵t=5﹣4x﹣x2=﹣(x2+4x+4)+9=﹣(x+2)2+9,对称轴方程为x=﹣2,拋物线开口向下,∴函数t的递增区间为[﹣5,﹣2],故函数y=的增区间为[﹣5,﹣2],故选:B.29.函数的单调递增区间是()A.[﹣1,+∞)B.(﹣∞,﹣1]C.[1,+∞)D.(﹣∞,1]【专题】33 :函数思想;4J :换元法;51 :函数的性质及应用.【解答】解:令t=﹣x2+2x,则y=()t,由t=﹣x2+2x的对称轴为x=1,可得函数t在(﹣∞,1)递增,[1,+∞)递减,而y=()t在R上递减,由复合函数的单调性:同增异减,可得函数的单调递增区间是[1,+∞),故选:C.30.函数f(x)=|x2﹣6x+8|的单调递增区间为()A.[3,+∞)B.(﹣∞,2),(4,+∞)C.(2,3),(4,+∞)D.(﹣∞,2],[3,4]【专题】35 :转化思想;48 :分析法;51 :函数的性质及应用.【解答】解:函数f(x)=|x2﹣6x+8|,当x2﹣6x+8>0即x>4或x<2,可得f(x)=x2﹣6x+8=(x﹣3)2﹣1,即有f(x)在(4,+∞)递增;当x2﹣6x+8<0即2<x<4,可得f(x)=﹣x2+6x﹣8=﹣(x﹣3)2+1,即有f(x)在(2,3)递增;则f(x)的增区间为(4,+∞),(2,3).故选:C.31.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)【专题】35 :转化思想;4R:转化法;51 :函数的性质及应用.【解答】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.32.函数y=log(2x﹣x2)的单调减区间为()A.(0,1]B.(0,2) C.(1,2) D.[0,2]【专题】35 :转化思想;49 :综合法;51 :函数的性质及应用.【解答】解:令t=2x﹣x2>0,求得0<x<2,可得函数的定义域为{x|0<x<2},且y=log t,本题即求函数t在定义域内的增区间,再利用二次函数的性质可得函数t在定义域内的增区间为(0,1],故选:A.33.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1) D.(1,+∞)【专题】11 :计算题;59 :不等式的解法及应用.【解答】解:∵f(x)=是奇函数,∴f(﹣x)=﹣f(x)即整理可得,∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=∵f(x))=>3∴﹣3=>0,整理可得,,∴1<2x<2解可得,0<x<1故选:C.34.若函数y=(x+1)(x﹣a)为偶函数,则a=()A.﹣2 B.﹣1 C.1 D.2【解答】解:f(1)=2(1﹣a),f(﹣1)=0∵f(x)是偶函数∴2(1﹣a)=0,∴a=1,故选:C.35.下列函数中,既不是奇函数,也不是偶函数的是()A.y=x+sin2x B.y=x2﹣cosx C.y=2x+D.y=x2+sinx【专题】51 :函数的性质及应用.【解答】解:四个选项中,函数的定义域都是R,对于A,﹣x+sin(﹣2x)=﹣(x+sin2x);是奇函数;对于B,(﹣x)2﹣cos(﹣x)=x2﹣cosx;是偶函数;对于C,,是偶函数;对于D,(﹣x)2+sin(﹣x)=x2﹣sinx≠x2+sinx,x2﹣sinx≠﹣(x2+sinx);所以是非奇非偶的函数;故选:D.36.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.2 B.1 C.0 D.﹣2【专题】51 :函数的性质及应用.【解答】解:∵已知函数f(x)为奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=﹣f(1)=﹣(1+1)=﹣2,故选:D.二.填空题(共4小题)37.已知全集U=R,集合,则集合∁U A={x|x<﹣1或x≥2} .【专题】11 :计算题;5J :集合.【解答】解:由A中不等式变形得:(x+1)(x﹣2)≤0,且x﹣2≠0,解得:﹣1≤x<2,即A={x|﹣1≤x<2},∵全集U=R,∴∁U A={x|x<﹣1或x≥2},故答案为:{x|x<﹣1或x≥2}38.函数f(x)=lgx2的单调递减区间是(﹣∞,0).【专题】51 :函数的性质及应用.【解答】解:方法一:y=lgx2=2lg|x|,∴当x>0时,f(x)=2lgx在(0,+∞)上是增函数;当x<0时,f(x)=2lg(﹣x)在(﹣∞,0)上是减函数.∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).方法二:原函数是由复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=lgt在其定义域上为增函数,∴f(x)=lgx2在(﹣∞,0)上是减函数,在(0,+∞)为增函数,∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).39.已知函数f(x)=a﹣,若f(x)为奇函数,则a=.【解答】解:函数.若f(x)为奇函数,则f(0)=0,即,a=.故答案为40.若函数f(x)=x2﹣|x+a|为偶函数,则实数a=0.【专题】51 :函数的性质及应用.【解答】解:∵f(x)为偶函数∴f(﹣x)=f(x)恒成立即x2﹣|x+a|=x2﹣|x﹣a|恒成立即|x+a|=|x﹣a|恒成立所以a=0故答案为:0.第21页(共21页)。

必修一数学练习题选择填空答案解析

必修一数学练习题选择填空答案解析

一、单选题1.【答案】C【考点】交、并、补集的混合运算【解析】【解答】解:,,,.故答案为:C.【分析】求出函数的值域、定义域,可得A,B,求出B的补集,再求出集合的交集。

2.【答案】C【考点】交集及其运算,一元二次不等式的解法【解析】【解答】解:,,,故答案为:C.【分析】先解一元二次不等式求出A集合,求交集排除D,比较范围选出答案。

3.【答案】B【考点】函数单调性的性质,奇函数【解析】【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵>0,f(﹣)=f(),即∴0<a<.故答案为:B.【分析】由“奇同偶异”判断出函数的单调性。

再由函数单调性的定义作出不等式求解即得答案。

5.【答案】C【考点】二次函数的性质【解析】【解答】解:因为不等式对任意恒成立,所以,,解得,即实数的取值范围是,故答案为:C.【分析】根据题意,知当一元二次函数不等式无解时,此时恒成立,代入数据计算,即可得出答案。

6.【答案】D【考点】指数函数与对数函数的关系【解析】【解答】解:因为,所以,故答案为:D.【分析】比较大小时,分别找出每个数值附近的整数,代入数据,即可得出答案。

7.【答案】D【考点】对数的运算性质【解析】【解答】=÷log27=.故答案为:D.【分析】利用对数的运算法则,即可得出结论。

8.【答案】B【考点】指数函数单调性的应用,函数零点的判定定理【解析】【解答】函数在定义域上单调递增,,可得:由零点判定定理可知:零点所在的一个区间是故答案为:B【分析】由于函数f(x)单调递增,由端点函数值的正负结合零点存在定理判断。

9.【答案】C【考点】对数函数的单调性与特殊点【解析】【解答】.故答案为:C.【分析】由于底数小于1,则真数部分在区间上单调递增,且在左端点处函数值大于0.10.【答案】D【考点】指数函数的图像与性质【解析】【解答】当x-3=0,即x=3时,=1;f(3)=1+1=2.故答案为:D.【分析】指数型函数由a0=1,可得其过定点的坐标.11.【答案】C【考点】分段函数的解析式求法及其图象的作法,函数的单调性及单调区间,对数函数的单调区间【解析】【解答】由题意得,∴.故答案为:C.【分析】分段函数在区间上单调递减,则各段函数递减,且在分段交接处左段函数值不大于右段函数值.由关于a的不等式组求a的范围.12.【答案】D【考点】对数函数的定义域【解析】【解答】由,解得或. 故答案为:D.【分析】对数型号函数的定义域是由真数大于0的不等式的解集决定的.13.【答案】B【考点】根的存在性及根的个数判断【解析】【解答】由求的零点,即可转化为与图象的交点个数,坐标系分别画出两个函数与的图象可得:交点由2个。

人教版高一数学必修1测试题(含答案)

人教版高一数学必修1测试题(含答案)

数学必修1期末复习试题 本试卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分150分 一、选择题选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U A C B ⋂=( ) A 、{}2 B 、{}2,3 C 、{}3 D 、{}1,3 2、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 M N ⋂= ( ) A 、{}0 B 、{}0,1 C 、{}1,2 D 、{}0,2 3、函数()21log ,4y x x =+≥的值域是 ( ) A 、[)2,+∞ B 、()3,+∞ C 、[)3,+∞ D 、(),-∞+∞ 4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同 ③ B 中每个元素都有原像 ④ 像的集合就是集合B A 、①② B 、①②③ C 、②③④ D 、①②③④ 5、在221,2,,y y x y x x y x ===+= ( ) A 、1个 B 、2个 C 、3个 D 、4个 6、已知函数()223f x x x =-+,那么()1f x +的表达式是 ( ) A 、259x x -+ B 、223x x -- C 、259x x +- D 、22x + 7、若函数()x f x a x a =--有两零点,则a 的取值范围是 ( ) A 、()0,+∞ B 、()1,+∞ C 、()0,1 D 、∅ 8、若21025x =,则10x -等于 ( ) A 、15- B 、15 C 、150 D 、1625绝密★启用前9、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a <<C 、102a << D 、1a > 10、设 1.50.90.4814,8,2abc -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( ) A 、3a ≤- B 、3a ≥- C 、3a =- D 、以上答案都不对12、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、103二、填空题:本大题共4小题,每小题5分,共20分。

必修一数学第一章测试题及答案

必修一数学第一章测试题及答案

必修一数学第一章测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的符号表示?A. NB. ZC. QD. R答案:D2. 函数y=f(x)的值域是指:A. 定义域B. 函数的表达式C. 函数的自变量D. 函数的取值范围答案:D3. 以下哪个命题是假命题?A. 存在x∈R,使得x²+1=0B. 对于任意x∈R,x²+1>0C. 对于任意x∈R,x²+1≥0D. 存在x∈R,使得x²+1>1答案:A4. 集合{1,2,3}的子集个数是:A. 2B. 4C. 6D. 8答案:D5. 函数y=2x+1的图象是:A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A6. 以下哪个选项是函数y=x³-3x的导数?A. 3x²-3B. 3x²+3C. x²-3D. x³-3x答案:A7. 函数y=x²+2x+1的最小值是:A. 0B. 1C. -1D. 2答案:B8. 以下哪个选项是函数y=x²-4x+4的对称轴?A. x=2B. x=-2C. x=4D. x=-4答案:A9. 函数y=x³-3x+1的单调递增区间是:A. (-∞, 1)B. (1, +∞)C. (-∞, -1)D. (-1, +∞)答案:B10. 函数y=x²-6x+8的顶点坐标是:A. (3, -1)B. (3, 1)C. (-3, 1)D. (-3, -1)答案:B二、填空题(每题4分,共20分)1. 函数y=x²-4x+c的顶点坐标为(2, c-4),则c的值为______。

答案:42. 函数y=x³-6x的导数为______。

答案:3x²-63. 函数y=x²+2x+1的对称轴方程为______。

答案:x=-14. 函数y=x³-3x的单调递减区间为______。

(完整版)高一数学必修1试题附答案详解

(完整版)高一数学必修1试题附答案详解

高一数学必修1试题附答案详解一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I ={0,1,2},且满足C I (A ∪B )={2}的A 、B 共有组数 A.5 B.7 C.9 D.112.如果集合A ={x |x =2k π+π,k ∈Z},B ={x |x =4k π+π,k ∈Z},则A.A BB.B AC.A =BD.A ∩B =∅3.设A ={x ∈Z||x |≤2},B ={y |y =x 2+1,x ∈A },则B 的元素个数是 A.5 B.4 C.3 D.2 4.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆ (P ∩Q )成立的所有实数a 的取值范围为 A.(1,9) B.[1,9] C.[6,9)D.(6,9]5.已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =a x +b ,若4和10的原象分别对应是6和9,则19在f 作用下的象为 A.18B.30C. 272D.286.函数f (x )=3x -12-x (x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N 的元素是 A.2 B.-2 C.-1 D.-3 7.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为 A.3x -2 B.3x +2 C.2x +3 D.2x -3 8.下列各组函数中,表示同一函数的是 A.f (x )=1,g (x )=x 0B.f (x )=x +2,g (x )=x 2-4x -2C.f (x )=|x |,g (x )=⎩⎨⎧x x ≥0-x x <0D.f (x )=x ,g (x )=(x )29. f (x )=⎩⎪⎨⎪⎧x 2 x >0π x =00 x <0,则f {f [f (-3)]}等于A.0B.πC.π2D.910.已知2lg(x -2y )=lg x +lg y ,则xy 的值为A.1B.4C.1或4D. 14或4 11.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则 A.a ≥1 B.a >1 C.0<a ≤1 D.a <112.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是A.(0,12)B.(0,⎥⎦⎤21C.( 12,+∞)D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上) 13.若不等式x 2+ax +a -2>0的解集为R ,则a 可取值的集合为__________.14.函数y =x 2+x +1 的定义域是______,值域为__ ____.15.若不等式3ax x 22->(13)x +1对一切实数x 恒成立,则实数a 的取值范围为___ ___.16. f (x )=]()⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为_____ _. 17.函数y =12x +1的值域是__________.18.方程log 2(2-2x )+x +99=0的两个解的和是______.第Ⅱ卷二、填空题13 14 1516 17 18三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(C U A)∩(C U B).20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.23.已知函数f (x )=a a 2-2 (a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围.高一数学综合训练(一)答案二、填空题13. ∅ 14. R [32,+∞) 15. -12 < a < 3216. (-2,-1] 17. (0,1) 18. -99三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤) 19.全集U =R ,A ={x ||x |≥1},B ={x |x 2-2x -3>0},求(C U A )∩(C U B ).(C U A )∩(C U B )={x |-1<x <1}20.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1. (1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集. 考查函数对应法则及单调性的应用. (1)【证明】 由题意得f (8)=f (4×2)=f (4)+f (2)=f (2×2)+f (2)=f (2)+f (2)+f (2)=3f (2) 又∵f (2)=1 ∴f (8)=3(2)【解】 不等式化为f (x )>f (x -2)+3∵f (8)=3 ∴f (x )>f (x -2)+f (8)=f (8x -16) ∵f (x )是(0,+∞)上的增函数∴⎩⎨⎧->>-)2(80)2(8x x x 解得2<x <16721.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 考查函数的应用及分析解决实际问题能力.【解】 (1)当每辆车月租金为3600元时,未租出的车辆数为 3600-300050=12,所以这时租出了88辆.(2)设每辆车的月租金定为x 元,则公司月收益为 f (x )=(100-x -300050 )(x -150)-x -300050×50整理得:f (x )=-x 250 +162x -2100=-150 (x -4050)2+307050∴当x =4050时,f (x )最大,最大值为f (4050)=307050 元22.已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.考查函数最值及对数函数性质.【解】 令t =log 41x ∵x ∈[2,4],t =log 41x 在定义域递减有log 414<log 41x <log 412, ∴t ∈[-1,-12]∴f (t )=t 2-t +5=(t -12 )2+194 ,t ∈[-1,-12 ]∴当t =-12 时,f (x )取最小值 234当t =-1时,f (x )取最大值7.23.已知函数f (x )=a a 2-2(a x -a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围.考查指数函数性质.【解】 f (x )的定义域为R ,设x 1、x 2∈R ,且x 1<x 2 则f (x 2)-f (x 1)= aa 2-2(a 2x -a 2x --a 1x +a 1x -) =aa 2-2 (a 2x -a 1x )(1+211x x aa ⋅) 由于a >0,且a ≠1,∴1+211x x a a >0∵f (x )为增函数,则(a 2-2)( a 2x -a 1x )>0于是有⎪⎩⎪⎨⎧<-<-⎪⎩⎪⎨⎧>->-002002121222x x x x a a a a a a 或, 解得a > 2 或0<a <1. . .。

高一上学期数学(必修一)《第四章 幂函数、指数函数和对数函数》练习题及答案-湘教版

高一上学期数学(必修一)《第四章 幂函数、指数函数和对数函数》练习题及答案-湘教版

高一上学期数学(必修一)《第四章幂函数、指数函数和对数函数》练习题及答案-湘教版第I卷(选择题)一、单选题1. 已知幂函数f(x)的图象过点(16,18),则f(4)=( )A. √ 24B. √ 22C. 14D. 122. 设a=log37,b=21.1,c=0.83.1,则.( )A. b<a<cB. c<a<bC. c<b<aD. a<c<b3. 设a=log54,则b=log1513,c=0.5−0.2则a,b,c的大小关系是( )A. a<b<cB. b<a<cC. c<b<aD. c<a<b4. 方程√ x−lnx−2=0的根的个数为( )A. 0B. 1C. 2D. 35. 已知a>1,则下列命题中正确的是( )A. ∃x0,∀x>x0有a x>x a>log a x成立B. ∃x0,∀x>x0有a x>log a x>x a成立C. ∃x0,∀x>x0有x a>a x>log a x成立D. ∃x0,∀x>x0有x a>log a x>a x成立6. 果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度ℎ与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A. 23天B. 33天C. 43天D. 50天7. 已知函数f(x)={a x−2,x≤−2,x+9,x>−2,(a>0,a≠1)的值域是(7,+∞),则实数a的取值范围是( )A. 13<a<1 B. 0<a≤13C. a>1D. 0<a<138. 已知函数y=log a(x+3)−1(其中a>0且a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b 的图象上,则f(log94)的值为( )A. 89B. 79C. 59D. 299. 利用二分法求方程log3x+x−3=0的近似解,可以取的一个区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)10. 深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为L=L0DGG0,其中L表示每一轮优化时使用的学习率,L0表示初始学习率,D表示衰减系数,G表示训练迭代轮数,G0表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.1以下(不含0.1)所需的训练迭代轮数至少为(参考数据:lg2≈0.3010)( )A. 128B. 130C. 132D. 134二、多选题11. 已知幂函数f(x)=(m 2−2m −2)x m 的图象过点(2,12),则( ) A. f(x)=x 3B. f(x)=x −1C. 函数f(x)在(−∞,0)上为减函数D. 函数f(x)在(0,+∞)上为增函数12. 下列说法正确的有( )A. 命题“∀x ∈R ,x 2+x +1>0”的否定为“∃x ∈R 。

数学必修1测试题及答案

数学必修1测试题及答案

数学必修1测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的子集?A. 整数集B. 有理数集C. 无理数集D. 复数集答案:B2. 函数f(x) = 2x + 3的值域是?A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [0, +∞)答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B4. 计算(2x - 3)(x + 1)的结果,其中x = 2。

A. 5B. 7C. 9D. 11答案:B5. 已知a = 3,b = 4,c = 5,下列哪个等式是正确的?A. a² + b² = c²B. a² + b² > c²C. a² + b² < c²D. a² + b² = 2bc答案:C6. 函数y = sin(x)在区间[0, π]上是:A. 增函数B. 减函数C. 先增后减D. 先减后增答案:D7. 计算极限lim(x→0) (sinx/x)的值。

A. 0B. 1C. πD. ∞答案:B8. 已知等差数列{an}的首项a1 = 1,公差d = 2,则第5项a5的值是?A. 9B. 11C. 13D. 15答案:A9. 计算定积分∫(0 to 1) x² dx的值。

A. 1/3B. 1/2C. 1D. 2答案:B10. 已知函数f(x) = x³ - 3x + 2,求其导数f'(x)。

A. 3x² - 3B. x² - 3C. 3x - 3D. x³ - 3答案:A二、填空题(每题4分,共20分)1. 计算(3x + 2)(2x - 1) = ________。

答案:6x² - x - 22. 已知函数f(x) = x² - 4x + 4,求其对称轴方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学选择填空题难题精选及答案(必修一)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高一年级上学期数学难题(选择填空题)一、选择题1、设3log 21=a ,2.031⎪⎭⎫⎝⎛=b ,312=c ,则( A )A. c b a <<B. a b c <<C. b a c <<D. c a b <<2、设()833-+=x x f x ,用二分法求方程()2,10833∈=-+x x x 在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间( B ) A (1,1.25) B (1.25,1.5) C (1.5,2) D 不能确定3、设奇函数()x f 在()∝+,0上为增函数,且(),01=f 则不等式()()0<--xx f x f 的解集为( D )A .()()∝+⋃-,10,1 B.()()1,01,⋃-∝- C.()()∝+⋃-∝-,11, D.()()1,00,1⋃- 4、函数2()log 10f x x x =+-的零点所在区间为(B )A.()7,0B.()8,6C.()10,8D.()+∞,9 5、函数()()26f x x x =--在(],a -∞上取得最小值4-,则实数a 的集合是( C )A. (]4,∞-B. []4,224- C. []224,4+ D. [)4,+∞6、若yx y x ---≥-)3(log )3(log )3(log )3(log 5522,则( B )A .0x y -≥B .0x y +≥C .0x y -≤D .0x y +≤ 7、已知函数ax x x f +=2)(,a x g x -=2)(,且121<<a ,则关于x 的方程 )(lg x f =)(lg x g 实数解的个数是( D )A .1B .2C .3D .无法确定8、函数)1lg(2++=x x y 的图像 ( C ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线y x =对称9、已知函数()x f 是R 上的增函数,()1,0-A ,()1,3B 是其图像上的两点,那么()11<+x f 的解集的补集是( D )A 、()2,1-B 、()4,1C 、(][)+∞⋃-∞-,41,D 、(][)+∞⋃-∞-,21,10、已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与()g x 至少有一个为正数,则实数m 的取值范围是( A )A . (0,8)B .(0,2)C .(2,8)D . (,0)-∞ 11、已知函数)(x f 满足:①定义域为R ;②任意R x ∈,都有)(2)2(x f x f -=+;③当]1,1[-∈x 时,x x f -=1)(.则方程x x f 2log )(=在区间[-10,10]内的解个数是(? ?B??).A .5????????B .6??C .7??????D .10 12、设奇函数()f x 在(0)+∞,上为增函数,且(2)0f =,则不等式()()0f x f x x--<的解集为 ( A )A .(20)(0,2)-,B .(2)(0,)-∞-,2C .(2)(2)-∞-+∞,,D .(20)(2)-+∞,, 13、2()log (1)(01)a f x x ax a a =-+>≠且满足:对任意实数21,x x ,当221ax x ≤<时,总有12()()<0f x f x -,那么a 的取值范围是 ( B )A. (0,2)B.(0,1)C.(0,1)(1,2)D. (1,2) 14、若两个函数的对应关系相同,值域也相同,但定义域不同,则称这两个函数为同族函数.那么与函数2,{1,0,1,2}y x x =∈-为同族函数的个数有 ( D )A. 5个B. 6个C. 7个D. 8个 15、函数)1lg(+=x y 的图象是( A )16、若函数234y x x =--的定义域为[0,4( B )A .(]4,0B .3[3]2,C .3[]2,4D .3[2+∞,)17、函数()()26f x x x =--在(],a -∞上取得最小值4-,则实数a 的集合是 ( C )A. (],4-∞B. 4⎡⎤-⎣⎦C. 4,4⎡+⎣D. [)4,+∞18、已知函数()(01)x f x a a a =>≠且在区间[-2,2]上的值不大于2,则函数2()log g a a =的值域是( A )A 、11[,0)(0,]22-⋃B 、11(,)(0,]22-∞-⋃C 、11[,]22- D 、11[,0)[,)22-⋃+∞19、设偶函数()log a f x x b =-在(),0-∞上是增函数,则()1f a +与()2f b +的 大小关系是( B )A. ()()12f a f b +=+B. ()()12f a f b +>+C. ()()12f a f b +<+D. 不能确定20、已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是 ( A )A .101a b -<<<B .101b a -<<<C .101<<<-a bD .1101a b --<<<x21、函数()34log 2++=kx kx y a 的定义域为 R,则k 的取值范围是( B )A .⎪⎭⎫ ⎝⎛43,0 B .⎪⎭⎫⎢⎣⎡43,0 C .⎦⎤⎢⎣⎡43,0D .(]⎪⎭⎫⎝⎛∝+⋃∝-,430, 22、若函数()()x g x f ,分别为R 上的奇函数、偶函数,且满足()()x e x g x f =-,则有( D ) A.()()()032g f f << B.()()()230f f g <<C.()()()302f g f <<D.()()()320f f g << 23、函数x y 3log 3=的图象是( A )24、若方程2ax 2-x -1=0在(0,1)内恰好有一个解,则a 的取值范围是 ( B )A .a <-1B .a >1C .-1<a <1D .0≤a <125、函数)1lg(+=x y 的图象是 ( A )26、函数)32(log )(221--=x x x f 的单调递增区间是 ( B )A .(-∞,1)B .(-∞,-1)C .(3,+∞)D .(1,+∞)y-1 0Ay0 1Bx y 0 12 Cxy0 -11 D27、若函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a = ( A )A .12B C D .228、已知函数2()log (2)a f x x ax =-在[4,5]上为增函数,则a 的取值范围是 ( C )A. (1,4)B. (1,4]C. (1,2)D. (1,2] 二、填空题1、()22()2,961f x x x a f bx x x =++=-+已知函数,其中b a R x ,,∈为常数,则方程()0=+b ax f 的解集为 {}2=x x2、计算=+-+51log 5log 4)5(log 42222____________2-_____ . 3、若,11)11(2-=+xx f 则()=x f ________)1(22≠-x x x _______. 4、若方程0322=-+-k kx x 的两根分别在()1,0和()2,1内,则k 的取值范围____53<<k ___.5、若方程()()1lg 2lg +=x kx 只有一个实数解,则实数k 的取值范围为___0<k 或4=k . ___________ .6、函数y =2231()3x x -+的单调增区间是)1,(-∞7、关于x 的方程x 2-x -(m +1)=0在区间[-1,1]上有解,则实数m 的取值范围是]1,45[-8、已知8123==y x ,则y x 11-= ___32___ 9、已知函数)(x f 为偶函数,当[)+∞∈,0x 时,1)(-=x x f ,则(1)0f x -<的解集是)2,0(10、若关于x 的方程|1|2xa a -=- (a >0,且a ≠1)有两个不相等的实根,则实数a 的取值范围是 . 答案:(1,2)11、已知函数22log ()y x ax a =--定义域为R ,则实数a 的取值范围是___)0,4(-____12、已知函数)3(log )(2+-=x ax x f a 在[2,4]上是增函数,则实数a 的取值范围是_()+∞⎥⎦⎤⎝⎛,181,161 __13、 已知函数22()321,()f x x x g x ax =-+=,对任意的正实数x ,()()f xg x ≥恒成立,则实数a 的取值范围是 2a ≤14、已知函数22()4,()f x x m x m m R =++-∈的零点有且只有一个,则m = 2 15、若,m n 为正整数,且111log log (1)log (1)log (1)11a a a a m m m m n +++++++++-log log a a m n =+,则m n += 4 .16、若当1(0,)2x ∈时,不等式2log a x x x +<恒成立,则实数a 的取值范围是 )1,44[3.17、幂函数242)22(----=m x m m y 在),0(+∞∈x 上为减函数,则实数m 的值是_______3___.18、已知⎪⎪⎩⎪⎪⎨⎧≤<-≤≤+=.121 ),1(2,210 ,21)(x x x x x f ,则方程x x f f =)]([的解集为______⎭⎬⎫⎩⎨⎧65,32,31____________.19、已知函数)21(log )(2+-=x ax x f a .当10<<a 时,)(x f 在]2,1[∈x 上恒大于0,则实数a 的取值范围是: 8521<<a20、若方程2)22(log 22=+-x ax 在区间]2,21[有解,则实数∈a ]12,23[21、设函数2()1f x x =-,对任意),23[+∞∈x ,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是2m ≤-或2m ≥ .22、函数2([1,1])21x xy x =∈-+的值域为__ 12[,]33__ . 23、若1,1,a b >>且lg()lg lg ,a b a b +=+则lg(1)lg(1)a b -+-的值为 0 .24、设函数01021(),()()1,()()2,f x x f x f x f x f x ==-=-则函数2()f x 的图象与x 轴所围成图形中的封闭部分的面积是 7 .。

相关文档
最新文档