数阵图典型题详解

合集下载

经典奥数数阵图问题例题

经典奥数数阵图问题例题

1.把1至6分别填入图18-1的各方格中,使得横行3个数的和与竖列4个数的和相等.[分析与解]记横行的中间一个数为a,则有1+2+3+…+6+a=21+a=2倍对应和,所以a 可以填奇数,即1,3,5,对应和为11,12,13,下面给出几种填法:其中的每个图形的横行左右可调换位置,每个竖列的后三个数字位置任意排列.2.把l0至20这11个数分别填入图18-2.的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.[分析与解]设中间圆圈内的数为a,有a被加了5次,而其他位置圆圈内的数字在计算5次和是都只被加了1次,所以有5个和=(10+11+…+19+20)+4a=165+4a,因为5个和,165都是5的倍数,所以4a也应该是5的倍数,则a应是5的倍数,所以a可取10,15,20.当a为10时,有5个和=165+4×10=205,所以每条线段上的和为205÷5=41,如下左图;当a=15时,有5个和=165+4×15=225,所以每条线段上的和为225÷5=45,如下中图;当a=20时,有5个和=165+4×20=245,所以每条线段上的和为245÷5=49,如下右图.3.请分别将l,2,4,6这4个数填在图18-3的各空白区域内,使得每个圆圈里4个数的和都等于15.[分析与解]在计算3个圆圈内的数字和时,已经填出的3个数字各计算了2次,中间的数字计算了3次,另外3个位置只计算了1次,中间的数字较另外3个位置多计算了2次.设中间那个数为a,有2a+2×(5+7+3)+(1+2+4+6)=15+15+15,即2a+43=45,有a=1.于是得到下图:4.在图18-4的7个圆内填入7个连续自然数,使得每两个相邻圆内所填数的和都等于连线上的已知数.那么标有*的圆内填的数是多少?[分析与解]我们知道在计算图中所有线段两端数字的和时,每个圆圈内的数字都被加了2次,于是有这7个连续自然数和的2倍为10+6+9+12+8+11+14=70,即这7个连续自然数的和为35,则中间数为35÷7=5,于是这7个数为2,3,4,5,6,7,8.能得到14的只有6+8,如果*填8那么和为14的线段另一端为6,则和为11的线段另一端为5,和为8的另一端为3,则和为12的线段另一端无法填出;所以,*只能填6,可以如上分析得到填完的下图:5.图18-5的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填入圆圈内,使每条线上各数的和都等于23.[分析与解]当六条线上的数分别相加时,数6只加了1次,其余各数分别加了两次.又已知每条对角线上各数之和都等于23,所以这九个连续自然数之和应是(6×23+6)÷2=72.于是九个数的中间数是72÷9=8,由此可知这九个连续自然数是4,5,6,7,8,9,10,11,12.其中显然只有11+12=23,故x=11,y=12和x=12,y=11.首先考虑x=11,y=12的情况.注意7若不与x或y在一条线上,则23-7=16,只能表示成10+6,而过7的线段却有两条,所以必须f=7,于是c =4,d=5,再由a+b=23-6=17,可知a、b均不为10,e=10,a=8,b =9,于是得到下图:当x=12,y=11时,同理可得:6.将1,2,3,…,9,10这10个数分别填入图18-6中的圆圈内,使得每条线段两端的数相乘的积,除以13都余2.问这5个商数的和是多少?[分析与解]在2~90中被13除余2的数有2,15,28,41,54,67,80.其中可以被分解成1~10中两数乘积的有:2=1×2,15=3×5,28=4×7,54=6×9,80=8×10,正好1~10中每个数字出现了一次,因此可得如下的结果,当然将下图对称变换,旋转变换得到的图形仍然符合题意.有2×1÷13=0……2;3×5÷13=1……2;4×7÷13=2……2;6×9÷13=4……2;8×10÷13=6……2.这些商的和为0+1+2+4+6=13.7.在图18-7的中间圆圈内填一个数,计算每一线段两端的两数之差(大减小),然后算出这3个差数之和.那么这个差数之和的最小值是多少?[分析与解]中间数只要在19与65之间,19和65与它的差数(大数减小数)之和都是65-19=46,所以中间的数填48,三个差数之和最小.那么差数之和为65-48+48-48+48-19=65-19=46.8.请在图18-8中的7个小圆圈内各填入一个自然数,使得图中给出的每个数都是相邻两个圆圈中所填数的差(大数减小数),并且所填的7个数之和是1997.[分析与解]设1左边圈内的数为a,则从a开始顺时针依次对给出的七个差做加法或减法运算,最后结果仍等于a,也就是说,加上的数的和应等于减去的和.又1+2+3+4+5+6+7+8=28,于是给出的七个数应当分成和为14的两组.经分析可知仅有4种不同的分法:①7+6+1=2+3+4+5,②7+5+2=1+3+4+6,③7+4+3=1+2+5+6,④7+4+2+1=3+5+6.其中①又可以分为两种情况:☆加上2、3、4、5,减去7、6、1,这时七个数的总和时7a+32,★加上7、6、1,减去2、3、4、5,这时七个数的总和时7a-32.同样②③④也都分两种情况.②的第一种情况就是加上1、3、4、6,减去7、5、2,七个数的和时7a+16.因为1994=7×285+2,所以①的两种情况都无法使总和为1994,这是因为32-2与32+2都不是7的倍数,而②的第一种情况满足,此时a=283(1994=7×283+16),具体填法如下:9.图18-9是奥林匹克的五环标志,其中a,b,c,d,e,f,g,J,h,i 处分别填入整数l至9.如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?[分析与解]设每个圆内的数字之和为k,则五个圆圈内的数字之和时5k,它等于1~9的和即45,再加上两两重叠处的四个数之和.而两两重叠处的四个数之和最小是1+2+3+4=10,最大是6+7+8+9=30,所以,有5k在(45+10=)55~75(=45+30)之间的,那么k在11~15之间.验证,当k=11,13,14时对应有如下填法,当时当k=12,15时无解.所以,这个相等的和最大是14,最小为11.评注:这道题,同学往往只是计算到k在11~15之间,然后说最大为15,最小为11,但是没有进一步去验证是否存在这样的填法,导致错误,所以同学们以后在自己认为已经解决问题时,不妨验证一下,对于有些问题,不妨深究深究.[分析与解]10个连续自然数中,9是其中第三大的数,所以这10个连续自然数为2,3,4,5,6,7,8,9,10,11.图中三个2×2的正方形中四数之和相等,所以2+3+…+11再加上两个重复的数,和倍3整除.因为2+3+…+11=65,要使和数最小,两个重复数的和应最小,这两个数可以取2与5,或3与4.这和数是24.和数为24是可能的,如下两图:[分析与解]图中十个数点和为45,除去中心圆圈中的数后是3的倍数,因此中心圆圈只可能为0,3,6,9.当中心为0时,每个阴影三角形三顶点和为15.考虑包括中心圆圈的三个阴影三角形中,除0以外另两个数和为15.而0~9中这样的数组只有(6,9),(7,8)两组,因此中心为0时没有正确填图;当中心为9时,同理可知也不存在正确的填图;当中心为3时,阴影三角形三顶点和为14,含3的三个阴影三角形中另两个数和为11,这样的数组只有(2,9),(4,7),(5,6).简单尝试可知中心为3时也没有正确的填图;当中心填6时,经尝试有如下的结果:13.如图18-13,大三角形被分成了9个小三角形.试将1,2,3,4,5,6,7,8,9分别填入这9个小三角形内,每个小三角形内填一个数,要求靠近大三角形3条边的每5个数相加的和相等.问这5个数的和最大可能是多少?[分析与解]1~9和为45.设3个只属于一条边的数和为3k,则每条边上五个数字和为(45×2-3k)÷30=30-k.3k最小时,取3k=1+2+3=6,一条边上的和为30-6÷3=28;3k最大时,取3k=9+8+7=24,一条边上的和为30-24÷3=22.因此这个和最大为28,最小为22.以和为28为例,此时三边中间的小三角形内的数为1,2,3,有上方两个三角形和+1+左边两个三角形和=28;左边两个三角形和+3+右边两个三角形和=28;右边两个三角形和+2+上方两个三角形和=28;于是有2倍(上方两个三角形和+左边两个三角形和+右边两个三角形和)+1+3+2=28+28+28,即上方两个三角形和+左边两个三角形和+右边两个三角形和=39.可得上方两个三角形和为14,左边两个三角形和为13,右边两个三角形和为12.下面我们给出一种填法:每边和为22时,同理可得,我们给出一种填法:14.将1,2,3,4,5,6,7,8这8个数分别填入图l8-14的8个空格中,使四边正好组成加、减、乘、除4个正确的等式.[分析与解]除式只有4种可能:8÷4=2,6÷3=2,8÷2=4和6÷2=3,其中后两种情况乘法式子将无法满足,前两种情况对应着如下两种填法:15.图18-15包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?[分析与解]如下图所示,设最左边的四个数为a,b,c,d,则第一组数算式计算结果为a+b,c+d,a+c,b+d.而最右边圆圈内数为,a+b+c+d,也就是四个数的和,因此我们可以重新理解题目为找到四个自然数,使它们两两相加的四个和与它们自身全不相等,求它们和的最小值.最小的四个数(1,2,3,4)易知不符合题意,同样(1,2,3,5)也不成立,当这四个数为(1,2,3,6)时有正确填图如下,因此最右边的数最小为12.。

数阵图(三)(含详细解析)

数阵图(三)(含详细解析)

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】 把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有 种可能的取值.【考点】数阵图与数论 【难度】3星 【题型】填空 【关键词】迎春杯,三年级,初赛,第8题【解析】 设顶点分别为A 、B 、C 、D 、E ,有45+A +B +C +D +E =55,所以A +B +C +D +E =10,所以A 、B 、C 、D 、E 分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a 1,公差为d .利用求和公式5(a 1+a 1+4d )2=55, 得a 1+2d =11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d 分别为2、1和0.经试验都能填出来所以共有3中情况,例题精讲知识点拨教学目标5-1-3-3.数阵图公差分别为2、1、0.【答案】2种可能【例 2】将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.【考点】数阵图与数论【难度】4星【题型】填空【解析】根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。

数学:第七讲《树阵图》讲义

数学:第七讲《树阵图》讲义

三年级尖子班第七讲数阵图【例1】(难度★)∼分别填入下图的○中,①将19使得横、竖五个数相加的和都等于25。

②(难度★★)请你把1~7这七个自然数,分别填在下图(1)的圆圈内,使每条直线上的三个数的和都相等.应怎样填?【分析】①(1)这9个自然数+++++之和:123456+++=;78945(2)这个图形共有2条边,2×=;条边总和为25250(3)而中间数被重复计算了1−=;次,所以,中间数=50455(4)剩下8个数之和为40,所以每边剩下2数之和为÷=;40220=+++=(5)凑数,209731+++,那么可得填法如右8642上图(答案不唯一)②1~7这七个自然数的和为:123456728++++++=; 而中心数被重复计算了两次,假设中心数为a ,三条直线上的三个数总和为S ,则2823a S +=,即282a +能被3整除,所以,中心数a 的可能取值为:1、4、7;(1)当a 的取值为1时,除中心数外其它两数和为9273645=+=+=+(2)当a 的取值为4时,除中心数外其它两数和为8172635=+=+=+(3)当a的取值为7时,除中心数外其它两数和为=+=+=+7162534答案如图所示。

【例2】(难度★★)将1~6这六个自然数分别填入下图的六个○中使得三角形每条边上的三个数之和都相等【分析】(1)这6个自然数之和:12345621+++++=;(2)假设每条边上的数字和为S,重复数为a 、b 、c ,则213a b c S +++=,而3S 是3的倍数,所以21a b c +++也是3的倍数, 所以,a b c ++可能的取值为:6、9、12、15;⑶凑数,当6123a b c ++==++时,答案如图所示; 当9135a b c ++==++时,答案如图所示;当12246a b c ++==++时,答案如图所示;当15456a b c ++==++时,答 案如图所示。

四年级奥数:数阵图

四年级奥数:数阵图

四年级奥数:数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。

本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。

我们先从一道典型的例题开始。

例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。

分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。

我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。

也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。

在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4。

因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。

因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中。

同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等。

经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到。

例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到。

又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。

所以,这八个图本质上是相同的,可以看作是一种填法。

例1中的数阵图,我国古代称为“纵横图”、“九宫算”。

一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方。

数阵图

数阵图

开心一刻:关于时间的问题在一堂数学课上,老师问同学生们:"谁能出一道关于时间的问题?"话音刚落,有一个学生举手站起来问:"老师,什么时候放学?"数阵图(一)一、考点、热点回顾1、在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

2、那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

二、典型例题例1、把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

例2 、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

12.21第八讲. 数阵图进阶_

12.21第八讲.   数阵图进阶_

第八讲数阵图进阶例1、把 1,2,4,5,6,8,10 这 7 个数分别填入图中的圆圈中,使得每条直线上 4 个数的和都等于 20.把 8,9,10,11,12,14,16 这 7 个数分别填入图中的圆圈中,使得每条直线上 4 个数的和都等于 46.例2 、将 5,9,13,14,17,21,25 这 7 个数分别填入图中的圆圈中,使得每条直线上 3 个数的和都等于 44.例3、把 2,3,4,5,6,7,8 这七个数分别填入图中的圆圈中,使两个正方形中四个数之和都等于 19.例4、把 1,5,9,10,16,21 这 6 个数分别填入图中的○里,使每一个大圆上的四个数之和都等于 36.例5、将 5,6,9,11,14,15 这 6 个数分别填入图中的圆圈里,使两个大圆上 4 个数的和都等于40.把1,3,4,5,6,8,11,15 这8 个数分别填入图中的圆圈里,使得每个大圆上 5 个数的和都等于33.本周打卡:1、把5,6,7,8,9 这5 个数分别填在下图的内,使横行、竖列3个数的和都等于( )中的数.2、把 3,5,7,9,11,13,15 这 7 个数分别填入图中的圆圈内,使每条直线上的 3 个数的和都等于27.3、把 2,4,6,8,10,12,14,16,18 这 9 个数分别填入下图的圆圈中,使得每条直线上的 3 个数的和都等于 24 。

4、把 2,3,4,5,6,7,8 这七个数分别填入图中的圆圈内,使两个正方形中四个数之和都等于 21.5、把 1,2,4,5,6,11 这 6 个数分别填入图中的○里,使每个圆圈上的四个数之和都等于 22.6、把 2,5,6,8,10,12,14,22 这 8 个数分别填入下图中,使得每个大圆上的 5 个数的和都等于49。

五年级奥数:数阵图(一)

五年级奥数:数阵图(一)

数阵图(一)一、考点、热点回顾1、在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

2、那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

二、典型例题例1、把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

例2 、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。

小学奥数:数阵图(二).专项练习及答案解析

小学奥数:数阵图(二).专项练习及答案解析

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格); 第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.313233212223131211【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】迎春杯,中年级,决赛,3题 【分析】 这9个数的和:111213212223313233++++++++10203031233198=++⨯+++⨯=()()由小刚和小明选的数中只有一个是相同的,可知他们正好把这9个数全部都取到了,且有一个数取了两遍.所以他们取的数的总和比这9个数的和多出来的部分就例题精讲知识点拨教学目标5-1-3-2.数阵图是所求的数.那么,这个数是12011119833+-=.【答案】33【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。

如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】希望杯,五年级,复赛,第5题,5分 【解析】 2 【答案】2【例 3】 如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为叙述方便,先在每个圆圈内标上字母,如图(2),(2)a cb49817则有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3) (1)+(2)+(3):(a+b+c )+56=3(a+b+c ),a+b+c=28,则 a=28-(4+9)=15,b=28-(8+9)=11,c=28-(17+9)=2解:见图.1789411215【答案】1789411215【例 4】请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【考点】复合型数阵图【难度】3星【题型】填空【解析】为了叙述方便,将各圆圈内先填上字母,如图(2)所示.设A+B+C=A+F+G=A+D+E=B+D+F=C+E+G=k(A+B+C)+(A+F+G)+(A+D+E)+(B+D+F)+(C+E+G)=5k,3A+2B+2C+2D+2E+2F+2G=5k,2(A+B+C+D+E+F+G)+A=5k,2(1+2+3+4+5+6+7)+A=5k,56+A=5k.,因为56+A为5的倍数,得A=4,进而推出k=12,因为在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨设B=1,F=5,D=6,则C=12-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.,解:得到一个基本解为:(见图)7654321【答案】7654321【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档