多波束形成技术研究
波叠加联合波束形成的局部声场重建技术研究

时, 从而使某一期望方 向上 的声信号到达聚焦点后是 同 向的 , 而在 该 方 向上 产 生 一 个 空 间相 应极 大 值 , 进 实 现定 向作 用 。
波叠加 是 由 K om n op an等 (99 提 出 的 求解 声 18 ) 辐 射 和散射 问题 的一 种 方 法 。其 基 本 思 想 是 : 意形 任 状物体 辐射 的声 场可 以 由置 于该 辐 射 体 内部 一 系 列 虚
关键词 :声源识别 ; 波束形成 ; 波叠加 ; 数据扩展
中 图 分 类 号 :T 3 O 4 9 B5 ; 2 文 献标 识 码 :A
近 场 声 全 息 ¨ N a—edA o sclH lga h , 。 ( er l cut a o rp y i f i o
配置 , 后利 用 波叠加 方 法进 行 局 部 声场 数 据 扩展 , 然 最 后利 用扩 展 后 的 数 据 进 行 声 场 重 建 , 而 克 服 传 统 近 从 场声 全 息对测 量 孑径 大小 的 限制 。最 后 通过 两 个 音箱 L
源产生的声场叠加得到 , 虚源源强可根据辐 射体表面 给定 的法 向速 度或声 压 利用 配 点法 或最 小 二乘 法 计 算
得 到。
图 1 基于波束形成技术 的声源定位
本文 提 出了一 种波 叠 加联 合 波 束形 成 的局 部声 场 重 建方法 。对 于波 叠 加 方 法 , 源 点 的位 置 对 声 场 重 虚 建结果 有显 著 影 响 , 因此 本 文 首 先 利 用 波 束 形 成 算 法 对辐射 声源 进 行 定 位 , 过 定 位 结 果 来 指 导 虚 源 点 的 通
础; 徐亮 等l 对基 于 WS 的局部 近场 声全 息 进 行 了研 M 究 , 单点 激励 固支 板 的测 量得 到 了 良好 的重 建 结 果 ; 对 杨超 等 _对 基 于 S N H 的局 部 声 场 重 建 误 差 进 行 了 8 OA
数字多波束形成与波束跟踪算法研究的开题报告

数字多波束形成与波束跟踪算法研究的开题报告一、研究背景及意义数字多波束形成技术是指利用数学算法和数字信号处理技术在接收天线阵列上实现组合波束形成,从而提高雷达、通信等系统的性能。
该技术可以在空域和角度域上对目标进行定位和跟踪,大大提高系统的探测与定位准确性。
因此,数字多波束形成技术在军事、民用、医疗等领域有着广泛的应用前景。
波束跟踪算法是数字多波束形成技术的重要组成部分,其准确性和效率对系统性能有着决定性的影响。
二、研究目标和内容本研究旨在深入探究数字多波束形成与波束跟踪算法,具体研究内容如下:1. 数字多波束形成技术的基本原理及其在信号处理中的应用;2. 波束跟踪算法的原理及分类;3. 基于数字多波束形成技术的波束跟踪算法设计,包括基于卡尔曼滤波的波束跟踪算法、最大似然估计法等;4. 算法仿真与实验验证。
三、研究方法本研究主要采用理论分析、数学建模、仿真模拟和实验验证等方法,具体如下:1.通过文献调研和学习,掌握数字多波束形成和波束跟踪的基本理论和方法;2. 依据问题进行建模,分析数字多波束形成信号的特性,并结合实际情况,构建数学模型;3. 采取MATLAB等工具进行仿真模拟实验,验证算法的有效性和性能;4. 借助实验平台进行实验验证,如利用MATLAB Simulink和DSP实验室进行数字多波束形成技术的实验。
四、预期成果1.对数字多波束形成和波束跟踪算法的理论和方法有较为深入的了解,能够灵活应用其基本原理解决实际问题;2.设计出基于数字多波束形成技术的波束跟踪算法,掌握相应算法的表达和实现方法;3.实现算法仿真和实验验证,展示模型的优越性和有效性,为后续相关应用提供了可靠的基础数据。
五、研究进度安排本研究计划用一年时间完成,进度安排如下:1. 第1-2个月:调查研究该领域相关的文献资料,了解数字多波束形成和波束跟踪算法的基本原理和研究热点;2.第3-4个月:对数字多波束形成技术进行数学建模,并探讨其在信号处理中的应用;3. 第5-7个月:设计基于数字多波束形成技术的波束跟踪算法,并进行算法仿真实验;4. 第8-10个月:实证研究算法有效性,利用MATLAB和DSP等实验平台进行数字多波束形成技术的实验;5.第11-12个月:撰写毕业论文,准备答辩。
雷达信号处理中的波束形成技术研究

雷达信号处理中的波束形成技术研究雷达信号处理是一项非常重要的技术,其可用于多种领域。
无论是民用还是军事用途,雷达信号均发挥着至关重要的作用。
波束形成技术是其中的一个关键技术,它可以优化雷达信号的接收质量,为后续的信号处理和目标探测提供更为可靠的基础。
一、波束形成技术的定义及原理波束形成技术是一种通过对雷达接收机输入信号进行加权和相位调节来产生一定方向的接收模式的信号处理技术。
其主要原理是通过控制输入至系统的多个信号的相位和振幅,达到控制信号的辐射方向和接收方向的目的。
波束形成技术可以通过对多通道雷达接收机输入信号的相位进行调节和加权,控制辐射方向和接收方向的模式。
将波束形成技术应用于雷达信号处理中,可以改善雷达接收信号的质量,提高雷达对目标的探测效果。
二、波束形成技术的应用1.军事领域在军事领域中,波束形成技术主要应用于雷达目标探测和跟踪等方面。
通过对接收信号进行波束形成操作,可以优化雷达信号的接收效果,提高对目标的探测能力。
根据不同的需求,可以设置不同的接收模式,使雷达对不同的目标进行精准探测和跟踪。
2.民用领域在民用领域中,波束形成技术也有很多应用。
例如,可以将波束形成技术用于雷达气象探测中,可以对天气现象进行跟踪和预测。
此外,波束形成技术也可以用于地震探测和资矿勘探等领域中,提高雷达信号的质量,精准探测目标。
三、波束形成技术的发展现状随着科技的不断发展,波束形成技术也在不断地改进和发展。
目前,波束形成技术主要存在以下一些问题:1.目标识别能力不足。
由于目标特征的复杂性,很难通过单一的模式来对目标进行识别。
2.精度不高。
在进行波束形成时往往需要对相位进行微调,而这需要比较高的精确度。
3.算法复杂度高。
当前大多数波束形成算法的计算复杂度都比较高,需要较为高端的计算设备来支持。
当前,波束形成技术在模式设计、算法改进以及硬件支持等方面还存在一些挑战。
未来,随着科技快速发展,波束形成技术有望在多个领域中得到更为广泛的应用。
多波束总结

多波束总结简介多波束是一种信号处理技术,用于通过同时使用多个接收装置或发射器,提高通信系统的性能。
它被广泛应用于雷达、声纳、卫星通信和移动通信等领域。
本文将对多波束技术进行总结,包括其原理、应用和优势。
原理多波束技术利用多个接收器或发射器来接收或发送信号。
每个接收器或发射器被称为一个波束,可以独立地定向和控制。
通过对每个波束进行独立的信号处理和分析,可以提高通信系统的性能。
多波束的工作原理可以分为两个主要步骤:1.波束形成:在发射端,可以使用多个发射器同时发送信号。
这些信号经过特定的相位控制,形成多个波束,每个波束定向到不同的方向。
在接收端,利用多个接收器接收到的信号进行波束形成,通过信号处理和加权,可以提高信号的接收效果。
波束形成的目标是最大化接收到的信号功率和最小化噪声。
2.波束跟踪:在接收端,根据接收到的信号,通过信号处理算法来跟踪每个波束的方向。
根据波束的方向信息,可以对接收到的信号进行定向增强和干扰抑制。
波束跟踪的目标是始终保持波束的指向性,以提供更好的信号质量和抗干扰能力。
应用多波束技术在许多领域中得到了广泛的应用,下面列举了其中几个重要的应用:雷达在雷达系统中,多波束技术可以用于提高目标检测和跟踪的性能。
通过使用多个发射器和接收器,可以同时监测多个方向上的目标,并提供更准确的目标位置和速度信息。
多波束技术还可以提高雷达系统的抗干扰性能,减少误报和误判。
声纳在声纳系统中,多波束技术可以提高水下目标检测和定位的性能。
通过利用多个发射器和接收器,可以实现对多个方向的声纳信号的接收和处理。
多波束技术可以提高声纳系统对目标的探测距离和分辨率,提高目标识别和定位的精度。
卫星通信在卫星通信系统中,多波束技术可以提高信号的覆盖范围和容量。
通过使用多个波束,可以同时指向不同的地面站或用户,提高信号传输的效率和可靠性。
多波束技术还可以提高系统对天气和干扰的抗性,保证通信质量的稳定性。
移动通信在移动通信系统中,多波束技术可以提高信号覆盖和容量。
无线局域网关键技术之一:波束成形技术

无线局域网关键技术之一:波束成形技术今年以来通信运营商竞相提高无线局域网(WLAN)的地位,不仅视其为有线宽带接入的辅助手段,更不吝将其上升到战略高度。
从中国移动的部署来看,似有四架马车GSM,TD-SCDMA, TD-LTE, WLAN齐头并进之趋.于是,提升无线局域网的网络质量和用户体验成为关注焦点。
本文介绍无线局域网关键技术之一——波束成形(Beamforming),包括基本概念和发展趋势。
背景由来波束成形是天线技术与数字信号处理技术的结合,目的用于定向信号传输或接收.波束成形,并非新名词,其实它是一项经典的传统天线技术。
早在上世纪60年代就有采用天线分集接收的阵列信号处理技术,在电子对抗、相控阵雷达、声纳等通信设备中得到了高度重视。
基于数字波束形成(DBF)的自适应阵列干扰置零技术,能够提高雷达系统的抗干扰能力,是新一代军用雷达必用的关键技术。
定位通信系统通过传声器阵列获取声场信息,使用波束成形和功率谱估计原理,对信号进行处理,确定信号来波方向,从而可对信源进行精确定向。
只不过,由于早年半导体技术还处在微米级,所以它没有在民用通信中发挥到理想的状态.而发展到WLAN阶段,特别是应用在个人通信中,信号传输距离和信道质量以及无线通信的抗干扰问题便成为瓶颈。
支持高吞吐是WLAN技术发展历程的关键.802。
11n主要是结合物理层和MAC层的优化,来充分提高WLAN技术的吞吐.此时,波束成形又有了用武之地.基本原理波束成形,源于自适应天线的一个概念。
接收端的信号处理,可以通过对多天线阵元接收到的各路信号进行加权合成,形成所需的理想信号.从天线方向图(pattern)视角来看,这样做相当于形成了规定指向上的波束。
例如,将原来全方位的接收方向图转换成了有零点、有最大指向的波瓣方向图.同样原理也适用用于发射端。
对天线阵元馈电进行幅度和相位调整,可形成所需形状的方向图.如果要采用波束成形技术, 前提是必须采用多天线系统。
相干多径环境下的波束形成技术研究

ehS nl rcs n, 8 , ( : 7 5 6 c ,g aPoes g 9 53 3 5 — 3 . i i 1 3 )2
[] O JY O D C,E C h rn p otns cb a 2K , H L E Y H.o ee t p r it e m— o u i
参考文献 :
【]HAN TJ 1S , L T TAd pi emfr n r o e— KAIA H . a t eb a o migf h r v oe
eti a d ne e ne ]E ETa s cuts p - n s nla t f e c[. E rn. osc, e g s n i r r JI A i S
f 围, 4 闶 张德民, 等. 吴波, 相干环境下 L M C V自 适应阵列抗
…
{ 《 ~ ~ 啡》 专 吨 咕 《 榔 一卜峙
~ : ~ 蠢~
》 《士 一 一卜《 ~ 十一 : *
上接 7 4页
4 52 7 *  ̄ 5 e
.
g
m
口 E
口目1
-
t. 23 e* 2 1
定义前 向空间平滑 的协方差矩阵为子阵的均值 , : 即
肚 ∑噩
’ 』 l
( 9 )
P A( ̄ s - A 一 = , A)
正交 于干扰子空 间的投影矩阵为 :
=
() 1 8
(9 1)
其 中, = - + 表示子阵数 。 NM KI
空间平滑使得相干信号间的相位关 系随机化 。 如果 相 干信号数 为 L ’能够证 明 当 』≥L时 , 将恢 复成 满 v
t 一… … 一 一 —
t St ̄ O- f L  ̄
超声成像波束形成的基本理论汇总

超声成像波束形成的基本理论声场在成像场域的分布称为波束形成(beam forming)。
波束形成在整个超声中处于心位置,对成像质量起着决定性的作用,如图2.1。
本章以传统的延时叠加波束形成方法为中心来阐述波束形成的基本原理及其对波束形成的影响,并介绍了波束控制方法(聚焦偏转、幅度变迹、动态孔径)及成像质量的评价标准。
.1 延时叠加波束形成算法延时叠加波束形成是超声成像中最传统、最简单也是应用最广泛的成像方法,它包括发射聚焦和接收聚焦两种方式。
由于成像过程实际就是对成像区域逐点聚焦,所以一帧完整的图像需要进行至少上万次的聚焦才能完成。
如果采用发射聚焦方式来实现超声成像,则完成一帧超声图像需要非常长的时间(至少需要几分钟),不符合实时成像的要求。
因此,平常所说的延时叠加波束形成一般是指接收聚焦,其形成过程如图2.2 所示。
1.1 声场分布的计算图像分辨率通常是评价图像质量的重要标准之一,而在超声成像系统中的图像横向分辨率是由超声波束的声场分布决定的[25]。
超声辐射声场的空间分布与换能器的辐射频率、辐射孔径及辐射面结构有关,称为换能器的空间响应特性为了表征换能器空间响应特性,常引入一指向性函数。
指向性函数是描述发射器辐射声场或接收器灵敏度的空间函数。
由于探头类型不尽相同,包括连续曲线阵、连续曲面阵、连续体性阵和离散阵四大类,因此指向性函数的类型也有所不同。
本节以常用的凸阵探头(离散阵)为例介绍超声空间发射声场的计算如图2.3 所示,设阵元数为N,阵元的半径为R,相邻两阵元间的距离为d,由于d << R,可近似得到相邻两个阵元之间的夹角为Q=d/R。
那么探头上任一阵元i 与中心线的夹角考虑到换能器的空间响应特性满足互易原理,它的接收空间响应特性与其发射空间响应特性是一致的。
因此,关于接收声场的计算,基本上和发射声场的计算方法相同,只是接收焦点的深度总是和计算深度z 相同。
1.2 波束仿真凸阵探头参数,参考图2.3。
海洋技术研究 深水多波束测深系统现状及展望

海洋论坛▏深水多波束测深系统现状及展望海洋科学研究、资源调查与开发、工程建设及军事等活动都需要准确地获取所关注区域内的海底地形地貌信息,并将其作为基础资料与支撑依据。
因此,如何去了解海洋地形地貌信息,对海洋地形地貌信息进行有效的测绘,获取海洋地形地貌信息图谱,成了海洋研究中的重要问题。
不同于传统单波束测深技术,多波束测深系统是一种进行海洋水底资源开发的新手段。
它不但可以获得采样点的位置和深度信息,而且能够根据不同物质对声波的回波强度,探测海底地质结构,实现海底底质分类。
此外,多波束测深系统对海底实施的是一种全覆盖测量,所提取的信息不但反映了海底的地形地貌变化情况,还能给出水体特征。
因此,深水多波束测深系统在深海海底地形测绘、海洋资源探测、天然气水合物探测、地球物理探测等领域具有极高的应用价值。
本文首先介绍了深水多波束测深的基本原理和系统组成,然后系统介绍了L3 ELAC Nautik、Teledyne(原ATLAS)和Kongsberg等公司的3款典型深水多波束测深系统,并分析了国内发展情况,最后展望了深水多波束测深系统的发展趋势。
一、多波束测深系统原理和组成⒈基本原理多波束测深系统的工作原理是利用发射换能器阵列向海底发射宽扇区覆盖的声波,通过发射、接收扇区指向的正交性形成对海底地形的照射脚印,对这些脚印进行恰当的处理,一次探测就能给出与航向垂直的垂面内上百个甚至更多的海底被测点的水深值,从而能够精确、快速地测出沿航线一定宽度内水下目标的大小、形状和高低变化,比较可靠地描绘出海底地形的三维特征。
多波束测深系统的波束形成原理可以分为两种:束控法(在特定角度下,测量反射信号的往返时间)和相干法(在特定时间下,测量反射回波信号的角度)。
在多波束测深系统中主要有两个待测变量,即斜距或声学换能器到海底每个点的距离和从换能器到水底各点的角度。
所有的多波束测深系统利用束控法和相干法中的一种或两种来测定这些变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多波束形成技术研究陈晓萍(中国西南电子技术研究所,四川成都610036)摘要:讨论了跟踪与数据中继卫星系统(TDRSS)中关于多波束形成的算法,优选的有LMS自适应方式和相位调整自适应方式;并简单介绍了波束控制和波束形成的实现。
关键词:TDRSS;多波束形成;LMS自适应算法;相位调整自适应算法一、前言随着航天技术的发展,要求测控通信站能高覆盖地对飞船等多个目标进行测控通信。
要解决这个问题靠现有地面测控网和业务接收站已不能满足要求,需要建立天基测控通信系统,即跟踪与数据中继卫星系统(TDRSS)。
TDRSS把测控通信站搬移到天上同步定点轨道的中继星上,从上向下观测中低轨卫星、飞船、航天飞机等空间飞行器,从而提高了覆盖率。
为了减轻中继星的复杂性和负担,将中继卫星观测到的数据和信息传到地面,由地面中心站进行处理。
TDRSS中继星相控阵天线同时与多个用户航天器保持跟踪,地面站到航天器的正向通讯为时分多波束,反向通讯为码分和同时多波束。
为了减轻中继星的负担,中继星上只装有形成正向天线波束扫描所需的电调移相器,由地面终端计算并发出指令,调节星上移相器相位,让天线波束以时分方式扫描对准各用户航天器,在对准期间完成正向数传。
多个用户航天器送到中继星的反向数传信号在星上进行多波束形成会大大增加中继星的复杂性,反向信号经星上阵列天线接收和变换,各阵元收到的信号用频分多路方式相互隔离送往地面,由地面接收前端将频分多路还原成同频多路阵元输出,交由终端进行相控阵多波束形成处理。
所谓波束形成, 就是利用开环控制或闭环自适应跟踪方法,对不同反向到达的信号用不同的权系数矢量对各阵元输出进行幅度和相位加权, 使各阵元收到的同一用户信号在合成器中得以同相相加, 输出信号最大, 干扰和噪声最小。
当存在多个目标时, 地面终端利用码分多址方法和利用多个波束形成器并行地完成各目标的波束合成处理完成各用户的数传与测控。
二、多波束形成算法数据中继卫星系统在多址方式下,服务对象一般分布在较低的地球轨道上,当用户星离地面的轨道高度在3 000 km以下时,中继星各阵元波束宽度只要26°就可覆盖地球周围的所有用户星。
当用户星以最大速度10 km/s运动,用户星穿过3.5°宽的合成波束所需的时间最短为205 s,所以中继星跟踪用户星所需的波束移动角速度是很小的。
假定波束移动步进量为阵合成波束宽度3.5°的5%即0.175°,波束步进间隔时间长达10.5 s。
只要计算机能在10.5 s 内依据用户星位置更新相控阵的相位加权系数,就会使合成波束移动并时刻对准目标。
按照目标的捕获与跟踪过程,多波束形成应有3种工作方式:主波束控制方式(开环)、扫描方式(开环)及自跟踪方式(闭环)。
当有先验信息如根据目标的轨道方程计算出目标在空中的当前位置时,可采用开环的主波束控制方式, 由用户星的实时俯仰角和方位角,计算机算出加权系数矢量,送到多波束处理器完成波束加权合成。
用户星相对中继星来说角度移动缓慢,随着用户星的移动,计算机实时逐点计算出权系数矢量,可维持主波束的开环跟踪。
主波束控制方式一般用于目标的初始捕获,完成后进入自动跟踪状态。
如果没有先验信息不知道目标的起始位置,可以采用波束扫描方式,根据事先制定的空间角度扫描轨迹图形,顺序调出各角度位置的加权矢量,形成波束的空中扫描,当波束扫到目标时,波束合成器输出最大信号并给出目标捕获指示,完成目标初始捕获,随即进入波束自跟踪方式。
由于阵元波束宽度为26°,合成波束宽度3.5°,在26°范围内进行扫描只需较短时间就可捕到目标。
多波束形成的自跟踪方式需采用自适应跟踪算法,优选的有LMS自适应方式和相位调整自适应方式,LMS自适应方式的优点是在合成主波束对准目标时可将波束方向图零点对准干扰,构成自适应调零天线,具有强的空间滤波能力,减轻扩频接收机解扩电路对抗窄带强干扰的压力。
LMS的收敛速度与调整步长有关,如果为了缩短响应时间而加大运算步长,过大的步长会使运算过程产生发散,不能跟踪目标。
相位调整自适应方式的波束也可始终跟踪目标,产生最大信噪比输出,收敛速度快,无发散之忧,相比之下计算量较小,硬件实现比较容易。
在相位调整方式下,各阵元信号与一标准信号进行相位比较,并自动调整阵元信号相位达到同相状态。
相位自动调整方式虽然不能将波束零点对准干扰,然也可得到最大信噪比的波束合成,且设备量中等,性能价格比高。
1.LMS自适应方式TDRSS一般是在存在干扰的环境中工作的,这些干扰随着时间和空间往往在不断变化,中继星在天上会收到地面各种电子设备的干扰, 特别是窄带强干扰。
采用自适应阵在空间进行干扰滤除, 可降低干扰对扩频接收机的压力。
自适应阵将主波束对准目标的同时, 波瓣零点能自动地对准一定数目的不同方向的干扰。
自适应天线能适应载体姿态、地形环境、信号环境、电离层与大气环境的变化,随时调整权系数使设备工作在最佳状态。
对不同的应用场合, 自适应处理一般采取不同的准则, 有最大信噪比准则(阵列的主波束对准目标)、最大信号干扰噪声比准则、误差均方最小准则。
使用信号干扰噪声比最大准则,合成方向图的最大值对准有用信号方向,近乎零的各个方向图凹口对准各个干扰源,但此准则在应用时要求干扰与信号在时间上能分开,在实际连续通信的场合,阵元上输出的是有用信号与干扰和噪声的合成信号,有用信号与干扰或噪声不可能在时间上分开,此准则的应用受到很大限制。
误差均方最小准则,基于多数情况下人们对有用信号总是具备某些先验知识,在接收系统中设置本地参考信号(与有用信号有较大相关性),调整阵列加权,使加权输出与参考信号的误差均方值最小, 阵列输出中的有用信号就会最强, 或输出信号干扰比最大。
设d(t)为参考信号,W、X为加权矢量和各阵元输出信号矢量,加权后合成输出为X〃为X的共轭。
误差平方的平均值即误差均方为为求均方误差最小的权向量,将均方误差ξ对各个权系数求导,即对权向量W求梯度:Wm即为所求。
依照这种关系,误差均方最小自适应滤波结构就可确定。
LMS最小均方误差算法,可消除的干扰源个数决定于天线阵的自由度,即决定于阵元数和同时跟踪的目标数。
阵元数越多,同时跟踪的目标数越少,即波束数量少,可以消除的干扰源数量就越多。
采用LMS算法的自适应阵,阵元的排列可以不均匀,而且阵元可以装在曲面的基座上,各个阵元支路的相位一致性并不是非常严格,对天线阵几何排列精度没有很高的要求。
LMS算法方框图如1所示。
2.相位调整自适应方式利用TDRSS系统SMA码分多址的特点,PN码解扩功能可抑制不同用户的信号,使相位自动调整电路可以只响应指定用户信号。
每个阵元支路都设置一个相位调整器,各阵元输出信号经移相调整后与公用参考信号进行相位比较,比较输出误差信号经滤波后调整各阵元支路的移相器,使各路移相器输出相位与参考信号相同,各路相位达到一致,在合成器中就可完成同相合成。
信号最大值合成不受移相器前信道相位漂移和天线安装几何误差的影响,所以相位调整式多波束合成具有自适应性质,它没有LMS波束合成所需的递推过程,波束合成时间短,可用于空中目标移动速度较大的场合。
也不存在LMS的收敛问题。
而且,各移相器调整值等于天线阵元接收电波的相移量,当阵结构一定时,仅决定于电波入射方向,因而可由移相器的相位调整值估计信号的到达方向,完成目标方向测量。
信号合成性能不受信道载波相位漂移的影响,具有自适应的自动相位补偿的特点。
但是,信道产生的相移会影响移相器的补偿相位,影响电波方向测量精度。
为此,也应减小信道相位漂移并进行校准,或进行信道相位零值测量。
正式工作时,由实时相位测量值减去零值,即得仅由电波方向引起的相位值,依此再进行目标方向测量。
与LMS算法的自适应阵一样,采用相位调整算法时阵元的排列可以不均匀,而且阵元可以装在曲面的基座上,各个阵元支路的相位一致性并不是非常严格,对天线阵几何排列精度没有很高的要求。
相位自动调整算法框图如图2所示。
三、波束控制多波束形成设备主要由波束控制计算机和多波束信号处理机2部分组成,,波束控制机完成的任务有:多波束形成工作方式控制和参数预置;主波束控制方式下,根据已知方向计算波束控制矢量即权系数矢量;当波束自动跟踪时,在相位自动调整方式下根据各路相位调整值计算目标方向;在LMS自适应方式下根据权系数调整值计算目标方向。
在主波束开环控制的方式下, 波束控制机根据输入的目标位置, 实时计算出主波束指向目标所对应权系数向量, 送给多波束信号处理机, 使主波束指向目标。
当目标位置移动后, 根据新的目标位置继续计算新的权系数向量, 使主波束始终跟踪目标。
开始工作时, 先置为主波束控制方式, 在主波束对准目标后转为自适应方式,或相位自动调整方式,以后阵列天线合成波束跟随目标移动。
自适应方式下先预置权系数使合成波束对准目标, 会大大加快自适应的收敛过程, 加快波束的形成。
在自适应方式下, 如果不知道目标位置, 在开始自动寻找目标过程中, 特别是在信噪比较低的情况下, 梯度测量误差较大,可能存在一个随机徘徊过程, 收敛时间就会较长。
所以先进行引导, 只要基本对准目标, 由于信噪比得到改善, 收敛就会加快。
当相控阵自动跟随目标移动, 波束控制器可以进行反变换, 将权系数或支路相位值换算成对应的波束指向角输出, 完成角跟踪和送出角数据的功能。
四、波束形成实现方法自适应波束形成采用数字信号处理技术实现,具有可靠性高、可编程控制方便、体积小等优点。
具体实现方法为FPGA+DSP,FPGA完成快速运算,DSP完成低速但比较复杂的运算。
由于波束形成是在中频上进行的,输入信号为扩频的宽带信号,波束形成的运算速度较高,波束形成主要由FPGA完成。
FPGA的工作速度和门数尽量选择较高的器件。
按照以前对波束形成研究的经验,如果FPGA的容量较小,一个FPGA只能完成一路天线阵元信道的运算处理。
20个阵元波束形成需要20路信道,需要20个以上的器件,一块印制板就不能全部容纳,需要2块以上的印制板完成一个目标的波束形成。
最好是一个目标的波束形成只用一块印制板,可以大大减少印制板间的连线数量,减少数字电路的干扰,使设备工作稳定,这就要选择工作速度尽量高一些、器件容量尽量大一些的FPGA器件。
我们采用相位调整自适应算法以硬件方式完成了7个阵元2个目标的自适应数字波束形成的专题试验,试验采用有线联试的方法。
波束形成器达到预定指标,试验采用的扩频信号形式与美国TDRSS系统SMA勤务方式相同。
五、结束语跟踪与数据中继卫星系统从根本上解决了对航天飞行器测控与通信的高覆盖率问题和多目标跟踪问题,具有较高的经济效益,可广泛应用于军民用多种领域。