气动机械手

合集下载

气动助力机械手的设计理念

气动助力机械手的设计理念

气动助力机械手的设计理念
随着科技的不断发展,机械手在工业生产中发挥着越来越重要的作用。

而气动助力机械手作为一种新型的机械手,其设计理念更加注重效率、精准和节能。

本文将介绍气动助力机械手的设计理念及其在工业生产中的应用。

首先,气动助力机械手的设计理念注重效率。

传统的机械手通常由电机驱动,而气动助力机械手则是利用气压驱动。

气动助力机械手具有响应速度快、动作灵活等特点,能够更快速地完成生产任务,提高生产效率。

其次,气动助力机械手的设计理念注重精准。

气动助力机械手采用气动控制系统,能够实现高精度的动作控制。

在工业生产中,精准的操作对产品质量和生产效率至关重要,而气动助力机械手的精准性能能够满足生产的需求。

最后,气动助力机械手的设计理念注重节能。

相比于传统的电机驱动机械手,气动助力机械手具有更低的能耗。

气动助力机械手利用气压驱动,无需大量的电能支持,能够有效节约能源,降低生产成本。

在工业生产中,气动助力机械手已经得到了广泛的应用。

它可以用于装配线上的零部件搬运、焊接、喷涂等工艺,能够大大提高生产效率,降低人力成本,改善工作环境。

总之,气动助力机械手的设计理念注重效率、精准和节能,其在工业生产中的应用前景广阔。

随着技术的不断进步,相信气动助力机械手将会在工业生产中发挥越来越重要的作用。

气动机械手操作方法

气动机械手操作方法

气动机械手操作方法
气动机械手操作方法通常分为以下几个步骤:
1. 启动气源–打开气源阀,给机械手提供气动动力。

2. 调整气源压力–根据需要调整气源压力,确保机械手能够正常运行。

3. 控制盒操作–使用控制盒上的按钮或手柄来控制机械手的运动,包括抓取、放置、旋转等动作。

4. 安全操作–在操作机械手时,要注意周围的安全环境,确保没有人员或障碍物会受到伤害。

5. 关闭气源–在使用完毕后,要及时关闭气源阀,避免浪费气源资源。

需要注意的是,操作气动机械手需要经过相关培训和实践操作,确保操作过程中安全可靠。

气动机械手的设计

气动机械手的设计

第一章绪论1.1气动机械手的概述我国国家标准(GB/T12643–90)对机械手的定义:“具有和人手臂相似的动作功能,可在空间抓放物体,或进行其它操作的机械装置。

”机械手可分为专用机械手和通用机械手两大类。

专用机械手:它作为整机的附属部分,动作简单,工作对象单一,具有固定(有时可调)程序,使用大批量的自动生产。

如自动生产线上的上料机械手,自动换刀机械手,装配焊接机械手等装置。

通用机械手:它是一种具有独立的控制系统、程序可变、动作灵活多样的机械手。

它适用于可变换生产品种的中小批量自动化生产。

它的工作范围大,定位精度高,通用性强,广泛应用于柔性自动线。

机械手最早应用在汽车制造工业,常用于焊接、喷漆、上下料和搬运。

机械手扩大了人的手足和大脑功能,它可替代人从事危险、有害、有毒、低温和高热等恶劣环境中的工作;代替人完成繁重、单调的重复劳动,提高劳动生产率,保证产品质量。

目前主要应用于制造业中,特别是电器制造、汽车制造、塑料加工、通用机械制造及金属加工等工业。

机械手与数控加工中心,自动搬运小车与自动检测系统可组成柔性制造系统(FMS )和计算机集成制造系统(CIMS ),实现生产自动化。

随着生产的发展,功能和性能的不断改善和提高,机械手的应用领域日益扩大。

1.1.1气动技术气动技术—这个被誉为工业自动化之“肌肉”的传动与控制技术,在加工制造业领域越来越受到人们的重视,并获得了广泛应用。

目前,伴随着微电子技术、通信技术和自动化控制技术的迅猛发展,气动技术也不断创新,以工程实际应用为目标,得到了前所未有的发展。

气动技术(Pneumatics)是以压缩空气为介质来传动和控制机械的一门专业技术。

“Pneumatics”一词起源于希腊文的“Pneuma”,其原义为“呼吸”,后来才一演变成“气动技术”。

气动技术因具有节能、无污染、高效、低成本、安全可靠、结构简单,以及防火、防爆、抗电磁干扰、抗幅射等优点广泛应用于汽车制造、电子、工业机械、食品等工业产业中。

气动机械手控制系统设计

气动机械手控制系统设计

气动机械手控制系统设计气动机械手是一种应用气动技术的机械手执行器,通过气动元件驱动来实现抓取、搬运、装配等动作。

气动机械手控制系统设计是指设计控制气动机械手运动的电气、电子、液压等各种控制设备和控制方式。

本文将从气动机械手的工作原理、控制系统的设计要点和实现方法三方面进行详细介绍。

一、气动机械手的工作原理具体来说,气源通常会提供一定的压力,一般使用压缩空气。

气控元件包括气缸、气阀等,用于对压缩空气进行控制,如控制气缸的进气和排气,实现气缸的伸缩和运动方向的改变。

而工作执行器则是机械手的关键组成部分,它是气缸和机械手夹具的组合,通过气缸的控制,实现机械手的抓取、搬运等动作。

二、气动机械手控制系统设计要点1.选择合适的气源和气控元件:在设计气动机械手控制系统时,需要根据机械手的负载要求选择合适的气源和气控元件。

气源的压力和流量要满足机械手的工作需求,而气控元件的类型和数量要根据机械手的动作来确定。

2.设计合理的控制回路:气动机械手的控制回路包括气源控制回路和气缸控制回路。

气源控制回路主要控制气源的启动和停止,而气缸控制回路则控制气缸的进气和排气,实现机械手的运动。

控制回路的设计要合理布置元件,使其在工作过程中能够有序工作,减少能量损失。

3.合理安排气缸的布局:气缸的布局对机械手的工作效果有很大影响。

在布置气缸时,需要考虑机械手的工作空间、抓取点的位置和安全性等因素,尽量将气缸设在合适的位置,以提高机械手的工作效率和稳定性。

三、气动机械手控制系统的实现方法1.纯气动控制:纯气动控制是指完全依靠气源和气控元件来控制机械手的运动。

这种控制方式结构简单,控制精度较低,主要适用于对动作精度要求不高的场合。

2.气动与电气联合控制:在气动机械手的控制系统中,可以结合电气元件和电气控制方式,与气动元件共同控制机械手的运动。

在这种控制方式下,电气元件可用于控制气控元件的工作,提高气动机械手的控制精度。

3.PLC控制:PLC控制是指使用可编程序控制器(PLC)对气动机械手进行控制。

气动机械手开题报告

气动机械手开题报告

气动机械手开题报告气动机械手开题报告一、引言气动机械手是一种基于气动技术的机械装置,通过气动元件的控制和驱动,实现对物体的抓取、搬运和放置等操作。

相比于传统的电动机械手,气动机械手具有结构简单、成本低廉、响应速度快等优势,因此在工业生产中得到广泛应用。

本报告旨在对气动机械手进行研究和开发,以提升其性能和应用范围。

二、研究目的1. 分析气动机械手的工作原理和结构特点,探索其优势和局限性;2. 设计和制造一款具有高精度、高可靠性的气动机械手原型;3. 优化气动机械手的控制系统,提升其运动速度和精度;4. 探索气动机械手在不同领域的应用,如制造业、物流等。

三、研究内容1. 气动机械手的工作原理和结构特点气动机械手通过气动元件(如气缸、气动马达等)的控制,实现对机械手臂的运动。

其结构通常由机械臂、气动元件、控制系统等组成。

相比于电动机械手,气动机械手具有结构简单、负载能力大等优势,但在精度和速度方面存在一定的局限性。

2. 气动机械手原型的设计与制造在设计和制造气动机械手原型时,需考虑机械臂的结构、气动元件的选型和布局等因素。

通过使用CAD软件进行三维建模、结构分析和优化,可以提高机械手的稳定性和运动精度。

在制造过程中,需选择合适的材料和加工工艺,以确保机械手的强度和耐用性。

3. 气动机械手控制系统的优化气动机械手的控制系统是实现其精准运动的关键。

通过对控制系统进行优化,可以提高机械手的响应速度和运动精度。

常见的优化方法包括采用先进的传感器技术、改进控制算法和增加控制通道等。

此外,还可以考虑引入人工智能和机器学习等技术,提升机械手的自主性和适应性。

4. 气动机械手在不同领域的应用气动机械手具有广泛的应用前景,在制造业、物流等领域发挥着重要作用。

通过对气动机械手在不同领域的应用进行研究,可以进一步探索其潜力和优势。

例如,在制造业中,气动机械手可以用于装配、焊接和喷涂等工序;在物流领域,气动机械手可以用于货物的搬运和堆垛等任务。

气动机械手毕业设计

气动机械手毕业设计

气动机械手毕业设计气动机械手是一种基于气动元件和气动控制系统的自动化设备,主要用于工厂生产线上的物料搬运、装配和处理等工作。

气动机械手具有结构简单、运动灵活、成本低廉、维护方便等优点,在工业领域得到了广泛应用。

本文将从气动机械手的结构设计、气动系统设计和控制系统设计三个方面进行讨论。

首先是气动机械手的结构设计。

气动机械手的结构设计要考虑到工作范围、负载能力、精度要求等因素。

首先需要确定机械手的工作范围,即能够覆盖的空间范围,这决定了机械手的臂长和关节点的位置。

然后需要根据工作负载的大小和要求确定机械手的负载能力,从而确定气缸和驱动装置的规格。

最后还需要考虑机械手的运动精度,这需要合理选择传动装置和关节点的位置,以确保机械手能够准确地完成任务。

其次是气动系统设计。

气动机械手的气动系统主要由气源、气压调节装置、气缸和气动阀组成。

在气源方面,可以选择压缩空气作为动力源,需要考虑气源的稳定性和供应能力。

气压调节装置用于调整气缸的工作压力,以满足不同的工作需求。

气缸是气动机械手的执行机构,一般选择双作用气缸,通过气源的压力差来实现前后运动。

气动阀则用于控制气缸的开闭和运动方向。

最后是控制系统设计。

气动机械手的控制系统一般采用PLC或者单片机控制。

在控制系统设计中,首先需要确定机械手的工作方式,可以是自动化连续工作,也可以是手动操作。

然后需要确定机械手的控制模式,可以是位置控制、力控制或者速度控制,根据不同的工作需求选择合适的控制模式。

同时还需要设计机械手的控制程序和界面,以实现对机械手的控制和监控。

综上所述,气动机械手的毕业设计主要包括结构设计、气动系统设计和控制系统设计三个方面。

在设计过程中,需要综合考虑机械手的工作范围、负载能力、精度要求等因素,选择合适的气缸和传动装置,并设计相应的气动系统和控制系统,以实现机械手的自动化操作。

气动机械手的毕业设计

气动机械手的毕业设计

气动机械手的毕业设计一、设计背景随着工业自动化程度的不断提高,机械手成为了现代工业领域中不可或缺的设备之一、传统的机械手多使用电动执行器,但其存在着噪音大、体积大、成本高等问题。

而气动机械手则可以通过利用空气压缩机产生的压缩气体驱动,具有噪音低、操作简单、灵活性高等优点。

因此,设计一种气动机械手是十分有意义的。

二、设计目标本设计的目标是设计一种具有良好性能的气动机械手,能够完成一定的操作任务,提高工作效率和工作质量。

三、设计内容1.气体动力系统设计设计气动机械手需要一套稳定的气体动力系统,包括压缩气体供应、处理和控制等。

需要选择适合的气体源,选用合适的过滤器、减压阀和控制阀等气动元件,并设计相应的管路系统。

2.机械结构设计机械结构设计是气动机械手设计的关键环节,需要确定机械手的自由度和工作范围,设计适合的关节结构和工具夹持装置。

同时,需要考虑机械手的刚度和稳定性,确保机械手能够稳定地完成工作任务。

3.控制系统设计控制系统设计是气动机械手设计过程中的另一个重要环节。

需要设计合适的传感器来感知工作环境,采集与控制相关的数据。

并通过合适的控制算法将输入信号转化为执行器动作。

同时,需要设计合适的控制面板和操作界面,方便对机械手进行操作和监控。

四、设计步骤1.确定设计目标和需求,包括气动机械手的工作负荷、工作环境和操作需求等。

2.进行气体动力系统的选型和设计,确定适合的气体源和气动元件,并设计相应的管路系统。

3.进行机械结构的设计,确定适当的自由度和工作范围,设计合适的关节结构和工具夹持装置。

4.进行控制系统的设计,选择合适的传感器和控制算法,设计控制面板和操作界面。

5.进行整体系统的组装和调试,测试气动机械手的性能和工作效果。

六、预期成果通过本设计,预期可以实现一种具有良好性能的气动机械手,能够完成一定的操作任务,提高工作效率和工作质量。

同时,能够对气动机械手的设计过程和性能进行评估和改进。

七、计划进度本设计计划在10个月内完成,按照以下进度进行:1.确定设计目标和需求:1个月2.气体动力系统的选型和设计:2个月3.机械结构的设计:3个月4.控制系统的设计:2个月5.整体系统的组装和调试:2个月1.王晓华,李骥.气动机械手的设计[J].科技创新与应用。

气动机械手的设计毕业设计(完整)讲解

气动机械手的设计毕业设计(完整)讲解

毕业设计(论文)课题名称:气动机械手的设计专业班级:13机械电子工程学生姓名:钟国森指导教师:201 年月目录摘要 (4)第一章前言1.1机械手概述 (5)1.2机械手的组成和分类 (5)1.2.1机械手的组成.......................................41.2.2机械手的分类.......................................6 第二章机械手的设计方案2.1机械手的坐标型式与自由度.............................. 82.2机械手的手部结构方案设计.............................. 82.3机械手的手腕结构方案设计.............................. 92.4机械手的手臂结构方案设计...............................92.5机械手的驱动方案设计...................................92.6机械手的控制方案设计...................................92.7机械手的主要参数.......................................92.8机械手的技术参数列表...................................9 第三章手部结构设计3.1夹持式手部结构.........................................113.1.1手指的形状和分类.................................113.1.2设计时考虑的几个问题.............................143.1.3手部夹紧气缸的设计...............................14 第四章手腕结构设计4.1手腕的自由度.......................................... 194.2手腕的驱动力矩的计算.................................. 194.2.1手腕转动时所需的驱动力矩........................ 204.2.2回转气缸的驱动力矩计算...........................22 第五章手臂伸缩,升降,回转气缸的设计与校核5.1手臂伸缩部分尺寸设计与校核.............................235.1.1尺寸设计.........................................235.1.2尺寸校核.........................................245 .1 .3导向装置.......................................255 .1 .4平衡装置.......................................255.2手臂升降部分尺寸设计与校核.............................265.2.1尺寸设计.........................................26.5.2.2尺寸校核.........................................265.3手臂回转部分尺寸设计与校核.............................275.3.1尺寸设计.........................................275.3.2尺寸校核.........................................27第六章机械手的PLC控制设计...................................276.1可编程序控制器的选择及工作过程.........................276.1.1可编程序控制器的选择.............................276.1.2可编程序控制器的工作过程.........................276.2可编程序控制器的使用步骤...............................23 第七章结论....................................................24 致谢...........................................................29 参考文献.......................................................30 专业相关的资料.................................................31摘要在设计机械手臂座的时候,用两个电机提供动力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理学上的压力,是指发生在两个物体的接触表面的作用力,或者是气 体对于固体和液体表面的垂直作用力,或者是液体对于固体表面的垂直作 用力。 当你将气体压缩在一个罐子里,增加压力,你就可以储存能量。
压力也可以理解成能量的密度,也就是单位容积储存的能量。这个特
性令气动力使用在一些非常有趣的场合:你可以使用罐子来保存能量, 然后在需要的时候释放出来。使用气泵来提高罐子里的压力,保存能 量,然后通过释放气体来使用这些能量,转换成运动。 气流从容器中压力高的地方流向压力低的地方,直到压力相等。
来形状的力就越大。在车胎这个例子中,
如果你是用手指压轮胎,轮胎就会压下 去一个微凹,当你移开你的手指,轮胎
就马上恢复到原来的形状。轮胎里的压
力越大,阻止形变的力就越大。
气体是指无形状有体积的可变形可流动的流 体。气体是物质的一个态。气体与液体一样是流
体:它可以流动,可变形。与液体不同的是气体可
以被压缩。假如没有限制(容器或力场)的话,气 体可以扩散,其体积不受限制。气态物质的原子 或分子相互之间可以自由运动。气态物质的原子 或分子的动能比较高。 气体形态可过通其体积、 温度和其压强所影响。这几项要素构成了多项气 体定律,而三者之间又可以互相影响。
储气罐压Βιβλιοθήκη 表将机械功转换为气
体的压力
将气体 的压力变成 机械功
100mm 96mm
200mm 、300mm
50mm
T型连接器
阀门
1
3
1
3
1
3
2
2
2
A
B
C
总结:
1、学习了解气动力与液动力的区别; 2、学习认识气动力教具及作用; 3、学习气流的流动特点; 4、学习能力的转换; 5、巩固学习两点固定;
气动机械手
自行车内胎的容积是一定的,但是 你可以通过打气来增加里面的压力,打 入的气体越多,里面的压力就越大,对 外的反作用力也越大——换一句话,轮 胎变成很硬。 这个例子引入了压缩气体的第二个 重要特征:气体推动容器的壁,表现出 弹性。弹性是让物体形变后恢复到原来 形状的一种特性。弹性越大,恢复到原
相关文档
最新文档