《圆柱、圆锥、圆台和球》参考教案

合集下载

《圆柱、圆锥、圆台和球》参考教案

《圆柱、圆锥、圆台和球》参考教案

《圆柱、圆锥、圆台和球》参考教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.1.3圆柱、圆锥、圆台和球第一课时教学目标:1.能根据几何结构特征理解空间旋转体形成过程;2.认识圆柱、圆锥、圆台和球的结构特征;3.掌握圆柱、圆锥、圆台和球的截面及它们之间的关系.教材分析及教材内容的定位:教材先让学生思考圆柱、圆锥、圆台、球的生成规律,然后给出它们的定义,让学生初步理解“旋转体”的概念.教学中可结合实物模型或计算机演示圆柱、圆锥、圆台、球的生成过程,引导学生思考圆柱、圆锥、圆台、球的结构特征;也可以类比棱柱、棱锥、棱台的生成过程认识圆柱、圆锥、圆台的结构特征;类比圆的定义得出球面的定义.教学重点:让学生感受大量空间实物及模型、概括出圆柱、圆锥、圆台和球的概念.教学难点:难点是区分一个旋转体由哪些基本几何体构成.教学方法:观察、发现、探究.探究学习为主,发挥同学之间合作关系。

教学过程:一、问题情境1.复习棱柱、棱锥、棱台的有关概念.小结:移——缩——截.2.旋转会产生什么样的结果呢?仔细观察下面的几何体,它们有什么共同特点或生成规律?二、学生活动通过观察、思考、交流、讨论得出结论. 三、建构数学1.圆柱、圆锥、圆台的概念;第二课时教学目标:1、理解球面、球体和组合体的基本概念。

2、掌握球的截面的性质。

3、掌握球面距离的概念。

教学重点:球的截面的性质及应用,会求球面上两点之间的距离教学过程:复习引入1、圆柱、圆锥、圆台,它们分别由矩形、直角三角形、直角梯形旋转而成的。

2、通过篮球、排球、足球等等球体的形象引出课题.新授1、球的概念:球也可以由一个平面图形旋转得到。

半圆以它的直径为旋转轴,旋转所成的曲面叫球面。

球面所围成的几何体叫球体,简称球。

指出球心、半径、直径。

值得注意的是:1)球面与球体是两个不同的概念,我们要注意它们的区别与联系。

2)球面的概念可以用集合的观点来描述。

8.3.2圆柱、圆锥、圆台、球的表面积和体积+教学案

8.3.2圆柱、圆锥、圆台、球的表面积和体积+教学案

8.3简单几何体的表面积与体积8.3.2 圆柱、圆锥、圆台、球的表面积与体积教学目标1. 了解圆柱、圆锥、圆台、球的表面积的求法2. 了解圆柱、圆锥、圆台、球的表面积计算公式,解决有关的实际问题 教学重点:圆柱、圆锥、圆台、球的表面积公式和体积公式 教学难点:球的体积公式的推导 教学过程:一、 导入新课,板书课题上节课我们学习了棱柱、棱锥、棱台的表面积和体积的求法,那么这节课我们学习圆柱、圆锥、圆台、球的表面积和体积的求法。

【圆柱、圆锥、圆台、球的表面积与体积】 二、 出示目标,明确任务1. 了解圆柱、圆锥、圆台的表面积的求法2. 了解圆柱、圆锥、圆台的体积的求法3. 了解球的表面积和体积的求法 三、 学生自学,独立思考(打开课本阅读116页-119页内容,限时5分钟) 1.找出你阅读内容中的知识点 2.找出你阅读内容中的重点3.找出你阅读内容中的困惑点、疑难问题 四、自学指导,紧扣教材自学指导一(阅读课本116页 至117页 归纳,限时5 分钟) 1.完成下列表格圆柱底面积: 侧面积:表面积: 圆锥底面积: 侧面积:表面积:圆台底面积: 侧面积:表面积:自学指导二(阅读课本117页 至119页 例4,限时5分钟) 1.球的表面积公式S =_______(R 为球的半径). 2.球的体积公式V =__________. 3. 阅读例3,完成以下几个问题(1)浮标可看成由________和_________组合而成; (2)1个浮标的表面积为:___________. 1000个浮标的表面积为:_________.则1000个浮标涂防水漆需要多少涂料:_______. 4. 阅读例4,完成以下几个问题已知,圆柱的底面直径和高都等于球的直径2R , (1) 球的体积为:________; (2) 圆柱的体积为:________;(3) 球与圆柱的体积之比为:________;五、 自学展示,精讲点拨1.学生口头回答自学指导问题,教师点拨并板书(答案见PPT )2.书面检测:课本119页练习1题 精讲点拨 自学指导1 1. 略2. 观察所给出的体积公式,得出棱柱、棱锥、棱台,它们之间的关系。

1.1.圆柱、圆锥、圆台和球-苏教版必修2教案

1.1.圆柱、圆锥、圆台和球-苏教版必修2教案

1.1.圆柱、圆锥、圆台和球-苏教版必修2教案一、教学目标1.掌握圆柱、圆锥、圆台和球的基本概念和特征。

2.理解圆柱、圆锥、圆台和球的三视图和投影。

3.能够应用相关知识求解实际问题。

二、教学重点1.圆柱、圆锥、圆台和球的基本概念和特征。

2.圆柱、圆锥、圆台和球的三视图和投影。

三、教学难点1.圆柱、圆锥、圆台和球的相似关系。

2.圆柱、圆锥、圆台和球的表面积和体积的计算。

四、教学方法1.讲授法:结合教材对相关概念和知识进行解析和讲解。

2.演示法:通过具体的实例引导学生理解与应用相关知识。

3.实践法:让学生参与到相关问题的求解中,培养其应用知识解决实际问题的能力。

五、教学内容与进度安排1. 圆柱1.圆柱的定义和特征。

2.圆柱的各种投影。

3.圆柱的表面积和体积的计算。

4.圆柱的应用实例。

2. 圆锥1.圆锥的定义和特征。

2.圆锥的各种投影。

3.圆锥的表面积和体积的计算。

4.圆锥的应用实例。

3. 圆台1.圆台的定义和特征。

2.圆台的各种投影。

3.圆台的表面积和体积的计算。

4.圆台的应用实例。

4. 球1.球的定义和特征。

2.球的各种投影。

3.球的表面积和体积的计算。

4.球的应用实例。

六、教学评估1.在学习过程中,及时反馈学生表现和掌握程度,对于表现出色的学生予以鼓励。

2.对于掌握程度较低的学生,及时进行巩固对基础知识的讲解,帮助他们更好地理解相关知识。

3.针对学生掌握程度和能力的不同,进行针对性的个性化评价,为学生提供有效的帮助和指导。

教学设计2:1.1.3 圆柱、圆锥、圆台和球

教学设计2:1.1.3 圆柱、圆锥、圆台和球

1.1.3 圆柱、圆锥、圆台和球教学目标1.认识组成我们生活世界的各种各样的旋转体.2.认识和把握圆柱、圆锥、圆台、球体的几何结构特征. 教学知识梳理知识点一 圆柱、圆锥、圆台 圆柱、圆锥、圆台的定义及结构特征 (1)定义⎭⎪⎬⎪⎫圆柱圆锥圆台分别看作以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫矩形的一边直角三角形的一直角边直角梯形中垂直于底边的腰所在的直线为旋转轴,将⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫矩形直角三角形直角梯形分别旋转一周而形成的曲面所围成的几何体→这类几何体叫旋转体. (2)相关概念①高:在轴上的这条边(或它的长度). ②底面:垂直于轴的边旋转而成的圆面. ③侧面:不垂直于轴的边旋转而成的曲面. ④母线:绕轴旋转的边. (3)图形表示知识点二 球1.定义:一个球面可以看作半圆绕着它的直径所在的直线旋转一周所形成的曲面,球面围成的几何体叫做球. 2.相关概念(1)球心:形成球的半圆的圆心;球的半径:连接球心和球面上一点的线段. (2)球的直径:连接球面上两点并且通过球心的线段. (3)球的大圆:球面被经过球心的平面截得的圆. (4)球的小圆:球面被不经过球心的平面截得的圆.(5)两点的球面距离:在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度,把这个弧长叫做两点的球面距离.3.球形表示特别提醒:球与球面是完全不同的两个概念,球指球面所围成的空间,而球面只指球的表面部分.知识点三旋转体1.定义:由一个平面图形绕着一条直线旋转产生的曲面所围成的几何体.2.轴:这条直线叫做旋转体的轴.知识点四组合体思考组合体是由简单几何体堆砌(或叠加)而成的吗?【答案】不是,组合体的组合方式有多种,可以堆砌,可以挖空等.梳理由柱、锥、台、球等基本几何体组合而成的几何体叫做组合体.教学案例类型一旋转体的结构特征例1下列命题正确的是________.(填序号)①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的几何体是圆锥;⑤半圆面绕其直径所在直线旋转一周形成球;⑥用一个平面去截球,得到的截面是一个圆面.【答案】④⑤⑥【解析】①以直角三角形的一条直角边所在直线为轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的一腰所在直线为轴旋转一周可得到圆台;③它们的底面为圆面;④⑤⑥正确.反思与感悟(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成.②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.跟踪训练1下列命题:①圆柱的轴截面是过母线的截面中最大的一个;②用任意一个平面去截圆锥得到的截面一定是一个圆;③圆台的任意两条母线的延长线,可能相交也可能不相交;④球的半径是球面上任意一点与球心的连线段.其中正确的个数为()A.0 B.1 C.2 D.3【答案】C【解析】②错误,截面可能是一个三角形;③错误,圆台的任意两条母线的延长线必相交于一点;①④正确.故选C.类型二简单组合体的结构特征例2如图所示,已知AB是直角梯形ABCD与底边垂直的一腰.分别以AB,CD,AD为轴旋转,试说明所得几何体的结构特征.解(1)以AB边为轴旋转所得旋转体是圆台,如图(1)所示.(2)以CD边为轴旋转所得旋转体为一组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥.如图(2)所示.(3)以AD边为轴旋转得到一个组合体,它是一个圆柱上部挖去一个圆锥.如图(3)所示.反思与感悟(1)平面图形以一边所在直线为轴旋转时,要过有关顶点向轴作垂线,然后想象所得旋转体的结构和组成.(2)必要时作模型,培养动手能力.跟踪训练2如图(1)、(2)所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?解图(1)、图(2)旋转后的图形如图所示分别是图①、图②.其中图①是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.类型三旋转体中的有关计算命题角度1有关圆柱、圆锥、圆台的计算例3一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)将圆台还原为圆锥后,圆锥的母线长.解(1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得O1A=2 cm,OB=5 cm.又由题意知,腰长为12 cm,所以高AM=122-(5-2)2=315(cm).(2)如图所示,延长BA,OO1,CD交于点S,设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12l=25,解得l=20 cm.即截得此圆台的圆锥的母线长为20 cm.反思与感悟用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.跟踪训练3如图,在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的底面半径.解 设圆锥的底面半径为R ,圆柱的底面半径为r ,则由三角形相似, 得R -r R =342-22, 即1-r 2=12,解得r =1.即圆柱的底面半径为1.命题角度2 球的截面的有关计算例4 在球内有相距9 cm 的两个平行截面面积分别为49π cm 2和400π cm 2,求此球的半径. 解 ①若两截面位于球心的同侧,如图(1)所示的是经过球心O 的大圆截面,C ,C 1分别是两平行截面的圆心,设球的半径为R cm ,截面圆的半径分别为r cm ,r 1 cm.由πr 21=49π,得r 1=7(r 1=-7舍去), 由πr 2=400π,得r =20(r =-20舍去).在Rt △OB 1C 1中,OC 1=R 2-r 21=R 2-49,在Rt △OBC 中,OC =R 2-r 2=R 2-400.由题意可知OC 1-OC =9,即R 2-49-R 2-400=9, 解此方程,取正值得R =25.②若球心在两截面之间,如图(2)所示,OC 1=R 2-49,OC =R 2-400.由题意可知OC 1+OC =9,即R 2-49+R 2-400=9.整理,得R 2-400=-15,此方程无解,这说明第二种情况不存在. 综上所述,此球的半径为25 cm.反思与感悟 设球的截面圆上一点A ,球心为O ,截面圆心为O 1,则△AO 1O 是以O 1为直角顶点的直角三角形,解答球的截面问题时,常用该直角三角形或者用过球心和截面圆心的轴截面求解.跟踪训练4 设地球半径为R ,在北纬45°圈上有A 、B 两地,它们在纬度圈上的弧长等于24πR .求A ,B 两地间的球面距离.解 如图所示,A ,B 是北纬45°圈上的两点,AO ′为它的半径,O 为地球的球心,∴OO ′⊥AO ′,OO ′⊥BO ′. ∵∠OAO ′=∠OBO ′=45°, ∴AO ′=BO ′=OA ·cos 45°=22R . 设∠AO ′B 的度数为α, 则απ180°·AO ′=απ180°·22R =24πR ,∴α=90°. ∴AB =AO ′2+BO ′2=⎝⎛⎭⎫22R 2+⎝⎛⎭⎫22R 2=R . 在△AOB 中,AO =BO =AB =R ,则△AOB 为正三角形, ∴∠AOB =60°.∴A ,B 两地间的球面距离为60°πR 180°=π3R . 课堂小结1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想. 3.处理组合体问题常采用分割思想.4.重视圆柱、圆锥、圆台的轴截面在解决几何问题中的特殊作用,切实体会空间几何平面化的思想. 教学检测1.下列几何体是台体的是( )【答案】D【解析】台体包括棱台和圆台两种,A的错误在于四条侧棱没有交于一点,B的错误在于截面与圆锥底面不平行.C是棱锥,结合棱台和圆台的定义可知D正确.2.下列选项中的三角形绕直线l旋转一周,能得到如下图中的几何体的是()【答案】B【解析】由题意知,所得几何体是组合体,上、下各一圆锥,显然B正确.3.下面几何体的截面一定是圆面的是()A.圆台B.球C.圆柱D.棱柱【答案】B【解析】截面可以从各个不同的部位截取,截得的截面都是圆面的几何体只有球.4.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为________.【答案】2【解析】如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC=34AB2,∴3=34AB2,∴AB=2.故圆锥的母线长为2.5.湖面上浮着一个球,湖水结冰后,将球取出,冰上留下一个直径为24 cm,深为8 cm的空穴,则球的半径为________ cm.【答案】13【解析】设球的半径为R cm,由题意知,截面圆的半径r=12 cm,球心距d=(R-8)cm,由R2=r2+d2,得R2=144+(R-8)2,即208-16R=0,解得R=13 cm.。

。必修2教案:1.1.2圆柱、圆锥和圆台新

。必修2教案:1.1.2圆柱、圆锥和圆台新

1.1.2 圆柱、圆锥、圆台和球【教学目标】1.了解旋转的定义和特点;2.借助于旋转掌握圆柱、圆锥、圆台和球的概念,明确其各自相应的基本图形和性质;3.理解旋转体的概念。

【教学重点】理解圆柱、圆锥、圆台和球的概念的生成过程。

【教学难点】组合体的分割。

【过程方法】利用实物模型、计算机软件观察空间图形、认识圆柱、圆锥、圆台、球、旋转体及其简单组合体的结构特征,并能找出它们之间的联系,确立正确的认识问题的世界观。

【教学过程】一、导入新课:下面的几何体与多面体不同,仔细观察这些几何体,他们有什么共同特点或生成规律?轴底面母线底面1.旋转旋转是指将一个图形上所有点绕着一个固定点或一条固定直线转过相同的角度。

2.圆柱、圆锥、圆台的定义将矩形、直角三角形、直角梯形分别绕着它的一边、一条直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥和圆台,这条直线叫做轴(旋转轴),垂直于轴的边旋转而成的圆面叫做底面,不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边1都叫做母线。

3.圆柱、圆锥、圆台的结构特征(1)圆柱①圆柱的轴通过上、下底面的圆心,并且垂直于底面;②圆柱的母线长都相等,并且等于圆柱的高;③平行于圆柱底面的平面截圆柱所得的截面是与底面相等的圆;④经过圆柱轴的平面截圆柱所得的截面是全等的矩形。

这样的截面称为圆柱轴截面。

(2)圆锥①圆锥的轴过顶点和下底面的圆心,并且垂直于底面;②圆锥的母线长都相等,并且相交于一点;③平行于圆锥底面的平面截圆锥所得的截面是圆面;④经过圆锥的轴的平面截圆锥所得的截面是全等的等腰三角形。

这样的截面称为圆锥轴截面。

(3)圆台①圆台的轴通过上、下底面的圆心,并且垂直于底面;②圆台的所有母线长都相等;③平行于圆台底面的平面截圆台所得的截面是圆面;④经过圆台轴的平面截圆台所得的截面是全等的等腰梯形。

这样的截面称为圆台轴截面。

(4)圆柱、圆锥、圆台的画法4.球的定义半圆绕着它的直径所在的直线旋转一周而形成的几何体叫做球,亦称球体;半圆弧旋转而形成23的曲面叫做球面。

圆柱圆锥圆台教案

圆柱圆锥圆台教案

圆柱圆锥圆台教案教案标题:探索圆柱、圆锥和圆台教学目标:1. 理解圆柱、圆锥和圆台的定义和特征。

2. 能够计算圆柱、圆锥和圆台的表面积和体积。

3. 能够应用所学知识解决与圆柱、圆锥和圆台相关的实际问题。

教学资源:1. 教学投影仪和计算机。

2. 学生教材和练习册。

3. 圆柱、圆锥和圆台的模型或图片。

4. 计算器。

教学步骤:引入活动:1. 使用投影仪展示一张包含圆柱、圆锥和圆台的图片,引起学生的兴趣和好奇心。

2. 向学生提问:“你们知道圆柱、圆锥和圆台是什么吗?它们有什么特点?”鼓励学生积极参与讨论。

教学主体:3. 通过展示圆柱、圆锥和圆台的实物模型或图片,向学生介绍它们的定义和特点。

解释圆柱、圆锥和圆台的底面、侧面、高度等概念。

4. 通过示例计算圆柱、圆锥和圆台的表面积和体积。

引导学生掌握相应的计算公式,并强调正确的单位使用。

5. 分组活动:将学生分成小组,每个小组选取一个圆柱、圆锥或圆台的实物模型,测量其底面半径和高度,并计算出相应的表面积和体积。

鼓励学生相互合作,共同解决问题。

6. 教师巡回指导,确保学生正确理解和应用所学知识。

巩固练习:7. 在教材或练习册上布置一些练习题,涵盖圆柱、圆锥和圆台的表面积和体积计算,以及与实际问题相关的应用题。

鼓励学生独立完成,并及时给予反馈和指导。

拓展活动:8. 鼓励学生自主探索圆柱、圆锥和圆台在日常生活中的应用,例如建筑物、容器等。

鼓励学生分享他们的发现,并进行讨论。

总结:9. 回顾本节课所学内容,强调圆柱、圆锥和圆台的定义和特点,以及表面积和体积的计算方法。

10. 鼓励学生提出问题和疑惑,解答他们的疑问,并鼓励他们继续探索和应用所学知识。

评估:11. 布置一份小测验,检验学生对圆柱、圆锥和圆台的理解和计算能力。

根据学生的表现进行评估和反馈。

教学延伸:12. 鼓励学生进一步研究和探索其他几何形体的表面积和体积计算方法,如球体、棱柱等。

注:教案撰写仅供参考,具体教学内容和步骤可根据实际教学需要进行调整和完善。

圆柱、圆锥、圆台、球的表面积和体积 高中数学获奖教案

圆柱、圆锥、圆台、球的表面积和体积 高中数学获奖教案

8.3.2 圆柱、圆锥、圆台、球的表面积和体积(人教A版普通高中教科书数学必修第二册第八章)一、教学目标1. 数学抽象:通过圆的面积推导方法由球的表面积推出其体积公式。

2. 逻辑推理:通过例题和练习逐步培养学生将理论应用实际的。

3. 数学建模:本节重点是数学中的形在讲解时注重培养学生数形结合能力,有利于数学建模中数形结合能力。

4. 数据分析:通过利用表面积及体积公式解决一些计算问题。

二、教学重难点1.掌握圆柱、圆锥、圆台、球的表面积和体积计算公式和应用;2.掌握棱柱、棱锥、棱台有关的组合体的表面积与体积,会解决球的切、接问题三、教学过程1 创设情景让学生回顾棱柱、棱锥、棱台有关的组合体的表面积与体积【设计意图】把已学知识与新知建立联系,温故知新。

并引出本节新课内容2 新知探究问题1:圆柱、圆锥、圆台的展开图是什么?(小组合作,学生回答,教师点拨)生答:圆柱的侧面展开图为矩形:圆锥的侧面展开图是扇形:圆台的侧面展开图是扇环:问题2:如何求它们的表面积与体积?(提出本节课所学内容)问题3:圆柱、圆锥、圆台三者的表面积与体积公式之间有什么关系?大家能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?小组合作,学生回答,教师点拨问题4:你能将它们统一成柱体、锥体、台体的体积公式吗?柱体、椎体、台体的体积公式之间又有什么关系?小组合作,学生回答,教师点拨【设计意图】段炼学生推理能力, 培养学生数形结合能力.3新知建构圆柱的表面积公式:;圆柱的体积公式:r 是底面半径,h 是高,则;圆锥的表面积公式:;圆锥的的体积公式:r 是底面半径,h 是高,则; 圆台的表面积公式:;圆台的体积公式:,其中S ,分别为上、下底面面积,h 为圆台(棱台)的高 球的表面积公式:(R 为球的半径);球的体积公式:设球的半径为R ,则 球的体积:利用圆的周长求圆的面积的方法,我们可以利用球的表面积求球的体积。

如图,把球O 的表面分成n 个小网格,连接球心O 和每个小网格的顶点,整个球体就被分割成n 个“小锥形”。

《圆柱、圆锥、圆台》示范课教学设计【高中数学教案】

《圆柱、圆锥、圆台》示范课教学设计【高中数学教案】

《圆柱、圆锥、圆台》教学设计◆教学目标理解圆柱、圆锥、圆台、球的定义和结构特征,能识别和区分这些几何体;掌握圆柱、圆锥、圆台的侧面积和表面积公式,能运用公式解决简单的实际问题.◆教学重难点◆教学重点:圆柱、圆锥、圆台的定义、结构特征、侧面积和表面积.教学难点:能够根据圆柱、圆锥、圆台的结构特征识别和区分几何体.◆课前准备PPT课件.◆教学过程一、问题导入问题1:从生活中的一些物体抽象出圆柱、圆锥、圆台.师生活动:生活中的一些物体抽象出圆柱、圆锥、圆台.设计意图:以生活中的实物为出发点,引导学生通过观察,分析、抽象概括出圆柱、圆锥、圆台、球的概念.从而发展学生的逻辑推理、数学建模和直观想象的核心素养.引语:要解决这个问题,就需要进一步学习旋转体.(板书:旋转体)【新知探究】1.分析实例,感知圆柱、圆锥、圆台问题2:如图所示,观察它们的结构,总结出形成圆柱、圆锥、圆台的方式.师生活动:学生分析,给出答案.追问:如何定义旋转体?(让学生自由发挥,分组讨论,一起判断,教师点评.)预设的答案:圆柱:以矩形的一边所在直线为旋转轴,将矩形旋转一周而形成的曲面所围成的几何体称为圆柱.如图(1).圆锥:以直角三角形一直角边所在直线为旋转轴,将直角三角形旋转一周而形成的曲面所围成的几何体称为圆锥.如图(2).圆台:以直角梯形垂直于底边的腰所在直线为旋转轴,将直角梯形旋转一周而形成的曲面所围成的几何体称为圆台.如图(3).旋转体:(1)定义:用类似圆柱、圆锥、圆台的形成方式构成的几何体都是旋转体.(2)有关概念:旋转轴称为旋转体的轴,在轴上的边(或它的长度)称为旋转体的高.垂直于轴的边旋转而成的圆面称为旋转体的底面,不垂直于轴的边旋转而成的曲面称为旋转体的侧面.无论旋转到什么位置,不垂直于轴的边都称为母线.轴截面:在旋转体中,通过轴的平面所得到的截面通常简称为轴截面.如圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.设计意图:培养学生分析和归纳的能力. 发展学生数学抽象和直观想象的核心素养.2.在大量实例感知的基础上,总结出圆柱、圆锥、圆台的侧面积、表面积公式.问题3:如何定义、计算圆柱、圆锥、圆台的侧面积、表面积?师生活动:学生分析,给出答案.预设的答案:旋转体的侧面积:旋转体侧面的面积称为旋转体的侧面积.旋转体的表面积:侧面积与底面积之和称为旋转体的表面积(全面积).为了求圆柱、圆锥、圆台的表面积,分别需要知道哪些条件?怎样求出它们的表面积?圆柱的底面积、侧面积、表面积底面积:S底=πr2、侧面积:S侧=2πrl、表面积:S=2πr2+2πrl圆锥的底面积、侧面积、表面积底面积:S底=πr2、侧面积:S侧=2πrl、表面积:S=πr2+πrl圆台的底面积、侧面积、表面积上底面面积:S上底=πr′2、下底面面积:S下底=πr2、侧面积:S侧=π(r+r′)l、表面积:S=πr2+πr′2+π(r+r′)l设计意图:培养学生分析和归纳的能力.【巩固练习】例1. 写出圆台中任意两条母线的位置关系,任意一条母线与底面的位置关系,以及两个底面的位置关系.师生活动:学生分析解题思路,给出答案.预设的答案:圆台中任意两条母线都相交,任意一条母线与底面都相交,两个底面相互平行.设计意图:学生经历抽象过程、发展学生数学抽象、数学运算、逻辑推理的核心素养.例2. (1)圆柱′的底面直径为4,母线长为6,则该圆柱的侧面积为________,表面积为________.(2)如图,圆锥的底面半径为1,高为3,则圆锥的侧面积为________.师生活动:学生分析解题思路,给出答案.预设的答案:(1)24π32π;(2)2π设计意图:通过观察与分析,获得锥、柱的相关概念,提高学生的数学抽象、数学建模及逻辑推理的核心素养.【课堂小结】问题:(1)圆柱、圆锥、圆台的关系有哪些?(2)与旋转体的轴截面有关的计算有哪些?(3)如何计算圆柱、圆锥、圆台的侧面积?师生活动:学生尝试总结,老师适当补充.预设的答案:1.圆柱、圆锥、圆台的关系如图所示.2.旋转体的轴截面中有母线、底面半径、高等主要元素,因而,在涉及这些元素的计算时,通常利用轴截面求解.在圆台的轴截面中,将等腰梯形的两腰延长,在三角形中可借助相似求解.这种立体问题平面化是解答旋转体中计算问题最常用的方法.3.圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形状及侧面展开图中各线段与原旋转体的关系,是掌握它们的侧面积公式及解有关问题的关键.设计意图:以生活中的实物为出发点,引导学生通过观察,分析、抽象概括出圆柱、圆锥、圆台、球的概念.从而发展学生的逻辑推理、数学建模和直观想象的核心素养.布置作业:【目标检测】1. 正方形绕其一条对角线所在直线旋转一周,所得几何体是()A.圆柱B.圆锥C.圆台D.两个圆锥设计意图:旋转体概念辨析2. 关于圆台,下列说法正确的是________.①两个底面平行且全等;②圆台的母线有无数条;③圆台的母线长大于高;④两底面圆心的连线是高.设计意图:进一步掌握圆台的有关概念.3. 一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为________cm.设计意图:进一步掌握圆锥的有关计算.4. 已知一个圆柱的轴截面是一个正方形且其面积是Q ,求此圆柱的底面半径. 设计意图:进一步掌握圆柱的有关计算.设计意图:进一步掌握球的表面积的有关计算. 参考答案: 1.D 连接正方形的两条对角线知对角线互相垂直,故绕对角线旋转一周形成两个圆锥.2.②③④ 圆台的上底面和下底面是两个大小不同的圆,则①不正确,②③④正确.3.103 如图是圆锥的轴截面,则SA =20 cm .∠ASO =30°,∴AO =10 cm ,SO =10 3 cm.4.设圆柱底面半径为r ,母线为l ,则由题意得⎩⎪⎨⎪⎧2r =l ,2r·l =Q ,解得r =Q 2. 所以此圆柱的底面半径为Q 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.3圆柱、圆锥、圆台和球
第一课时
教学目标:
1.能根据几何结构特征理解空间旋转体形成过程;
2.认识圆柱、圆锥、圆台和球的结构特征;
3.掌握圆柱、圆锥、圆台和球的截面及它们之间的关系.
教材分析及教材容的定位:
教材先让学生思考圆柱、圆锥、圆台、球的生成规律,然后给出它们的定义,让学生初步理解“旋转体”的概念.教学中可结合实物模型或计算机演示圆柱、圆锥、圆台、球的生成过程,引导学生思考圆柱、圆锥、圆台、球的结构特征;也可以类比棱柱、棱锥、棱台的生成过程认识圆柱、圆锥、圆台的结构特征;类比圆的定义得出球面的定义.
教学重点:
让学生感受大量空间实物及模型、概括出圆柱、圆锥、圆台和球的概念.
教学难点:
难点是区分一个旋转体由哪些基本几何体构成.
教学方法:
观察、发现、探究.探究学习为主,发挥同学之间合作关系。

教学过程:
一、问题情境
1.复习棱柱、棱锥、棱台的有关概念.
小结:移——缩——截.
2.旋转会产生什么样的结果呢?
仔细观察下面的几何体,它们有什么共同特点或生成规律?
二、学生活动
通过观察、思考、交流、讨论得出结论.三、建构数学
1.圆柱、圆锥、圆台的概念;
第二课时
教学目标:1、理解球面、球体和组合体的基本概念。

2、掌握球的截面的性质。

3、掌握球面距离的概念。

教学重点:球的截面的性质及应用,会求球面上两点之间的距离教学过程:
复习引入
1、圆柱、圆锥、圆台,它们分别由矩形、直角三角形、直角梯形旋转而成的。

2、通过篮球、排球、足球等等球体的形象引出课题.
新授
1、球的概念:球也可以由一个平面图形旋转得到。

半圆以它的直径为旋转轴,旋转所成的曲面叫球面。

球面所围成的几何体叫球体,简称球。

指出球心、半径、直径。

值得注意的是:
1)球面与球体是两个不同的概念,我们要注意它们的区别与联系。

2)球面的概念可以用集合的观点来描述。

球面是
由点组成的,球面上的点有什么共同的特点呢?与定点
的距离等于定长的所有点的集合(轨迹)叫球面。

如果
点到球心的距离小于球的半径,这样的点在球的部.否
则在外部.
3)球的表示:用表示球心的字母表示球,比如,球O.
2、球的截面的性质:用一个平面去截球,得到一个截面,截面是圆面,把过球心的截面圆叫大圆,不过球心的截面圆叫小
圆.
球的截面有什么性质呢?连接球心与截
面圆心,连线OO 1与截面圆O 1会有什么关系
呢?
1)球心与截面圆心的连线垂直于截面。

2)设球心到截面的距离为d ,截面圆的半径为r ,球的半径为R ,则:r=22d R
3、练习一:
判断正误:(对的打√,错的打×)
(1)半圆以其直径为轴旋转所成的曲面叫球。

( )
(2)到定点的距离等于定长的所有点的集合叫球。

( )
(3)球的小圆的圆心与球心的连线垂直于这个小圆所在平面。

()
(4)经过球面上不同的两点只能作一个大圆。

()
(5)球的半径是5,截面圆的半径为3,则球心到截面圆所在平面的距离为4。

()
4、关于地球的几个概念:地球可以近似的看作一个球体,为了描述地球上某地的地理位置,我们在地球上规定了经线、纬线、南极、北极等概念。

5、球面距离:假如我们要坐飞机从到巴西去,选择怎样的航线航程最短呢?我们把球面上过两点的大圆,在这两点之间的劣弧的长叫球面上两点间的球面距离。

因此,飞机、轮船都尽可能以大圆弧为航线航行。

6、例1我国首都靠近北纬40度。

(1)求北纬40°纬线圈的半径约为多少千米。

(2)求北纬40度纬线的长度约为多少千米(地球半径约为
6370千米)。

7、练习二:
1)填空
(1)设球的半径为R,则过球面上任意两点的截面圆中,最
大面积是。

(2)过球的半径的中点,作一个垂直于这条半径的截面,则
这截面圆的半径是球半径的。

(3)在半径为R的球面上有A、B两点,半径OA、OB的夹角是n°(n≤180,求A、B两点的球面距离。

2)地面上,地球球心角1′所对的大圆弧长约为1海里,一海里约是多少千米?3)思考题:地球半径为R,A、B是北纬45°纬线圈上两点,它们的经度差是90°,求A、B两地的球面距离。

8、组合体
请举出一些由柱、锥、台组合而成的几何体的实例
课堂练习:
小结:
a)半圆以它的直径为旋转轴,旋转所成的曲面叫做球面。

球面所围成的几
何体叫做球体.
b) 以过球心的平面截球面,截面圆叫大圆。

以不经过球心的平面截球面,
截面圆叫小圆.
c) 球心和截面圆心的连线垂直于截面,由勾股定理,有:22d R r -=. d) 把地球看作一个球时,经线就是球面上从北极到南极的半个大圆。

赤道
是一个大圆,其余的纬线都是小圆.
球面距离是球面上过两点的大圆在这两点之间的劣弧的长度.
课后作业:略。

相关文档
最新文档