李春晓毕业论文之排队论模型及其应用
排队论在超市的运用与分析学士学位论文

排队论在超市的运用与分析摘要近年来,大型超市不断的兴起给人们带来了许多便利。
但是由于种种原因大型超市的排队服务系统并不完善,常常出现了队列过长或者服务台空闲等问题,因此,优化大型超市排队服务系统,减短队列便有具有了重大意义。
本文针对沈阳乐购超市服务排队系统进行优化。
首先对排队论的相关知识进行介绍,对多服务窗等待制M/M/n/∞/∞排队模型进行了重点阐述。
其次对沈阳乐购超市浑南店顾客服务时间,到达时间等数据进行调查,取得原始数据代入排队模型进行实证分析,计算出了相应的目标参量,确定了该超市各个时段应该开放的最佳收银台的数量。
然后运用FLEXSIM对服务系统进行仿真以确定该优化方案是可行的。
在此基础上本文对乐购超市的收银通道,扫描,员工专业度等方面提出问题并对其优化,最后对超市的发展提出意见。
本文的研究成果对大型商场、医院、银行等具有收费服务系统的服务企业具有普遍的借鉴意义。
关键词:大型超市;排队服务系统;建模;仿真;优化AbstractIn recent years, the continuous rise of large supermarkets have brought a lot of convenience to peaple. However, due to various reasons, the large supermarket's queuing system is not perfect, many problems often arised, such as the queue is too long or deskes are idling. Therefore, to optimize the queuing service system of large supermarket to shorten the queue will have a great significance.This thesis aimed at to optimize the service queuing system of Shenyang Tesco Supermarket. At first, the knowledge about queuing theory has beed introduced, and the multi-window waiting for M/M/n/∞/∞queuing model has beed focused on. Secondly, a survey of customer service time, arrival time and other data has beed conducted at Shenyang Tesco supermarket Hunnan store. Then, the original data abtained from the survey has been put into the queuing model to conduct a empirical analysis. And as a result, the corresponding target parameters are calculated, and so to determine the number of cash register at various hours of the supermarket should beed opened. Next, by using the FLEXSIM service system to conduct a simulation, finding out the optimization is feasible. On this basis, this thesis discussed the problem of cashier channel, scanning equipment and staff professionalism of the Tesco supermarket,and optimizing these problem at the same time.Finally, this thesis has give some advices about how to development the supermarket.The results of this paper have universal referenceto for large shopping malls, hospitals, banks and other service enterprises who have the fee-based services systems.Keywords: supermarkets; queuing service system; modeling; simulation; optimization目录摘要 (I)Abstract (II)目录 ........................................................................................................................................ I II 1 绪论 .. (1)1.1 课题研究的背景及意义 (1)1.2 国内外研究现状 (1)1.3论文的主要研究内容及组织结构 (4)1.3.1论文主要研究内容 (4)1.3.2 论文主要组织结构 (4)2 超市排队服务系统相关理论知识 (5)2.1 排队论 (5)2.1.1 排队论的概念与发展 (5)2.1.2 排队论研究的内容 (6)2.2 排队系统 (7)2.2.1 排队系统的组成 (7)2.2.2 排队系统的主要指标 (9)2.2.3排队系统的最优化 (10)2.3 排队系统的建模 (12)2.3.1系统建模的要求 (12)2.3.2系统建模的原则 (12)2.3.3系统建模的方法 (13)2.3.4系统建模的步骤 (13)2.3.5排队系统建模的符号与分类 (14)2.3.6 M/M/n/∞/∞模型 (14)2.4 排队系统的仿真 (15)2.4.1 离散事件系统仿真 (15)2.4.2 FLEXSIM软件的介绍 (16)3 服务系统数据采集与指标计算 (17)3.1 沈阳乐购超市周边环境描述 (17)3.2 数据采集 (17)3.2.1 顾客到达时间服从分布的研究 (20)3.2.2 顾客服务时间服从分布的研究 (23)3.3 系统指标计算及优化 (25)3.3.1 超市收银服务系统应用排队模型 (25)3.3.2 系统指标计算 (26)3.4 大型超市各时段最优服务台数确定 (27)4 顾客排队状况的计算机仿真 (31)4.1 排队服务系统模型假设 (31)4.2 顾客排队状况的计算机仿真 (32)4.3 超市排队服务系统的主要参数技术指标结果分析 (37)5 大型超市服务工作优化设计 (40)5.1 现有超市收银服务工作 (40)5.2 超市收银通道优化 (41)5.3 超市商品扫描结算工作优化 (43)5.4 员工专业度的改进 (45)5.4 对超市发展的建议 (45)结论 (46)致谢 (47)参考文献 (48)附录A (50)附录B (58)1 绪论1.1 课题研究的背景及意义排队服务系统在人们实际生产生活中应用十分广泛,如顾客到超市付款,病人在医院排队看病,此外,计算机网络中数据的存储转发、电话机的占线问题、交通枢纽的车船堵塞和疏导、水库的存储调节等等都是排队现象。
排队论模型在采血室护理人员配置中的应用

21 0 2年 7月
・
护
理
管
理
杂
志
J 12 2 u .01
Vo . 2 No 7 1 1 .
【 关键词 】 队论模型 ; 排 人力资源 ; 护理人员
中图分类号 : 17 3 R 9 .2 文献标 识码 : B 文章编号 :6 1— 1X(0 2 0 0 2 17 3 5 2 1 )7— 5 9—0 3
A p i t n o u u n e r d ln n res f n lo ol t n r o / HEN Yu , ig , p l a i f e ig t o y mo e i u s ti gi b o d c l ci o ms C c o q h a n e o n LI n GAO Qin / o r a o ri gAd P a g / J un l f Nu s _ n
【 要】 摘 目的 探讨排 队论模 型在采血室护理人员配置 中的应用效果 。方法
护理人 员前 后患者及 护理 人员进行 满意度调查 。结果
运用现场调查法和排队论模 型, 计算护理人员服务强度 、 护理人员
在 1h内空 闲的概率 、 患者平均 系统停 留人数 、 平均排 队等待时 间、 平均停 留时间 、 患者到达后需要等待的概率等运行指标 , 并对应用排队论模型配置 通过分 析得 出上午采血室配置 5名护理人员 、 午配置 2名护理人 员最合理 。在应用排 队 下 运用排队论模 型配备采血室护理人员合理可行 , 值得推广。 论模 型配置人员后 护理人 员及患者满意度均明显提高( P<0 O ) . 1 。结论
数学建模方法及其应用医院排队论模型

排队系统模拟
所谓排队系统模拟,就是利用计算机对一个客 观复杂的排队系统的结构和行为进行动态模拟,以 获得反映其系统本质特征的数量指标结果,进而预 测、分析或评价该系统的行为效果,为决策者提供 决策依据.
如果医院增添服务人员和设备,就要增加投资或发生空闲浪费; 如果减少服务设备,排队等待时间太长,对患者和社会都会带来不良 影响.
的; ③ 普通性:在同时间点上就诊或手术最多到达1个患者, 不
存在同时到达2个以上患者的情况; ④ 有限性:在有限的时间区间内只能到达有限个患者, 不可
能有无限个患者到达.
患者的总体可以是无限的也可以是有限的; 患者到来方式可以是单个的,也可以是成批的;
相继到达的间隔时间可以是确定的,也可是随机 的; 患者的到达可以是相互独立的,也可以是关联; 到来的过程可以是平稳的,也可是非平稳的;
医院排队系统的组成
排队系统的基本结构由四个部分构成:来到过 程(输入)、服务时间、服务窗口和排队规则. 1、来到过程(输入)是指不同类型的患者按照各 种 规律来到医院. 2、服务时间是指患者接收服务的时间规律. 3、服务窗口则表明可开放多少服务窗口来接纳患 者. 4、排队规则确定到达的患者按照某种一定的次序 接 受服务.
设在任意时刻t系统中有n个患者的概率Pn(t). 当系统达到稳 定状态后,Pn(t)趋于平衡Pn且与t无关. 此时,称系统处于统计平衡 状态,并称Pn为统计平衡状态下的稳态概率.
Pn=(1- ) n, n = 0, 1, 2, … . 其中 =/ 表示有效的平均到达率与平均服务率 之比(0< <
1).
医院排队论模型
医院就医排队是一种经常遇见的非常熟悉的现象.它每天以这 样或那样的形式出现在我们面前. 例如,患者到医院就医,患者到药 房配药、患者到输液室输液等,往往需要排队等待接受某种服务.
M M C ∞排队系统模型及其应用实例分析

M M C ∞排队系统模型及其应用实例分析摘要:文章阐述了M/M/C/∞排队系统的理论基础,包括排队论的概念,排队系统的基本组成部分以及排队系统的模型。
在理论分析的基础上,文章以建行某储蓄所M/M/C/∞排队系统为例,对该系统进行分析并提出了最优解决方案。
关键词:排队论;银行储蓄所;M/M/C/∞模型;最优解1M/M/C/∞排队系统1.1排队论的概念及排队系统的组成上世纪20年代,丹麦数学家、电气工程师爱尔朗(A. K. Erlang)在用概率论方法研究电话通话问题时,开创了这门应用数学学科。
排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。
研究排队问题实质上就是研究如何平衡等待时间与服务台空闲时间。
目前,排队论已经广泛应用于通信工程、交通运输、生产与库存管理、计算机系统设计、计算机通信网络、军事作战、柔性制造系统和系统可靠性等众多领域。
任意一个排队系统都是由三个基本部分构成,即输入过程、排队规则和服务机构。
①输入过程是描述顾客来源以及顾客按什么规律达到排队系统。
②排队规则描述的顾客到达服务系统时顾客是否愿意排队,以及在排队等待情形下的服务顺序。
③服务机构描述服务台数目及服务规律。
服务机构可分为单服务台和多服务台;接受服务的顾客是成批还是单个的;服务时间服从何种分布。
1.2M/M/C/∞排队模型①排队系统模型的表示。
目前排队模型的分类采用1953年由D. G. Kendall 提出的分类方法。
他用3个字母组成的符号A/B/C表示排队系统。
为了表示其它特征有时也用4~5个字母来表示如A/B/C/D/E。
其中:A 顾客到达间隔时间的概率分布;B 服务时间的概率分布;C 服务台数目;D 系统容量限制(默认为∞);E 顾客源数目(默认为∞);概率分布的符号表示:M:泊松分布或负指数分布,D:定长分布,Ek:k阶爱尔朗分布,C:一般随机分布。
②排队系统的衡量指标。
排队论模型及其应用

排队论模型及其应用摘要:排队论是研究系统随机服务系统和随机聚散现象匸作过程中的的数学理论和方法,乂叫随机服务的系统理论,而且为运筹学的一个分支。
乂主要称为服务系统,是排队系统模型的基本组成部分。
而且在日常生活中,排队论主要解决存在大量无形和有形的排队或是一些的拥挤现象。
比如:学校超市的排队现象或岀行车辆等现象,。
排队论的这个基本的思想是在1910年丹麦电话工程师埃尔朗在解决自动电话设计问题时开始逐渐形成的。
后来,他在热力学统计的平衡理论的启发下,成功地建立了电话的统讣平衡模型,并山此得到了一组呈现递推状态方程,从而也导出著名的埃尔朗电话损失率公式。
关键词:出行车辆;停放;排队论;随机运筹学引言:排队论既被广泛的应用于服务排队中,乂被广泛的应用于交通物流领域。
在服务的排队中到达的时间和服务的时间都存在模糊性,例如青岛农业大学歌斐木的人平均付款的每小时100人,收款员一小时服务30人,因此,对于模糊排队论的研究更具有一些现实的意义。
然而有基于扩展原理乂对模糊排队进行了一定的分析。
然而在交通领域,可以非常好的模拟一些交通、货运、物流等现象。
对于一个货运站建立排队模型,要想研究货物的一个到达形成的是一个复合泊松过程,每辆货车的数量为陷而且不允许货物的超载,也不允许不满载就发车,必须刚刚好,这个还是一个具有一般分布装车时间的一个基本的物流模型。
一.排队模型排队论是运筹学的一个分支,乂称随机服务系统理论或等待线理论,是研究要求获得某种服务的对象所产生的随机性聚散现象的理论。
它起源于A.K.Er-lang的著名论文《概率与电话通话理论》。
一般排队系统有三个基本部分组成⑴:(1)输入过程:输入过程是对顾客到达系统的一种描述。
顾客是有限的还是无限的、顾客相继到达的间隔时间是确定型的也可能是随机型的、顾客到达是相互独立的还是有关联的、输入过程可能是平稳的还是不平稳的。
(2)排队规则:排队规则是服务窗对顾客允许排队及对排队测序和方式的一种约定。
排队论及其运用于服务系统建模

排队论及其运用于服务系统建模引言:在现代社会中,服务系统扮演着越来越重要的角色。
从餐厅点餐到银行处理业务,服务系统的设计和运作对于提高效率和顾客满意度至关重要。
而排队论作为研究服务系统的一门数学理论,可以帮助我们理解和优化服务系统的运行。
本文将深入探讨排队论的概念和其在服务系统建模中的应用。
第一部分:排队论概述排队论是一门专注于研究顾客到达、排队和离开系统的数学理论。
它以概率论和统计学为基础,通过建立数学模型来描述和分析排队过程。
排队论的核心是研究以下几个重要指标:到达率、服务率、排队长度、平均等待时间以及系统利用率。
第二部分:排队模型为了对服务系统进行建模,排队论提供了几种常用的排队模型。
其中最常见的是M/M/1模型,指的是顾客到达过程和服务过程均服从指数分布,并且只有一个服务员的情况。
M/M/1模型可以通过排队模型的参数(到达率λ和服务率μ)来计算出系统稳态下的指标,如平均等待时间、顾客在系统中的平均逗留时间等。
除了M/M/1模型,还有其他排队模型,如M/M/c模型(指定有c个服务员)、M/M/∞模型(无限个服务员)等。
每个排队模型都可以根据实际情况进行调整和适用。
第三部分:优化服务系统排队论不仅仅是对服务系统进行建模,还可以为我们提供优化服务系统的方法和策略。
通过对排队模型的分析,我们可以确定合适的服务员数量、调整服务速度或者重新分配资源来提高服务系统的效率。
一种常用的优化方法是引入优先级调度。
通过设定不同类型顾客的优先级,可以确保特定顾客获得更快的服务,提高服务的公平性和满意度。
此外,排队论可以帮助我们评估和优化服务系统的容量。
通过模拟排队模型,可以预测系统的瓶颈和峰值时段,从而优化资源分配和服务安排。
第四部分:实际案例为了更好地理解排队论的应用,我们可以通过一个实际案例来说明。
假设一家特定规模的餐厅,我们需要优化其服务系统以提高顾客满意度和经营效益。
首先,通过调查和数据收集,我们可以确定顾客的平均到达率和服务的平均速度。
应用排队论解决银行排队问题

应用排队论解决银行排队问题:近年来,随着我国社会经济的发展和国民收入水平的提高,普通居民与银行之间的交易,从原先单一的钱款存取发展到信贷、缴费和理财等各个方面;另外银行承担的公共事业费用代收代缴职能越来越多,而银行的服务能力却没有同等幅度的提高。
这就造成了迅速增长的个人金融需求和银行服务供给不足的矛盾,导致银行业务柜台前的队伍越来越长,顾客排队等待时间也越来越长,极大地影响了银行的服务质量。
各家银行为减少排队等候时间也是八仙过海、招数频出,甚至将顾客等候时间列入银行相关管理人员的责任考核指标。
尽管这样,银行的排队问题依然没有很好解决。
实际上,银行的排队问题蕴涵了丰富的数学、运筹学、行为学、管理学等学科的知识理论,绝不是看上去的那么简单。
一般地,银行的排队问题是由顾客数量、服务水平和服务窗口数量等因素综合决定,服务水平可通过银行内部管理实现,顾客多要减少排队等候时间就要增加服务窗口,就要增加投入,而增加窗口有可能出现空闲,又浪费资源。
因此,解决银行排队问题就是要尽可能地找到一个平衡点,使三者达到最佳的平衡状态。
近年来对于银行排队现象,已经提出了一些具体的解决方案,如下:1、排队方式(1)传统方式——多路排队(M/M/1模型)传统排队系统是多对列多服务台的M/M/1模型,输入过程为泊松分布,服务时间为指数分布,C个服务台独立运作。
客户到达后选最短的队伍排队,每个新到顾客都选择当前时刻最短的队伍,所以总体来看各队列等候人数相近。
缺点:1)每个客户业务不同,选择队列时面临着不确定性,看似最短的队列可能因为前面的业务繁琐而等待最长。
2)下面几种情况会引起客户埋怨:相同长的队伍,因为业务复杂程度或工作人员熟练程度不同,造成后到的人反而先办理了业务;在排队中突然新开窗口,客户一拥而上,破坏了正常秩序;快要轮到自己时银行关闭窗口使得前功尽弃;排到窗口后,因未填写、填错单子,或者该窗口只办理特定业务而被告知排错了队,需要重新排队。
排队论模型在医院管理中的应用论文

排队论模型在医院管理中的应用论文【关键词】应用,模型,排队,患者,服务,系统,时间,诊室,等待,门诊,医院门诊的特点是患者流量不稳定,由于患者到达时间和诊治患者所需时间的随机性,可控性小,因此,在合理安排诊室和医生等方面存在一定的困难。
当诊室不足时,常出现患者等待时间延长,患者满意度下降,造成工作过于忙乱,易引起医患纠纷,对社会带来不良影响。
通过对诊室排队系统的研究,科学、量化、准确地描述排队系统的概率规律性,同时对诊室和医生安排进行最优设计和最优运营提出科学有效的整改意见,为门诊工作的安排提供量化、科学的依据,以增加预见性,减少盲目性,从而最大限度地满足患者及家属的需要,同时有效地避免资源浪费,从源头上解决目前“看病贵、看病难”的社会问题。
1研究对象选取医院门诊患者为研究对象,建立排队系统。
以患者到达诊室登记等待为标志,进入诊室排队系统;排队等待的患者数及空间在理论上无限制;患者按照先到先服务的原则,排成一队,依次进入诊室治疗;患者离开诊室表示服务完成,离开排队系统。
2医院门诊排队系统的组成与一般的排队系统相同,医院的门诊排队系统的基本结构由四个部分构成:来到过程(输入)、服务时间、服务窗口和排队规则。
2.1来到过程(输入)是指不同类型的患者按照各种规律来到医院患者的总体可以是无限的也可以是有限的;可以单个或成批到来;相继到达的间隔时间可以是确定的(预约门诊)或随机的;患者的到来可以是相互独立或有关联的;到来的过程可以是平稳的,也可是非平稳的。
2.2服务时间是指患者接收服务的时间规律患者接受服务的时间是随机的,其规律是通过概率分布描述,由于一般排队系统的服务时间往往服从负指数分布:即每位患者接受服务的时间是独立同分布的,其分布函数为:B(t)=1-e-μt(t≥0)其中μ>0为一常数,代表单位时间的平均服务率,而1/μ则是平均服务时间。
2.3服务窗口即可开放多少诊室和医生来接纳患者服务窗口的主要属性是服务台的个数,门诊系统明显是多服务台且属于多服务台并联型2.4排队规则确定到达的患者按照某种一定的次序接受医疗服务一般分为三类:损失制、等待制、混合制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排队论模型及其应用
摘要:排队论是研究系统随机服务系统和随机聚散现象工作过程中的的数学理论和方法,又叫随机服务的系统理论,而且为运筹学的一个分支。
又主要称为服务系统,是排队系统模型的基本组成部分。
而且在日常生活中,排队论主要解决存在大量无形和有形的排队或是一些的拥挤现象。
比如:学校超市的排队现象或出行车辆等现象,。
排队论的这个基本的思想是在1910年丹麦电话工程师埃尔朗在解决自动电话设计问题时开始逐渐形成的。
后来,他在热力学统计的平衡理论的启发下,成功地建立了电话的统计平衡模型,并由此得到了一组呈现递推状态方程,从而也导出著名的埃尔朗电话损失率公式。
关键词:出行车辆;停放;排队论;随机运筹学
引言:排队论既被广泛的应用于服务排队中,又被广泛的应用于交通物流领域。
在服务的排队中到达的时间和服务的时间都存在模糊性,例如青岛农业大学歌斐木的人平均付款的每小时100人,收款员一小时服务30人,因此,对于模糊排队论的研究更具有一些现实的意义。
然而有基于扩展原理又对模糊排队进行了一定的分析。
然而在交通领域,可以非常好的模拟一些交通、货运、物流等现象。
对于一个货运站建立排队模型,要想研究货物的一个到达形成的是一个复合泊松过程,每辆货车的数量为W,而且不允许货物的超载,也不允许不满载就发车,必须刚刚好,这个还是一个具有一般分布装车时间的一个基本的物流模型。
一.排队模型
排队论是运筹学的一个分支,又称随机服务系统理论或等待线理论,是研究要求获得某种服务的对象所产生的随机性聚散现象的理论。
它起源于A.K.Er-lang的著名论文《概率与电话通话理论》。
一般排队系统有三个基本部分组成]1[:
(1)输入过程:
输入过程是对顾客到达系统的一种描述。
顾客是有限的还是无限的、顾客相继到达的间隔时间是确定型的也可能是随机型的、顾客到达是相互独立的还是有关联的、输入过程可能是平稳的还是不平稳的。
(2)排队规则:
排队规则是服务窗对顾客允许排队及对排队测序和方式的一种约定。
排队规则可以分为3种制式:
a 损失制系统------顾客到达服务系统时,如果系统中的所有服务窗均被占用,则顾客即时离去,不参与排队,因为这种服务机制会失掉许多顾客,故称损失制系统;
b 等待制系统------顾客到达服务系统时,虽然发现服务窗均忙着,但系统设有场地供顾客排队等候之用,于是到达系统的顾客按先后顺序进行排队等候服
务。
通常的服务规则有先到先服务,后到后服务、随机服务、优先服务等;
c 混合制系统------它是损失制与等待制混合组成的排队系统。
顾客到达服务系统时,若服务员都不空但有排队位置,就排队,如果服务员都不空且排队位置已满,顾客就立即离去。
(3)服务窗
a 系统可以无窗口、一个窗口或多个窗口为顾客进行服务;
b 在多个服务窗情形,顾客排队可以平行多队排列,串列或者并串同时存在的混合排队;
c 一个服务窗可以为单个顾客或成批顾客进行服务;
d 各窗口的服务时间可以为确定性或者随机型,服务时间往往假定是平稳的;
(4)排队系统中的目标参量
排队论中几个性能指标:系统中的平均排队长度Lq,表示系统内排队等候顾客数的均值;顾客在系统中的平均等待时间Wq,顾客在系统中的平均逗留时间Ws,系统中的平均顾客数Ls;
排队论中几个常用的数量指标:平均到达率λ,平均服务率μ,系统中并联服务台的数目S,服务台强度,即每个服务台单位时间间隔内的平均服务时间ρ,系统的稳态概率P0和繁忙概率P。
二.M/M/s模型
排队系统的一般形式符号为:X/Y/Z/A/B/C。
其中:X表示顾客相继到达时间间隔的分布;Y表示服务时间的分布;Z表示服务台的个数;A表示系统的容量,即可容纳的最多顾客数;B表示顾客源的数目;C表示服务规则。
排队论的基本问题是研究一些数量指标在瞬时或平稳状态下的概率分布及其数字特征,了解系统运行的基本特征;系统数量指标的统计推断和系统的优化问题等。
当系统运行一定时间达到平稳后,对任一状态n来说,单位时间内进入该状态的平均次数和单位时间内离开该状态的平均次数应相等,即系统在统计平衡下“流入=流出”。
据此,可得任一状态下的平衡方程如下:
由上述平衡方程,可求的:
平衡状态的分布为:)1(,2,1,0 ==n p C p n n 其中:)2(,2,1,1
1021 ==---n C n n n n n μμμλλλ 有概率分布的要求:10=∑∞=n n p ,有:1100=⎥⎦
⎤⎢⎣⎡+∑∞=p C n n ,则有:
)3(11
00 ∑∞=+=n n
C p
注意:(3)当式只有当级数∑∞=o n n C 收敛时才有意义,即当∑∞
=〈∞o n n C 时才能由
上述公式得到平稳状态的概率分布。
三.超市模型举例
假定去那个青岛农业大学歌斐木超市的学生在
高
峰期这段时间达到的人数是无限的,并且一次以参数λ的泊松过程达到,达到的时间间隔是随机的,服从负指数分布。
每个服务台以并联的方式连接,且每个服务台对学生来说都是一样的,服务时间服从参数为μ的负指数分布。
超市实行先来先服务原则,且顾客可自由在队列间进行转移,并总向最短的对转移,没有顾客会因为队列过长而离去,故可认为排队方式是单一队列等待制。
以下数据来源于网络
高峰期超市的顾客流分布情况:共统计了3059人次的数据(以10秒为一个
单位),见下表:表一 每10秒到达人数 1 2 3 4 5 7 频数 257 441 894 956 350 161
由概率论的知识可知,若分布满足k
p p k k λ=-1,则该分布为泊松分布。
(其中k p 为泊松分布的密度,λ为泊松分布的参数)
由上表可知λ=3.39。
3.2模型建立及求解
基于以上的假设,我们的模型符合排队论中的多服务台等待模型(M/M/s).该模型的特点是:服务系统中有s 个窗口(即s 个服务员),顾客按泊松流来到服务系统,到达强度为λ;服务员的能力都是μ,服务时间服从指数分布,每个顾客的平均服务时间t 。
当顾客到达时,如果所有服务员都忙着,顾客便参加排队等待服务,一直等到有服务员为他服务为止。
由我的调查数据可知6,5.1,39.3===s t λ(食堂现有窗口6个)带入以上各式可得:
服务员能力:67.01==t μ 系统服务强度:09.5==μ
λρ,因为85.0609.5===s s ρρ<1,所以极限存在。
空闲概率:()031.0!!1100=⎥⎦⎤⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛=-+=∑ρρρn n i p n n i i
系统中排队顾客的平均数:()271!20=-=
s s s q s p L ρρρ 顾客平均排队时间:96.739
.327===λq q L W 顾客平均逗留时间:46.95.196.7=+=+=t W W q
系统中顾客的平均数:09.3209.527=+=+=ρq L L
由此可见,当我们在这个时间段超市买东西时,一进门就会发现里面已经是人满
为患了,几乎不可能找到空闲的服务台。
而且,已经有32个顾客在排队付款,27个人这在排队等待,平均一个窗口5人。
当我们开始排队时要过80秒钟才轮到我们,要过95秒钟才能付钱。
四.运输模型。