7.6用锐角三角函数解决问题(2)学案
7.6锐角三角函数的简单应用(2)(058)

响水县双语学校九(8)班数学导学案(058)课题:7.6锐角三角函数的简单应用第2课学生姓名教学目标:进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
教学过程:一、自主探究1.给出仰角、俯角的定义如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。
右图中的∠1就是仰角,∠2就是俯角。
二、自主合作1.为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为27°,然后他向气球方向前进了50m,此时观测气球,测得仰角为40°。
若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?三、自主展示3.大海中某小岛的周围10km 范围内有暗礁。
一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km 后到达该岛的南偏西25°方向的另一处。
如果该海轮继续向东行驶,会有触礁的危险吗?四、自主拓展1. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈ 732.13≈)2.如图,A 、B 是两幢地平高度相等、隔岸相望的建筑物,B 楼不能到达,由于建筑物密集,在A 楼的周围没有开阔地带,为测量B 楼的高度,只能充分利A 楼的空间,A 楼的各层都可到达且能看见B 楼,现仅有测量工具为皮尺和测角器(皮尺可用于测量长度,测角器可以测量仰角、俯角或两视线的夹角)。
(1)你设计一个测量B 楼高度的方法,要求写出测量步骤和必需的测量数据 (用字母表示),并画出测量图形。
(2)用你测量的数据(用字母表示)写出计算B 楼高度的表达式。
九年级(下)数学教案:锐角三角函数的简单应用(全3课时)

主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。
从图形可以看出ACBCCACB'''',即tanA l>tanA。
在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。
新授:坡度的概念,坡度与坡角的关系。
如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。
坡面与水平面的夹角叫做坡角。
从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。
和坝底宽AD。
(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。
坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。
江苏省徐州市铜山县九年级数学下册7.6用锐角三角函数解决问题锐角三角函数复习导学案2(无答案)(新版)苏

锐角三角函数【学习目标】:1. 巩固三角函数的概念,巩固用直角三角形边之比来表示某个锐角的三角函数.2. 熟记30°,45°, 60°角的三角函数值.会计算含有特殊角的三角函数的值,会由一个特殊锐角的三角函数值,求出它的对应的角度.3.掌握直角三角形的边角关系,会运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形.4.会用解直角三角形的有关知识解决简单的实际问题.二、典型例题探究1:海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.探究:2:我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示.BC∥A D,斜坡AB=40米,坡角∠BAD=60°,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造.经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC 削进到E处,问BE至少是多少米(结果保留根号)?探究3:.如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离是1.7m ,看旗杆顶部的仰角为45°;小红的眼睛与地面的距离(CD )是1.5m ,看旗杆顶部的仰角为30°.两人相距28米且位于旗杆两侧(点B ,N ,D 在同一条直线上).请求出旗杆MN 的高度.(结果保留整数)三、小结四、达标测试题1.已知α为锐角,当αtan 12-无意义时,则tan(α+15°)-tan(α-15°)的值为 . 2.已知α为锐角,且23)10sin(=︒-α,则α等于( ) A .︒50 B .︒60 C .︒70 D .︒80 3.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( )A .247 BC .724D .13 4.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则6 8 C E A B D该高楼的高度大约为()A.82米 B.163米 C.52米 D.70米5.在Rt△ABC中,点C为直角顶点,则下列式子中不一定成立的是()A.sinA=sinB B.cosA=sinB C.sinA=cosB D.sin(A+B)=sinC6.如图,小鸣将测倾器安放在与旗杆AB底部相距6m的C处,量出测倾器的高度CD=1m,测得旗杆顶端B的仰角 =60°,则旗杆AB的高度为.(计算结果保留根号)。
苏科版数学九年级下册教案-7.6 用锐角三角函数解决问题

用锐角三角函数解决问题学习目标1. 能结合实际问题中的仰角、俯角、坡度等专业术语,运用三角函数解决与直角三角形有关的实际问题.2.能够把实际问题转化为数学问题.能用适当的直角三角形中的边、角各元素之间的关系解直角三角形模型,并借助于计算器进行有关三角函数的计算,同时能够对结果的意义进行说明.课前热身1.小明沿着坡度i 为1∶3的直路向上走了50 m ,则小明沿垂直方向升高了________m.2.如图,无人机在空中C 处测得地面A ,B 两点的俯角分别为60°,45°,如果无人机距地面的高度CD 为100 3 m ,点A ,D ,E 在同一水平直线上,则A ,B 两点间的距离是________m .(结果保留根号)3.如图,一辆小车沿倾斜角为α的斜坡向上行驶13 m ,已知cos α=1213,则小车上升的高度是( )A .5 mB .6 mC .6.5 mD .12 m俯角和仰角例题如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60 m,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底点C到大楼距离AC的值;(2)求斜坡CD的长度.跟踪训练如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°.已知甲楼的高AB是120 m,则乙楼的高CD是________m.(结果保留根号)坡度与坡角例题 .为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2 m(即CD=2 m),背水坡DE的坡度i=1∶1(即DB∶EB=1∶1),如图所示.已知AE=4 m,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)方位角为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在其北偏东60°方向;从A处向正东方向行走200 m,到达公路l上的点B处,再次测得凉亭P在其北偏东45°方向,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:2≈1.414,3≈1.732)。
数学面试《用锐角三角函数解决问题(2)》试讲逐字稿

《用锐角三角函数解决问题(2)》试讲逐字稿上课,同学们好,请坐。
最近咱们一直在学习锐角三角函数相关的知识,今天这节课我们继续学习用锐角三角函数解决问题。
(板书课题)同学们先一起来回顾一下上节课用锐角三角函数解决问题的思路。
第一步是什么?要构造直角三角形。
第二步呢?应用说角三角函数解直角三角形。
那我们再来回顾一下锐角三角函数的定义。
正弦等于对边比斜边,余弦等于邻边比斜边,正切等于对边比邻边。
锐角三角函数反映的是直角三角形中边与角之间的关系。
看来同学们对之前的知识记得很牢固。
下面我们来看一道生活实际问题。
同学们请看大屏幕,图上展示的是什么?是游乐场里的大型摩天轮。
已知摩天轮的半径为20m,旋转1周需要12min,摩天轮的底部与地面相距0.3m。
小明从摩天轮的底部进入轿厢,开始观光后,2min时小明距离地面有多高?为了解决这个问题,我们可以先作图来帮助我们分析题干。
同学们可以在自己的练习本上画一画,并在图中找到并标记相应的已知条件。
老师刚刚巡视发现个别同学似乎对于2min后小明所在的位置有点困惑,我们一起在黑板上画一画。
既然摩天轮是圆形的,我们也用圆形来表示摩天轮,圆上最低点A表示摩天轮的底部、半径OA是竖直的,以上这些同学们都画出来了。
接下来我们想想,小明从底部点A开始,沿着圆形移动,经过2min后会到达圆上的哪个位置呢?这位同学举手了,似乎有想法,我们请他来回答。
好的,请坐。
他说,摩天轮旋转一周需要12min,那么旋转半周就是6min,也就是说3min会旋转四分之一周,同理可知,2min是12min的六分之一,小明在摩天轮的这个圆上会转过整个圆的六分之一。
嗯,他是根据时间的比值来计算移动位置,这个方法很巧妙,但前提得是速度一定才行。
大家认为摩天轮是匀速转动的吗?没错,为了保证每个游客在上面时不会忽快忽慢,摩天轮的确是匀速转动的。
同学们对生活中的这些现象总结的很到位。
我们已经知道了小明会在圆上转过六分之一的位置,那么是在点A的左侧还是右侧呢?嗯,这个问题其实对于我们解决题目并没有实质性的影响,因为在匀速运动过程中,时间一样的情况下,移动的距离是一样的,小明在左侧还是右侧的高度也就是一样的。
7.6用锐角三角函数解决问题(仰角、俯角问题)

7.6 锐角三角函数的简单应用——仰角、俯角问题一、画一画 根据题意,画出仰角或俯角(1)人看气球 (2)在飞机上看地面控制中心二、实际问题问题1: “小机灵”在飞行高度为180米的飞机A 上看到上海浦东国际机场地面指挥中心B 的俯角为30°,求此时飞机A 在地面上的投影点C 离B 点的水平距离。
(结果保留根号)变式:“小机灵”在离中国馆AB 120米的C 处,用高为1米的测角仪测得中国馆的最高处A的仰角为30°,已知测角仪CD 垂直于地面,求中国馆AB 的高。
(结果保留根号)AB问题2:在南浦大桥AB 的上方有一只热气球停在P 点处,此时热气球离桥面的高度为1200米,“小机灵”在大桥的两端A 、B 分别测得热气球的仰角为27°、40°,求南浦大桥的AB 。
参考数据:sin27°≈0.5,cos27°≈0.9, tan27°≈0.5,sin40°≈0.6, cos40°≈0.8,tan40°≈0.8PB A人的眼睛 P · 0· A · 地面控制中心 B · A ·B · D C变式1:已知南浦大桥的主桥AB长900米,热气球由西向东飞行,一段时间后到达C处,此时“小机灵”在大桥两端A、B分别测得热气球的仰角为30°、45°,求此时热气球距桥面的高度。
(结果保留根号)CB A变式2:热气球继续向东飞行至D处,此时“小机灵”在大桥两端A、B分别测得热气球的仰角为40°、27°,已知主桥AB的长为900米,求此时热气球距桥面的高度。
参考数据:sin27°≈0.5,cos27°≈0.9,tan27°≈0.5,sin40°≈0.6,cos40°≈0.8,tan40°≈0.8DB A三、数学活动室思考:1、如何测量得到旗杆的高度?(图1 )2、怎样从地面测量小山的高度呢?(图2 )仪器:卷尺,高度为h的测角仪;要求:画出图形,测得的角用α、β等表示,测得的长度用a、b、c等表示。
用锐角三角函数解决问题优秀教案

2.小明沿着坡度为
3.如图所示,河堤横断面迎水坡。
学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB的坡度进行修改,修改后的迎水坡面AE的坡度i=5∶6.
(1)求原方案中此大坝迎水坡AB的长。
(结果保留根号)
(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC 方向拓宽2.7m,求坝底将会沿AD方向加宽多少米?
5.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=600,为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过450时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E 处,问BE至少是多少米(结果保留根号)?。
九年级数学下册 第7章 锐角三角形 7.6 锐角三角函数的简单应用作业设计 (新版)苏科版

7.6 锐角三角函数的简单应用的值是________1、如图,已知AB是⊙O的直径,弦CD⊥AB,AC=22,BC=1,那么sin ABD2、一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)3、如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD 方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)4、如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)5.如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)6.如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为m(结果保留根号)7.如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据:)8.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)参考答案221.2.解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).3. 解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.4.解:(1)C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离是60海里.5. 解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°﹣∠BDE=30°=∠BDE,∴BC=CD=10米,在Rt△BCE中,sin60°=,即=,∴BE=5,AB=BE+AE=5+1≈10米.答:旗杆AB的高度大约是10米.6. 解:作CE⊥AB于点E,在Rt△BCE中,BE=CD=5m,CE==5m,在Rt△ACE中,AE=CE•tan45°=5m,AB=BE+AE=(5+5)m.故答案为:(5+5).7. 解:在Rt△DEB中,DE=BE•tan45°=2.7米,在Rt△CEB中,CE=BE•tan30°=0.9米,则CD=DE﹣CE=2.7﹣0.9≈1.2米.故塑像CD的高度大约为1.2米.8 解:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.6用锐角三角函数解决问题(2)学案
学习目标:
通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系。
教学过程:
一、复习巩固:
1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。
2、在△ABC中,∠C=90°。
(1)已知∠A=30°,BC=8cm,(2)已知∠A=60°,AC=3cm, 求:AB与AC的长; 求:AB与BC的长。
二、例题学习:
问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。
小明乘坐最底部的车厢(离地面约0.3m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)?
拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达15.3m?
2、小明将有多长时间连续保持在离地面30.3m以上的空中?
三、练习巩固
,
B B
A 1、如图,单摆的摆长A
B 为90cm ,当它摆动到∠B AB '的位置时,∠BAB '=30°。
问这时摆球B '
较最低点B 升高了多少?
2、已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面32m.求此时跷跷板与地面的夹角.
3、如图,在离水面高度为5米的岸上有人用绳子 拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果精确到0.1米)
四、小结
五、课堂作业
B A
O B
A 初三数学课堂作业
1、如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离A B为 ( )
A. αcos 5
B.
αcos 5 C . αsin 5 D. αsin 5
第1题 第3题 第4题
2.(09甘肃定西)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为 ( )
A .8米ﻩﻩB.83米ﻩ C .833米ﻩ D.433
米 3.(09潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米.
A .25 ﻩﻩB.253 C.10033 ﻩD .25253+
4.已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面2m 。
时跷跷板与地面的夹角为_____
____。
7.如图,秋千链子的长度为3m,当秋千向两边摆动时,两边摆动的角度均为30°.求它摆动到最高位置与最低
位置的高度之差。
5.海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45°方向,求此时灯塔B 到C处的距离.
6. 单摆的摆长AB 为90cm,当它摆动到A B’的位置时, ∠BAB’=11°,问这时摆球B’
较最低点B 升高了多少(精确到1cm)?
sin110.191︒≈cos110.982︒≈tan110.194︒≈。