数学公开课竞赛锐角三角函数(学案)

合集下载

专题十八锐角三角函数学案

专题十八锐角三角函数学案

专题十八 锐角三角函数 学案班级 姓名 组别 等级【复习目标】1.理解锐角三角函数的定义,掌握特殊锐角(30°,45°,60°)的三角函数值,并会进行计算.2.掌握直角三角形边角之间的关系,会解直角三角形.3.通过复习提高分析问题、解决问题的能力,养成独立思考、合作交流、反思质疑等学习习惯.4.通过复习发展自己的数感、符号意识和运算能力,并养成认真勤奋、独立思考、合作交流、反思质疑等学习习惯.【复习过程】一、自主复习(一)复习指导根据下面的题纲自主复习有关的基础知识快速记忆,构建知识体系,为后面的训练作好准备. 1.锐角三角函数定义在Rt△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为a ,b ,c .∠A 的正弦:sin A =∠A 的对边斜边=________;∠A 的余弦:cos A =∠A 的邻边斜边=________;∠A 的正切:tan A =∠A 的对边∠A 的邻边=________.它们统称为∠A 的锐角三角函数.锐角三角函数的取值范围:0<sin α<1,0<cos α<1,tan α>0注意:锐角三角函数只能在直角三角形中使用,如果没有直角三角形,常通过作垂线构造直角三角形.sin α cos α tan α 30° 45° 60°说明:锐角三角函数的增减性,当角度在0°-90°之间变化时. (1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 3.锐角三角函数之间的关系(1)平方关系(同一锐角的正弦和余弦值的平方和等于1)1cos sin 22=+A A(2)互余关系:若∠A+∠B=90°,则有sinA=cosB ,cosA=sinB 4.解直角三角形 (1)定义:由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.(直角三角形中,除直角外,一共有5个元素,即3条边和2个锐角)(2)直角三角形的性质:在Rt△ABC 中,∠C =90°,∠A,∠B,∠C 的对边分别为a ,b ,c . ①三边之间的关系:____________; ②锐角之间的关系:____________;③边角之间的关系:sin A =ac ,cos A =b c ,tan A =a b ,sin B =b c ,cos B =a c ,tan B =b a. ④在直角三角形中,30°角所对的直角边等于斜边的一半. ⑤直角三角形斜边上的中线等于斜边的一半. 几何表示:【∵∠ACB=90°,D 为AB 的中点 ∴ CD=21AB=BD=AD 】 ⑥射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项.几何表示:【在Rt △ABC 中,∵∠ACB=90°CD ⊥AB ,∴ BD AD CD •=2;AB AD AC •=2;AB BD BC •=2 】⑦等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高.(a b c h =)由上图可得:AB ·CD=AC ·BC. 类型已知条件 解法两边两直角边a 、b22c a b =+,tan aA b =,90B A ∠=︒-∠ 直角边a ,斜边c 22b c a =-,sin aA c =,90B A ∠=︒-∠一边 一锐角直角边a ,锐角A 90B A ∠=︒-∠,tan a b A =,sin ac A= 斜边c ,锐角A90B A ∠=︒-∠,sin a c A =,cos b c A =(二)复习检测要求:自主学习完成后,独立完成复习检测题.完成后,组长组织本组同学统一答案,个人自己批阅,用红笔改错,不明白的求助于小组其他成员.1.如图,在Rt△ABC 中,∠C=90°,AB =2BC ,则sin B 的值为( ) A .12B .22C .32D .12.如图,A ,B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC =a 米,∠BAC=90°,∠ACB =40°,则AB 等于( )米.A .a sin 40° B.a cos 40° C.a tan 40° D.atan 40°3.在△ABC 中,若∠A ,∠B 满足⎪⎪⎪⎪⎪⎪cos A -12+⎝ ⎛⎭⎪⎫sin B -222=0, 则∠C =__________.4.数学实践探究课中,老师布置同学们测量学校旗杆的高度.小民所在的学习小组在距离旗杆底部10米的地方,用测角仪测得旗杆顶端的仰角为60°,则旗杆的高度是__________米.二、合作探究组内交流自学环节中存在的疑惑,组长掌握组内的情况,记录组内没能解决的问题,准备班内解决.发言要求:言简意赅、明确清晰.下面的探究题,先独立完成,然后小组内交流,准备充分的小组准备班内展示.探究一: 如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC =5,则tan ∠AFE 的值为( )A .43B .35C .34D .45探究二: 如图4,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,若10,31tan =+=∠CE DC AEN(1)求△ANE 的面积;(2)求sin ∠ENB 的值。

《锐角三角函数》教学设计

《锐角三角函数》教学设计

《锐角三角函数》教学设计一、教学目标:1.了解什么是锐角三角函数;2.掌握正弦、余弦、正切的定义和计算方法;3.掌握锐角三角函数的性质和图像特点;4.能够应用锐角三角函数求解实际问题。

二、教学重点:1.正弦、余弦、正切的定义和计算方法;2.锐角三角函数的性质和图像特点。

三、教学难点:1.锐角三角函数的性质和图像特点。

四、教学过程:1.导入新知识向学生提问:“你们知道什么是三角函数吗?”接着引导学生回忆正弦、余弦、正切的定义和计算方法。

2.学习正弦、余弦、正切的定义和计算方法首先,给出锐角的定义:“锐角是指小于90°的角”。

然后,给出三角函数的定义:正弦(sin):在锐角∠A中,它的对边与斜边的比值叫做∠A的正弦,记作sinA。

余弦(cos):在锐角∠A中,它的邻边与斜边的比值叫做∠A的余弦,记作cosA。

正切(tan):在锐角∠A中,它的对边与邻边的比值叫做∠A的正切,记作tanA。

接着,通过例题进行讲解,让学生掌握如何计算正弦、余弦、正切。

3.学习锐角三角函数的性质和图像特点介绍锐角三角函数的性质:正弦函数的性质:定义域是全体实数,值域在[-1,1]之间,单调递增。

余弦函数的性质:定义域是全体实数,值域在[-1,1]之间,单调递减。

正切函数的性质:定义域是全体非零实数,值域是全体实数,在每个周期内都是振荡的。

然后,通过绘制锐角的基本函数图像,让学生观察锐角三角函数的图像特点。

4.练习运用锐角三角函数设计练习题,让学生运用锐角三角函数求解实际问题,如航空导弹的打击角度、建筑物的高度等。

五、教学总结对本节课的内容进行总结,强调重点。

六、板书设计锐角三角函数正弦:sinA = 对边/斜边余弦:cosA = 邻边/斜边正切:tanA = 对边/邻边锐角三角函数的性质:正弦函数:定义域是全体实数,值域在[-1,1]之间,单调递增。

余弦函数:定义域是全体实数,值域在[-1,1]之间,单调递减。

正切函数:定义域是全体非零实数,值域是全体实数,振荡。

《锐角三角函数》教案 (省一等奖) 3

《锐角三角函数》教案 (省一等奖) 3

锐角三角函数[教学反思]课题锐角三角函数〔3〕授课时间课型新授二次修改意见课时1 授课人科目数学主备教学目标知识与技能⑴: 能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。

⑵: 能熟练计算含有30°、45°、60°角的三角函数的运算式过程与方法能推导特殊角的三角函数值情感态度价值观培养学生的类比能力,通过画图,推导增强他们的学习兴趣教材分析重难点熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式教学设想教法三主互位导学法学法合作探究教具常规教具课堂设计一、目标展示⑴: 能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。

⑵: 能熟练计算含有30°、45°、60°角的三角函数的运算式二、预习检测一个直角三角形中,一个锐角正弦是怎么定义的?一个锐角余弦是怎么定义的?一个锐角正切是怎么定义的?三、质疑探究两块三角尺中有几个不同的锐角?是多少度?你能分别求出这几个锐角的正弦值、余弦值和正切值码?.四、精讲点拨归纳结果30°45°60°siaAcosAtanA例3:求以下各式的值.〔1〕cos260°+sin260°.〔2〕cos45sin45︒︒-tan45°.五、当堂检测1.设α、β均为锐角,且sinα-cosβ=0,那么α+β=_______.2.cos45sin301cos60tan452︒-︒︒+︒的值是_______.3.,等腰△ABC•的腰长为4 3 ,•底为30•°,•那么底边上的高为______,•周长为______.4.在Rt△ABC中,∠C=90°,tanB=52,那么cosA=________.5.sin272°+sin218°的值是〔〕.A.1 B.0 C.12D.32六、作业布置习题28。

锐角三角函数(第三课时)导学案

锐角三角函数(第三课时)导学案

年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1228.1锐角三角函数(第三课时)【学习目标】1.经历探索30°、45°、60°角的三角函数值的过程,进一步体会三角函数的意义;(重点)2.能够进行30°、45°、60°角的三角函数值的计算;(重点)3.能够结合30°、45°、60°的三角函数值解决简单实际问题.(难点)【预学案】1.一个直角三角形中,一个锐角的正弦是怎么定义的? ;一个锐角的余弦是怎么定义的? ;一个锐角的正切是怎么定义的? .2.互余的两角之间的三角函数关系:若∠A +∠B =90°,则sin A cos B ,cos A sin B ,tan A ·tan B = .【探究案】1.两块三角尺中有几个不同的锐角?各是多少度?这几个锐角的正弦值、余弦值和正切值各是多少?30°、45°、60°角的正弦值、余弦值和正切值如下表:2.求下列各式的值.(1)cos 260°+sin 260°. (2)-tan45°.3.如图,在Rt △ABC 中,∠C = 90°,AB =,BC =,求 ∠A 的度数; cos 45sin 45︒︒634.如图,AO 是圆锥的高,OB 是底面半径,AO =OB ,求的度数.【检测案】1. ,锐角的度数应是( )A.40°B.30°C.20°D. 10° 2. 已知∠A 为锐角,,则下列正确的是( ) 3. 在 △ABC 中,若,则∠C = . 4. 求下列各式的值:5. 如图,在△ABC 中,∠A =30°, ,求 AB 的长度.6. 已知,△ABC 中的∠A 和∠B 满足| tan B |+(2 sin A )2=0,求∠A ,∠B 的度数。

第二十八章锐角三角函数学案

第二十八章锐角三角函数学案

3.在△ ABC 中,∠ C= 90°,且 tanA= 1 ,则 cosB 的值是 _________. 3
五、 拓展延伸:
1、 .如图,△ ABC 中,∠ ABC = 60°, AB ∶ BC= 2∶ 5, S△ABC = 10 3 ,求 tanC 的值 .
第 1 题图
第 2 题图
2.如图,在 Rt△ ABC 中,∠ CAB =90°, AD 是∠ CAB 的平分线, tanB= 1 ,则 CD ∶ DB 2
1.如图长 5 米的梯子以倾斜角∠ CAB 为 30°靠在墙上,则 A 、 B 间的距离为多少?
2.若长 5 米的梯子以倾斜角 40°架在墙上,则 A 、B 间距离为多少? 3.若长 5 米的梯子靠在墙上,使 A 、B 间距为 2.5 米,则倾斜角∠ CAB 为多少度? 4.点 P( 2, 4)与 x 轴的夹角为 α,则 sin α =______. 5.在 Rt△ ABC 中,∠ A、∠ B、∠ C 的对边分别是 a、b、c,∠ C 是直角, 求证: sin2A+sin 2B=1.
第 6 题图 3 倍,那么锐角 A 的正弦值 ________.
5.在 Rt△ ABC 中,∠ C= 90°, BC=2 , sinA= 2 ,则求 AC 的长 . 3
6.如图, P 是⊙ O 外一点, PA 切⊙ O 于点 A ,且 OP= 5, PA= 4,则 sin∠ APO=_______. 四、巩固训练:
1
4.在 Rt△ ABC 中,∠ C= 90°, c= 2, sinB= ,则 a= _____, b=______ , S△ABC =_______.
2
四、 巩固训练:
1、如图,在 Rt △ ABC 中,∠C= 90°,AC =8,tanA= 3 ,求 sinA 和 cosB 的值 . 4

1锐角三角函数的定义 学案

1锐角三角函数的定义 学案
4.计算:2cos45°﹣tan60°+sin30°﹣|﹣ |.
1.△ABC中,∠C=90°,tanA= ,则sinA+cosA=.
2.如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有.
3.计算:sin30°﹣ cos45°+ tan260°.
4.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.
1.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为( )
A. B. C. D.
2.计算:(sin30°)﹣1×(sin60°﹣cos45°)﹣ .
A. B.± C. D.0
2.已知锐角α满足cosα= ,则锐角α的度数是度.
3.如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么 值是.
4.如图,AB为⊙O的直径,弦CD⊥AB于点H,过点B作⊙O的切线与AD的延长线交于F.
(1)求证:
(2)若sinC= ,DF=6,求⊙O的半径.
特殊角的三角函数值主要是指30 这三个角的三角函数值,如下表:
知识拓展:(1)结合图形:如图及其中的数据和三角函数的定义来计算特殊角的三角函数值,从而记住结果.
(2)对于其他相关角的三角函数值,往往用定义求解,如15 .
(3)等边三角形,等腰直角三角形,及与30 角相联系的其他三角形问题,常常要用特殊角的三角函数值解答.
A. B.3C. D.2
类型三锐角三角函数的定义
如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,则下列三角函数表示正确的是( )

锐角三角函数定义

锐角三角函数定义

锐角三角函数定义学案学习要求:理解一个锐角的正弦、余弦、正切的定义.能依据锐角三角函数的定义,求给定锐角的三角函数值. 1.如图所示,B 、B ′是∠MAN 的AN 边上的任意两点,BC ⊥AM 于C 点,B ′C ′⊥AM 于C ′点,则△B 'AC ′∽______,从而ACB A BC C B )()(='='',又可得 ①='''B A C B _____,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的____与_____的比是一个__值; ②=''B AC A ____,即在Rt △ABC 中(∠C =90°),当∠A 确定时,它的______与______的比也是一个______; ③='''C A C B ____,即在Rt △ABC 中(∠C =90°),当∠A确定时,它的______与______的比还是一个_____.第1题图 第2题图2.如图所示,在Rt △ABC 中,∠C =90°.①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边)(cos =A =______,斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______.3.在Rt △ABC 中如果各边都扩大为原来的2倍,则锐角A 的正切值 A.扩大2倍 B.缩小2倍 C.没有变化 D.不能确定4.已知∠A 为锐角,sin ∠A=2m-3,则m 的取值范围为 5.已知α为锐角,则m =sin α+cos α的值( )A .m >1B .m =1C .m <1D .m ≥16.已知∠A 为锐角,则 sin ∠A 与tan ∠A 的大小关系为 。

7.在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,sin A =______,cos A =______,tan A =______,sin B =______,cos B =______,tan B =______. 8.在Rt △ABC 中,∠C =90°,若a =1,b =3,则c =______,sin A =______,cos A =______,tan A =______,sin B =______,cos B =______,tan B =______. 9.在Rt △ABC 中,∠C =90°,若∠A =30°,则∠B =______,sin A =______,cos A =______,tan A =______,sin B =______,cos B =______,tan B =______.10.(1)在△ABC 中,∠C =90°,tan A =31,则sin B =(2)在△ABC 中,∠C =90°,tan A =34,则cosA= . (3)在△ABC 中,∠C 为直角,如果sinA=34 , 那么tanB=_________在△ABC 中,∠C =90°,sinA =45,则tanB =_________ 11.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .12.(1)等腰三角形的两边长为5和11,则底角的余弦值为 。

锐角三角函数数学教案

锐角三角函数数学教案

锐角三角函数数学教案标题:锐角三角函数数学教案一、教学目标:1. 理解并掌握正弦、余弦、正切等基本概念。

2. 学会利用直角三角形的边长关系求解三角函数值。

3. 能够运用锐角三角函数解决实际问题。

二、教学内容:1. 锐角三角函数的基本概念- 正弦、余弦、正切的定义- 特殊角的三角函数值2. 锐角三角函数的应用- 利用直角三角形的边长关系求解三角函数值- 利用三角函数解决实际问题三、教学过程:1. 引入新课:- 通过展示一些生活中常见的角度和比例问题,引入锐角三角函数的概念。

2. 讲授新知:- 介绍正弦、余弦、正切的定义,并举例说明。

- 介绍特殊角的三角函数值,并让学生记住这些基本的三角函数值。

3. 巩固练习:- 给出一些简单的直角三角形,让学生计算对应的三角函数值。

4. 拓展应用:- 给出一些实际的问题,让学生尝试使用锐角三角函数来解决。

5. 总结归纳:- 回顾本节课的主要知识点,强调锐角三角函数在实际生活中的应用。

四、教学方法:1. 直观演示法:通过实物或模型直观展示锐角三角函数的概念。

2. 启发引导法:通过提出问题,引导学生思考,激发他们的学习兴趣。

3. 实践操作法:让学生亲自参与实践活动,提高他们解决问题的能力。

五、教学评估:1. 过程评价:观察学生在课堂上的表现,包括他们的参与度、理解程度等。

2. 结果评价:通过作业和测试,检查学生对知识的掌握情况。

六、教学反思:1. 对于学生的反馈进行分析,找出教学中的不足,以便改进。

2. 根据学生的接受程度,调整教学进度和难度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名: 课题名称:锐角三角函数的定义(学案)
教师寄语:每一个问题的解决都促进智慧提升,每一次思考研究都伴随心智成熟
一、目标 明确方向
1.认识锐角三角函数(sinA,cosA,tanA,cotA )及它们的值的取值范围(重点)
2.在回顾利用相似三角形知识测量,计算物体高度的过程基础上,联想函数概念,观察发现,建立锐角三角函数概念(难点)
3.在应用知识解决问题的过程中,观察、联想、分析、推断可以获得数学发现,体验数学活动充满探索性和创造性.
二、温故 知识奠基
1.直角三角形的边角性质:
①勾股定理: .
②定理1
直角三角形的两个锐角 .
③定理2
直角三角形斜边上的中线 .
④定理3
直角三角形300角所对直角边 . ⑤如图:Rt △ABC 中,边b 是∠ B 的 边 ,边c 是∠ B 的 边,边a 是 边.
2.函数概念:一个 .两个 .一种 .
3.相似三角形的性质:对应角 ,对应边 .
三、自主 思考探究
直角三角形的边与角之间存在某种关系:
[问题1]当Rt △ABC 的锐角A 确定后,是否还存在其它边之比是确定的?
如图:在Rt △ABC 中,∠C=90°.则sinA= ,cosA= ,
tanA= ,cotA= .
四、选择 巩固新知
1.在Rt △ABC 中,∠C =90゜,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,下列式子中一定成立的是( )
A.a=c·cos B
B.a= b· cosB
C.a=c · tanB
D.a=b · tanB
2.在△ABC 中,已知AC=3,BC=4,AB=5,那么下列结论成立的是( ).
A. sinA=54
B. cosA=45
C. tanA=34
D. cotA=34
五、示范 规范求解(例1)
六、对学 达标诊断
(1)求出∠D 的四个三角函数值; (2)求出∠F 的四个三角函数值;
七.合作 知识共赢
[问题2]探究同角三角函数关系(注:∠F 的正弦值的平方(sinF )2 =sin 2F.) sin 2F+cos 2F= sin 2D+cos 2D=
[问题3]互余锐角的三角函数值之间的关系如何?
[问题4]你还发现:
4. 在Rt △ABC 中,∠C=90°,sinA=
35,求cosB. 5. 在Rt △ABC 中,∠C=90°,sinA=23,BC=4,求AC.
八.总结 知识达成
1. 2.
3.
九.研究 拓展提高
1. 在△ABC 中,∠C=90°,BC=3,AB. 变式:在Rt △ABC 中,∠C=90°,cosA=45,求tanB.
2.在正方形网格中,∠α的位置如图所示,则sin α的值为( )
3.已知α为锐角,且tan α=43,求sin 3cos 2cos sin αααα-+的值.。

相关文档
最新文档