人教版七年级数学上册《一元一次方程》期末复习知识点+检测试卷

合集下载

人教版初中数学七年级上册 期末专项复习03—一元一次方程试题试卷含答案 答案在前

人教版初中数学七年级上册 期末专项复习03—一元一次方程试题试卷含答案 答案在前

期末专项复习—一元一次方程答案解析一、 1.【答案】D 2.【答案】B【解析】把1x =-代入方程得2113132⨯-----=()■中,则1=■,故选B .3.【答案】C【解析】解方程4131x x -=+得2x =,把2x =代入21m x +=中,解得12m =-. 4.【答案】A【解析】由一元一次方程的定义得351m -=,解得25m =,则原方程为230x -=,解得32x =. 5.【答案】D【解析】A 选项去分母得221633x x -=+-()();B 选项移项得478x x -=-;C 选项去括号得 153467x x --+=;D 选项正确.6.【答案】A【解析】因为92342m n a b ---与868n m b a --的和仍是一个单项式,所以92342m n a b ---与868n m b a --是同类项,则9268m m -=-,348n n -=-,解得2m =-,3n =,则8n m =-.7.【答案】A【解析】设其中一段木棍的长为cm x ,则另一段木棍的长为25cm x -(),则25100x x +-=,解是35x =, 则另一段木棍的长为1003565cm -=(),故锯出的木棍的长不可能为70cm .8.【答案】B【解析】因为3**314x x +=()(),所以363214x x x +++=,解得1x =. 9.【答案】C【解析】设这个队胜了x 场,则平了145x --()场,根据题意,314515019x x +--⨯+⨯=(),解得5x =, 故选C . 10.【答案】A【解析】设原收费标准为x 元,则根据题意得120%x a b -⨯-=()(),解这个方程得54x a b =+,故选A . 二、11.【答案】1≠【解析】根据一元一次方程的定义,得1a -≠0,解得1a ≠. 12.【答案】43【解析】由题意得822xx -+=,去分母,得248x x +=-,移项,得284x x +=-,合并同类项,得34x =, 系数化为1,得43x =. 13.【答案】18【解析】设这个数是x ,则它上面的数是7x -,左面的数是1x -,根据题意得728x x -+=,解得18x =. 14.【答案】322 【解析】因为2230a -()≥,220b -()≥,根据非负数的性质得230a -=,20b -=,解得32a =,2b =. 15.【答案】20【解析】设购买甲种电影票x 张,则购买乙种电影票40x -()张,根据题意得201540700x x +-=(),解得20x =.16.【答案】3【解析】根据题意,列方程得2511x +=,解得3x =. 17.【答案】48【解析】设这个两位数的十位数字为x ,根据题意得141044x x x x ++=++(),解得4x =,所以4448x +=+=.所以这个两位数为48.18.【答案】14【解析】设王老师家三月份用水x 吨,根据题意,得100.8 1.510 1.0x x ⨯+-=⋅(),解得14x =. 19.【答案】10- 【解析】依题意得21123x x +-=(),解之得10x =-. 20.【答案】答案不唯一,如6等 【解析】去分母后,解得557m x +=,只需令55m +是7的整数倍即可. 三、21.【答案】解:(1)去括号,得24841430x x --+=,移项,得24430148x x -=-+,合并同类项,得2024x =,系数化为1,得65x =. (2)去分母,得41516x x +=+-()(),去括号,得44556x x +=+-,移项,得45564x x -=--,合并同类项,得5x -=-,系数化为1,得5x =.22.【答案】解:设新票价实施后小颖乘地铁回家的单程票价为x 元,依题意得4222504x ⨯⨯-=(),解得8x =.答:新票价实施后小颖乘地铁回家的单程票价为8元. 23.【答案】解:解方程42832x x -+-=-得10x =.把10x =代入431621x a x a -+=+-()中,得40316021a a -+=+-(),去括号,得40316021a a --=+-,移项、合并同类项,得520a =-,系数化为1,得4a =-.24.【答案】解:(1)设一个暖瓶x 元,则一个水杯38x -()元.列方程得233884x x +-=().解得30x =.388x -=.答:一个暖瓶30元,一个水杯8元.(2)若到甲商场购买,则所需的钱数为43015890%216⨯+⨯⨯=()(元); 若到乙商场购买,则所需的钱数为430(154)8208216⨯+-⨯=(元)<元. 答:到乙商场购买更合算.25.【答案】解:(1)设明明他们一共去了x 个成人,12x -()个学生.由题意,得3535123502x x +-=(). 解得8x =,则121284x -=-=.(2)如果买团体票,按16人计算,那么共需花费350.616336⨯⨯=(元),因为336350元<元,所以买团体票更省钱.(3)最省钱的购票方案为买16张团体票,再买4张学生票,此时的购票费用为3516350.644062⨯⨯+⨯=(元).期末专项复习—一元一次方程一、选择题(每小题3分,共30分)1.下列各方程中,是一元一次方程的是( ) A .325x y +=B .2650y y -+=C .113x x=D .3247x x -=- 2.方程23132x x ---=■中有一个数被墨水盖住了,查后面的答案,知道这个方程的解是1x =-,那么墨水盖住的数是( ) A .27B .1C .1311-D .03.若方程4131x x -=+和21m x +=的解相同,则m 的值为( ) A .3-B .1C .12-D .324.若方程()352510m x m -+-=是关于x 的一元一次方程,则这个方程的解是( ) A .32B .45-C .25D .35.下列做法正确的是( ) A .方程213132x x --=+去分母,得()()221133x x -=+- B .方程478x x =-移项,得478x x -=C .方程()()3512237x x ---=去括号,得153467x x ---=D .方程351322x x -=+移项,得353122x x --=-6.已知92342m n a b ---与868n m b a --的和仍然是一个单项式,则n m 的值为( )A .8-B .6C .8D .6-7.把一根长100cm 的木棍锯成两段,使其中一段的长比另一段的2倍少5cm ,则锯出的木棍的长不可能为( ) A .70cm B .65cm C .35cmD .35cm 或65cm8.定义“*”运算为“*2a b ab a =+”,若()()3**314x x =+,则x =( ) A .1-B .1C .2-D .29.足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分,一个足球队踢了14场比赛,负了5场,共得19分,那么这个队胜了的场数是( ) A .3B .4C .5D .610.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a 元后,再次下调了20%,现在的收费标准是每分钟b 元,则原收费标准是( ) A .54a b ⎛⎫+ ⎪⎝⎭元B .54a b ⎛⎫- ⎪⎝⎭元 C .()5a b +元D .()5a b -元二、填空题(每小题3分,共30分)11.若()1123a x --=是关于x 的一元一次方程,则a ________. 12.当x =________时,代数式2x +与代数式82x-的值相等.13.日历表中某数上方的数与它左边的数的和为28,则这个数是________. 14.已知()()222320a b -+-=,那么a =________,b =________.15.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了________张.16.当输出11时,则输入的x =________. 17.有一个两位数,个位上的数字比十位上的数字大4,且个位上的数字与十位上的数字的和是这个两位数的14,则这个两位数是________. 18.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按0.8元收费,超过10吨的部分每吨按1.5元收费,王老师家三月份平均消费为每吨1.0元,则王老师家三月份用水________吨.19.设a ,b ,c ,d 为实数,现规定一种新的运算a bad bc c d=-,则满足等式113221x x +=的x 的值为________.20.当m 的值为________时(只需写出一个即可),关于x 的方程35236x m x m -+-=的解为整数. 三、解答题(共40分) 21.(6分)解方程.(1)()()83122730x x ---=; (2)()()2151136x x ++=-.22.(7分)北京地铁新票价已经实施,告别了“地铁2元任意坐”的时代,小颖在北京某高校读书,每周末回家一次,若一年除寒暑假外她有42周在校读书时间,她计算后发现,一年乘地铁回家的往返费用要比“2元时代”多花费504元,求新票价实施后小颖乘地铁回家的单程票价.23.(7分)如果关于x的方程42832x x-+-=-的解与方程()431621x a x a-+=+-的解相同,求字母a的值.24.(8分)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.25.(12分)春节期间,七年级(1)班的明明、丽丽等同学随家长一同到某公园游玩,如图是购买门票时,明明与他爸爸的对话,试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人?几个学生?(2)请你帮助明明算一算,用哪种方式购票更省钱.(3)购完票后,明明发现七年级(2)班的张小涛等8名同学和他们的12名家长共20人也来购票,请你为他们设计出最省钱的购票方案,并求出此时的购票费用.。

人教版七年级数学上册第三章《一元一次方程》知识点复习练习

人教版七年级数学上册第三章《一元一次方程》知识点复习练习

人教版七年级数学上册第三章《一元一次方程》知识点复习练习3.1 从算式到方程3.1.1 一元一次方程基础题知识点1 方程的概念含有未知数的等式叫做方程.1.下列各式中,是方程的是(A ) A .7x -3=3x +5B .4x -7C .22+3=7D .2x <52.下列各式中,不是方程的是(C ) A .2x +3y =1B .-x +y =4C .3π+4≠5D .x =8知识点2 一元一次方程只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.3.(昆明月考)下列关于x 的方程中,是一元一次方程的是(B )A .ax =5B .x =0C .3x -2=yD .-2x =3 4.如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是(B )A .m≠0B .m≠1C .m =-1D .m =0 5.若方程2x a -2-3=0是关于x 的一元一次方程,则a =3.知识点3 方程的解6.(临沧期中)方程1-3y =7的解是(C )A .y =-12B .y =12C .y =-2D .y =27.在0,1,2,3中,0是方程13x -12=-12的解. 8.x =3是方程①3x =6;②2(x -3)=0;③x -2=0;④x +3=5中②的解.(填序号)知识点4 列方程9.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8 C.12x -3=8 D.12x +3=8 10.(杭州中考)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为(C )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x )11.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x 元,根据题意,列出方程为50-8x =38. 易错点 对一元一次方程概念理解不透而致错12.(昆明月考)若方程(a -1)x |a|-2=3是关于x 的一元一次方程,则a 的值为-1.中档题13.(民大附中月考)下列是一元一次方程的有(A )①23-x =23-y ;②2x -4=x -1;③x +1-3;④3x -2x =3;⑤2x -4>5.A.2个B.3个C.4个D.5个14.以x=-3为解的方程是(C)A.3x-7=5-x B.6x+7=1-12xC.2-8x=20-2x D.11x+2=5(1+2x)15.检验下列各题括号内的值是否为相应方程的解:(1)2x-3=5(x-3){x=6,x=4};(2)4x+5=8x-3{x=3,x=2}.解:(1)x=4是方程的解.(2)x=2是方程的解.16.已知y=1是方程my=y+2的解,求m2-3m+1的值.解:把y=1代入方程my=y+2中,得m=3,当m=3时,m2-3m+1=1.17.(教材P80练习变式)根据下列问题,设未知数,列出方程:(1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种报纸共15份,他买的两种报纸各多少份?(2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张?解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方程,得0.5x+0.4(15-x)=7.(2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得10x+60%×10(128-x)=912.综合题18.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株.设乙班植树x株.(1)列两个不同的含x的式子,分别表示甲班植树的株数;(2)根据题意列出含未知数x的方程;(3)检验乙班、甲班植树的株数是不是分别为25株和35株.解:(1)根据甲班植树的株树比乙班多20%,得甲班植树的株数为(1+20%)x;根据乙班植树的株数比甲班的一半多10株,得甲班植树的株数为2(x-10).(2)(1+20%)x=2(x-10).(3)把x=25分别代入方程的左边和右边,得左边=(1+20%)×25=30,右边=2×(25-10)=30.因为左边=右边,所以x=25是方程(1+20%)x=2(x-10)的解.这就是说乙班植树的株数是25株,从上面检验过程可得甲班植树的株数是30株,而不是35株.3.1.2 等式的性质基础题知识点1 等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a±c =b±c.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么a c =b c . 1.下列等式变形中,错误的是(D )A .由a =b ,得a +5=b +5B .由a =b ,得a -3=b -3C .由x +2=y +2,得x =yD .由-3x =-3y ,得x =-y2.若x =y ,且a≠0,则下面各式中不一定正确的是(D )A .ax =ayB .x +a =y +a C.x a =y a D.a x =a y3.已知m +a =n +b ,根据等式的性质变形为m =n ,那么a ,b 必须符合的条件是(C )A .a =-bB .-a =bC .a =bD .a ,b 可以是任意有理数或整式4.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明根据的是等式的哪一条性质以及是怎样变形的.(1)如果-x 10=y 5,那么x =-2y ,根据等式的性质2,两边乘-10; (2)如果-2x =2y ,那么x =-y ,根据等式的性质2,两边除以-2;(3)如果23x =4,那么x =6,根据等式的性质2,两边乘32; (4)如果x =3x +2,那么x -3x =2,根据等式的性质1,两边减3x .知识点2 利用等式的性质解方程解以x 为未知数的方程,就是把方程逐步转化为x =a (常数)的形式,等式的性质是转化的重要依据.5.解方程-23x =32时,应在方程两边(C ) A .同乘-23B .同除以23C .同乘-32D .同除以326.利用等式的性质解方程x 2+1=2的结果是(A ) A .x =2B .x =-2C .x =4D .x =-47.(梧州中考)方程x -5=0的解是x =5.8.由2x -1=0得到x =12,可分两步,按步骤完成下列填空: 第一步:根据等式的性质1,等式两边加1,得到2x =1;第二步:根据等式的性质2,等式两边除以2,得到x =12. 9.(教材P83习题T4变式)利用等式的性质解方程:(1)8+x =-5;解:两边减8,得x =-13.(2)4x =16;解:两边除以4,得x =4.(3)3x -4=11.解:两边加4,得3x =15.两边除以3,得x =5.易错点 对等式性质理解不透致错10.有两种等式变形:①若ax =b ,则x =b a ;②若x =b a,则ax =b.其中(B ) A .只有①对B .只有②对C .①②都对D .①②都错中档题11.下列是等式2x +13-1=x 的变形,其中根据等式的性质2变形的是(D ) A.2x +13=x +1 B.2x +13-x =1 C.2x 3+13-1=x D .2x +1-3=3x 12.(贵阳中考)方程3x +1=7的解是x =2.13.若x =1是关于x 的方程3n -x 2=1的解,则n =12. 14.利用等式的性质解下列方程:(1)-3x +7=1;解:两边减7,得-3x =-6.两边除以-3,得x =2.(2)-y 2-3=9; 解:两边加3,得-y 2=12. 两边乘-2,得y =-24.(3)512x -13=14; 解:两边加13,得512x =712. 两边乘125,得x =75.(4)3x +7=2-2x.解:两边减7,得3x =2-2x -7.两边加2x ,得5x =-5.两边除以5,得x =-1.15.有只狡猾的狐狸,它平时总喜欢戏弄人,有一天它遇见了老虎,狐狸说:“我发现2和5是可以一样大的,我这里有一个方程5x -2=2x -2.等式两边同时加上2,得5x -2+2=2x -2+2, ①即5x =2x.等式两边同时除以x ,得5=2.” ②老虎瞪大了眼睛,听傻了.你认为狐狸的说法正确吗?如果正确,请说明上述①、②步的理由;如果不正确,请指出错在哪里?并加以改正. 解:不正确.①正确,运用了等式的性质1.②不正确,由5x =2x ,两边同时减去2x ,得5x -2x =0,即3x =0,所以x =0.综合题16.能不能从(a +3)x =b -1得到x =b -1a +3,为什么?反之,能不能从x =b -1a +3得到等式(a +3)x =b -1,为什么?解:当a =-3时,从(a +3)x =b -1不能得到x =b -1a +3,因为0不能为除数. 从x =b -1a +3可知,a +3≠0.根据等式的性质2可知,从x =b -1a +3可以得到等式(a +3)x =b -1.3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项基础题知识点1利用合并同类项解简单的一元一次方程将方程中的同类项进行合并,把以x为未知数的一元一次方程变形为ax=b(a≠0,a、b为已知数)的形式,.然后利用等式的性质2,方程两边同时除以a,从而得到x=ba如:(1)合并同类项:x-2x+4x=3x;4y-2.5y-3.5y=-2y.(2)解方程-7x+2x=9-4的步骤是:①合并同类项,得-5x=5;②系数化为1,得x=-1.1.对于方程8x+6x-10x=8,合并同类项正确的是(B)A.3x=8 B.4x=8C.-4x=8 D.2x=82.方程x+2x=-6的解是(D)A.x=0 B.x=1C.x=2 D.x=-23.下列是小明同学做的四道解方程题,其中错误的是(B)A.5x+4x=9→x=1B.-2x-3x=5→x=1C.3x-x=-1+3→x=1D.-4x+6x=-2-8→x=-54.解下列方程:(1)6x-5x=3;解:合并同类项,得x=3.(2)-x+3x=7-1;解:合并同类项,得2x=6. 系数化为1,得x=3.(3)x2+5x2=9;解:合并同类项,得3x=9.系数化为1,得x=3.(4)6y+12y-9y=10+2+6.解:合并同类项,得9y=18.系数化为1,得y=2.知识点2列方程解决“总量=各部分量之和”问题5.某数的3倍与这个数的2倍的和是30,这个数为(C)A.4 B.5C.6 D.76.一个两位数,个位上的数字是十位上数字的3倍,且它们的和为12,则这个两位数是39.7.三个连续奇数的和为27,则这三个数分别为7、9、11.8.一条长1 210 m的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m,乙队每天挖90 m,则挖好水渠需要几天?解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x =5.5.答:挖好水渠需要5.5天.9.(教材P88练习T2变式)麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?解:设麻商集团第二季度销售冰箱x 台,则第一季度销售量为2x 台,第三季度销售量为4x 台.根据总量等于各部分量的和,得x +2x +4x =2 800.解得x =400.答:麻商集团第二季度销售冰箱400台.中档题10.如果x =m 是关于x 的方程12x -m =1的解,那么m 的值是(C ) A .0B .2C .-2D .-611.已知某三角形的周长为60 cm ,三边长之比为3∶4∶5,则最短边的长为15cm.12.在一张普通的日历中,相邻三行里同一列的三个日期之和为30,这三个日期分别为3、10、17.13.解下列方程:(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53.(3)x-25x=3+6;解:合并同类项,得35x=9.系数化为1,得x=15.(4)16x-3.5x-6.5x=7-(-5).解:合并同类项,得6x=12.系数化为1,得x=2.14.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x+5x=32.解得x=4.所以3x=3×4=12,5x=5×4=20.答:黑色皮有12块,白色皮有20块.15.(苏州中考)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡,中、美两国人均淡水资源占有量之和为13 800 m3,问中、美两国人均淡水资源占有量各为多少水资源占有量的15(单位:m3)?解:设中国人均淡水资源占有量为x m3,则美国人均淡水资源占有量为5x m3.根据题意,得x+5x=13 800,解得x=2 300.则5x=11 500.答:中国人均淡水资源占有量为2 300 m3,美国人均淡水资源占有量为11 500 m3.综合题16.(教材P87例2变式)有这样一列数,按一定规律排列成-1,2,-4,8,-16,…,其中某三个相邻数的和是768,则这三个数各是多少?解:设所求三个数分别为-x,2x,-4x,由题意,得-x+2x+(-4x)=768.解得x=-256.所以-x=256,2x=2×(-256)=-512,-4x=-4×(-256)=1 024.答:这三个数分别是256、-512、1 024.第2课时 移项基础题知识点1 利用移项解一元一次方程把等式一边的某项变号后移到另一边,叫做移项.1.下列变形中属于移项的是(C )A .由2x =2,得x =1B .由x 2=-1,得x =-2 C .由3x -72=0,得3x =72D .由2x -1=3,得2x =3-12.解方程2x -5=3x -9时,移项正确的是(B )A .2x +3x =9+5B .2x -3x =-9+5C .2x -3x =9+5D .2x -3x =9-53.关于x 的方程3x =4x +5的解是(C )A .x =5B .x =-3C .x =-5D .x =3 4.解方程6x +90=15-10x +70的步骤是:①移项,得6x +10x =15+70-90;②合并同类项,得16x =-5;③系数化为1,得x =-516. 5.解下列方程:(1)4x =9+x ;解:移项,得4x-x=9.合并同类项,得3x=9.系数化为1,得x=3.(2)4-35m=7;解:移项,得-35m=7-4.合并同类项,得-35m=3.系数化为1,得m=-5.(3)8y-3=5y+3;解:移项,得8y-5y=3+3.合并同类项,得3y=6.系数化为1,得y=2.(4)4x+5=3x+3-2x.解:移项,得4x-3x+2x=-5+3.合并同类项,得3x=-2.系数化为1,得x=-23.知识点2根据“表示同一个量的两个不同的式子相等”列方程6.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是10,调往乙队的人数是18.7.(教材P91习题T5变式)小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.解:设小华现在的年龄为x岁,则妈妈现在的年龄为(x+25)岁.根据题意,得x+25=3x+5.解得x=10.答:小华现在的年龄为10岁.易错点 解方程时,移项不变号或误将不移动的项也变号8.解方程:x -3=-12x -4. 解:移项,得x +12x =-4+3. 合并同类项,得32x =-1. 系数化为1,得x =-23.中档题9.某同学在解方程5x -1=■x +3时,把■处的数字看错了,解得x =-43,则该同学把■看成了(D ) A .3B .-1289C .-8D .810.(昆明期末)若方程2x -kx +1=5x -2的解为-1,则k 的值为-6.11.如果5m +14与m +14互为相反数,那么m 的值为-112. 12.“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x 棵,通过分析题意,鸦的只数不变,则可列方程:3x +5=5(x -1).13.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x =13. 14.解下列方程:(1)2x -19=7x +6;解:移项,得2x -7x =19+6.合并同类项,得-5x =25.系数化为1,得x =-5.(2)x -2=13x +43.解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.15.(教材P88问题2变式)(天门中考改编)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x 个小组.由题意,得7x +3=8x -5.解得x =8.则7x +3=7×8+3=59.答:该班共有59名同学.16.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?解:(1)设小明在买x 元的书的情况下办会员卡与不办会员卡一样.则x =20+80%x.解得x =100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱.综合题17.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x的方程4x-2m=3x+1的解是x=6m. 将x=6m代入4x-2m=3x+1中,得24m-2m=18m+1.移项、合并同类项,得4m=1.所以m=14.3.3 解一元一次方程(二)——去括号与去分母第1课时 去括号基础题知识点1 利用去括号解一元一次方程解方程时的去括号和有理数运算中的去括号类似,都是利用乘法分配律,其方法:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同;括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.1.将方程2x -3(4-2x )=5去括号,正确的是(C )A .2x -12-6x =5B .2x -12-2x =5C .2x -12+6x =5D .2x -3+6x =52.方程2(x -3)+5=9的解是(B )A .x =4B .x =5C .x =6D .x =73.解方程4(x -1)-x =2(x +12)的步骤如下:①去括号,得4x -1-x =2x +1;②移项,得4x -2x -x =1+1;③合并同类项,得x =2,其中做错的一步是(A )A .①B .②C .③D .①②4.解方程:5(x -4)-3(2x +1)=2(1-2x )-1.解:去括号,得5x -20-6x -3=2-4x -1.移项,得5x -6x +4x =2-1+20+3.合并同类项,得3x =24.系数化为1,得x =8.5.解下列方程:(1)3(x +4)=x ;解:去括号,得3x +12=x.移项,得3x -x =-12.合并同类项,得2x =-12.系数化为1,得x =-6.(2)1-(2x +3)=6;解:去括号,得1-2x -3=6.移项,得-2x =6-1+3.合并同类项,得-2x =8.系数化为1,得x =-4.(3)12(x -2)=3-12(x -2). 解:去括号,得12x -1=3-12x +1. 移项,得12x +12x =3+1+1. 合并同类项,得x =5.知识点2 去括号解方程的应用6.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若乙每小时比甲少骑2.5千米,则乙每小时骑(C )A .20千米B .17.5千米C .15千米D .12.5千米7.父亲今年30岁,儿子今年4岁,9年后父亲的年龄是儿子年龄的3倍.易错点 去括号时漏乘某些项或弄错符号导致错解8.解方程:2(3-4x )=1-3(2x -1).解:去括号,得6-4x =1-6x -1.(第一步)移项,得-4x +6x =1-1-6.(第二步)合并同类项,得2x =-6.(第三步)系数化为1,得x =-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.中档题9.下列是四个同学解方程2(x -2)-3(4x -1)=9的去括号的过程,其中正确的是(A )A .2x -4-12x +3=9B .2x -4-12x -3=9C .2x -4-12x +1=9D .2x -2-12x +1=910.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为(B )A .-1B .1 C.12 D .-1211.若式子4-3(x -1)与式子x +12的值相等,则x =-54. 12.解下列方程:(1)3x -2(10-x )=5;解:去括号,得3x -20+2x =5.移项,得3x +2x =20+5.合并同类项,得5x =25.系数化为1,得x =5.(2)3(2y +1)=2(1+y )+3(y +3);解:去括号,得6y +3=2+2y +3y +9.移项,得6y -2y -3y =-3+2+9.合并同类项,得y =8.(3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x. 移项、合并同类项,得2x =6.系数化为1,得x =3.13.若方程3(2x -2)=2-3x 的解与方程6-2k =2(x +3)的解相同,求k 的值.解:由3(2x -2)=2-3x ,解得x =89. 把x =89代入方程6-2k =2(x +3),得 6-2k =2×(89+3).解得k =-89.14.(教材P94例2变式)一架飞机在两城市之间飞行,风速为24 km/h ,顺风飞行需要2 h 50 min ,逆风飞行需要3 h .求无风时飞机的飞行速度和两城之间的航程.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h,两城之间的航程为2 448 km.综合题15.某次义务劳动,有甲、乙两个工地,甲工地有27人在劳动,乙工地有19人在劳动.现在又有20人来参加义务劳动,要使甲工地人数为乙工地人数的2倍,问应分别调往甲、乙两工地各多少人?解:设应调往甲工地x人,则调往乙工地(20-x)人.根据题意,得27+x=2[19+(20-x)].解得x=17.则20-x=3.答:应调往甲工地17人,调往乙工地3人.第2课时 去分母基础题知识点1 利用去分母解一元一次方程(1)去分母的方法:依据等式的性质2,方程两边各项都乘所有分母的最小公倍数,将分母去掉.(2)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.1.解方程3y -14-1=2y +76去分母时,方程两边都乘(B ) A .10 B .12 C .24 D .62.(曲靖期末)解方程x -14=3-1+2x 8去分母正确的是(A ) A .2(x -1)=24-1-2xB .2(x -1)=24-1+2xC .2(x -1)=3-1-2xD .2(x -1)=3-1+2x3.解方程13-x -12=1的结果是(D ) A .x =12 B .x =-12C .x =13D .x =-134.(济南中考)若式子4x -5与2x -12的值相等,则x 的值是(B ) A .1 B.32 C.23D .2 5.(滨州中考)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.(分数的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式的基本性质2)去括号,得9x +15=4x -2.(去括号法则或乘法分配律)(移项),得9x -4x =-15-2.(等式的基本性质1)合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的基本性质2)6.解下列方程:(1)2x -13=x +24; 解:去分母,得4(2x -1)=3(x +2).去括号,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2.(2)x -32-4x +15=1; 解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(3)2x +13=1-x -15. 解:去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.知识点2 去分母解方程的应用7.某工厂计划每天烧煤5吨,实际每天比计划少烧2吨,若m 吨煤多烧了20天,则m =150.8.王强参加了一场3 000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,问王强以6米/秒的速度跑了多少米?解:设王强以6米/秒的速度跑了x 米,则王强以4米/秒的速度跑了(3 000-x )米.根据题意,得x 6+3 000-x 4=10×60. 解得x =1 800.答:王强以6米/秒的速度跑了1 800米.易错点 去分母时,漏乘不含分母的项9.(株洲中考改编)在解方程x -13+x =3x +12时,方程两边同时乘6,去分母后,得2(x -1)+6x =3(3x +1).中档题10.若关于x 的一元一次方程2x -k 3-x -3k 2=1的解是x =-1,则k 的值是(B ) A .27B .1C .-1311D .011.(民大附中月考)式子x +24的值比2x -36的值大1,则x 的值是0. 12.(昆明月考)轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3 h ,若静水时船速为26 km/h ,水速为2 km/h ,则A 港和B 港相距504km.13.解下列方程:(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x ).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)x -x -12=2-x +25; 解:去分母,得10x -5(x -1)=20-2(x +2). 去括号,得10x -5x +5=20-2x -4.移项,得10x -5x +2x =-5+20-4.合并同类项,得7x =11.系数化为1,得x =117.(3)x +12=6-2x -13; 解:去分母,得3(x +1)=36-2(2x -1). 去括号,得3x +3=36-4x +2.移项,得3x +4x =-3+36+2.合并同类项,得7x =35.系数化为1,得x =5.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1. 去分母,得30x -7(17-20x )=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417.14.小明以每小时8千米的速度从甲地到达乙地,回来时走的路程比去时多3千米,已知速度为9千米/时,这样回来时比去时多用18小时,求去时甲、乙两地路长. 解:设去时甲、乙两地的路长为x 千米,则 x 8+18=x +39.解得x =15. 答:去时甲、乙两地的路长为15千米.综合题15.某同学在解方程2x -13=x +a 3-2去分母时,方程右边的-2没有乘3,因而求得的方程的解为x =2,试求a 的值,并求出原方程的解.解:根据该同学的做法,去分母,得2x -1=x +a -2.解得x =a -1.因为x =2是方程的解,所以a =3.把a =3代入原方程,得2x -13=x +33-2,解得x =-2.小专题5 一元一次方程的解法题组1 移项、合并同类项解一元一次方程1.解下列方程:(1)56-8x =11+x ;解:-8x -x =11-56,-9x =-45,x =5.(2)43x +1=5+13x. 解:43x -13x =5-1, x =4.题组2 去括号解一元一次方程2.解下列方程:(1)4x -3(20-2x )=10;解:4x -60+6x =10,4x +6x =60+10,10x =70,x =7.(2)4y -3(20-y )=6y -7(9-y ); 解:4y -60+3y =6y -63+7y , 4y +3y -6y -7y =60-63,-6y =-3,y =12.(3)4x -8(x +1)=4-2(x +3). 解:4x -8x -8=4-2x -6, 4x -8x +2x =4-6+8,-2x =6,x =-3.题组3 去分母解一元一次方程3.解下列方程:(1)2x -13-2x -34=1; 解:4(2x -1)-3(2x -3)=12, 8x -4-6x +9=12,8x -6x =4-9+12,2x =7,x =72.(2)16(3x -6)=25x -3; 解:5(3x -6)=12x -90, 15x -30=12x -90,15x -12x =-90+30,3x =-60,x =-20.(3)2(x +3)5=32x -2(x -7)3;解:12(x +3)=45x -20(x -7),12x +36=45x -20x +140,12x -45x +20x =-36+140,-13x =104,x =-8.(4)2x -13-10x +16=2x +12-1; 解:2(2x -1)-(10x +1)=3(2x +1)-6,4x -2-10x -1=6x +3-6,4x -10x -6x =3-6+2+1,-12x =0,x =0.(5)0.1-2x 0.3=1+x 0.15. 解:原方程整理,得1-20x 3=1+100x 15. 去分母,得5(1-20x )=15+100x.去括号,得5-100x =15+100x.移项,得-100x -100x =15-5.合并同类项,得-200x =10.系数化为1,得x =-0.05.周周练(3.1~3.3)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程中是一元一次方程的是(B )A.2x +2=3B.3x -12+4=3x C .y 2+3y =0D .9x -y =2 2.方程3x +6=2x -8移项后,正确的是(C )A .3x +2x =6-8B .3x -2x =-8+6C .3x -2x =-6-8D .3x -2x =8-63.解方程2(x -3)-3(x -4)=5时,下列去括号正确的是(D )A .2x -3-3x +4=5B .2x -6-3x -4=5C .2x -3-3x -12=5D .2x -6-3x +12=54.下列说法中,正确的是(D )A .若a =b ,则a c =b dB .若a =b ,则ac =bdC .若ac =bc ,则a =bD .若a =b ,则ac =bc5.方程2-2x -43=-x -76去分母,得(C ) A .2-2(2x -4)=-(x -7)B .12-2(2x -4)=-x -7C .12-2(2x -4)=-(x -7)D .12-(2x -4)=-(x -7)6.(咸宁中考)方程2x -1=3的解是(D )A .x =-1B .x =-2C .x =1D .x =27.小马虎在计算16-13x 时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是(A ) A .15B .13C .7D .-18.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是(A )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=100二、填空题(每小题4分,共24分)9.已知x =-2是方程3(x +a )=15的解,则a =7.10.若式子2-k 3-1的值是1,则k =-4. 11.(临沧期中)如果5x +3与-2x +9互为相反数,那么x 的值是-4.12.(文山期中)已知(x -2)2+|3y -2x|=0,则x =2,y =43. 13.轮船从甲地顺流而行9小时到达乙地,原路返回11小时才能到达甲地,已知水流速度为2千米/时,则轮船在静水中的速度是20千米/时.14.已知a 、b 、c 、d 为4个数,现规定一种新的运算,⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,那么当⎪⎪⎪⎪⎪⎪ 2 4(1-x ) 5=18时,x =3.三、解答题(共44分)15.(24分)解方程:(1)(曲靖期末)x +12-1=43x ; 解:3(x +1)-6=8x ,3x +3-6=8x ,3x -8x =-3+6,-5x =3,x =-35.(2)3x -2(20-x )=6x -4(9+x );解:3x -40+2x =6x -36-4x ,3x =4,x =43.(3)2-2x +13=1+x 2; 解:12-2(2x +1)=3(1+x ),12-4x -2=3+3x ,-7x =-7,x =1.(4)x -10.3-x +20.5=1.2. 解:10x -103-10x +205=1.2, 5(10x -10)-3(10x +20)=1.2×15,50x -50-30x -60=18,20x =128,x =325.16.(8分)学校分配学生住宿,如果每室住8人,那么还少12个床位;如果每室住9人,那么空出两个房间.求房间的个数和学生的人数.解:设房间数为x,由题意,得8x+12=9(x-2).解得x=30.则学生人数为8×30+12=252.答:房间的个数为30,学生的人数为252.17.(12分)有一叠卡片,自上而下按规律分别标有6,12,18,24,30,…这些数.(1)你能发现这些卡片上的数有什么规律吗?请将它用一个含有n(n≥1)的式子表示出来;(2)小明从中抽取相邻的3张,发现其和是342,你能知道他抽出的卡片是哪三张吗?(3)你能拿出相邻的3张卡片,使得这些卡片上的数字之和是86吗?为什么?解:(1)6n.(2)设中间一张标有数字6n,那么前一张为6(n-1)=6n-6,后一张为6(n+1)=6n+6.根据题意,得6n-6+6n+6n+6=342.解得n=19.则6(n-1)=6×18=108,6n=6×19=114,6(n+1)=6×20=120.答:所抽的卡片为标有108、114、120数字的三张卡片.(3)不能,因为当6n-6+6n+6n+6=86时,n=43,不是整数,所以不可能抽到相邻3张卡片,使得这些卡片9上的数字之和为86.3.4 实际问题与一元一次方程第1课时 产品配套问题与工程问题基础题知识点1 产品配套问题解决配套问题时,关键是明确题目中的相等关系,它是列方程的依据.一般来说,题目中有两个等量关系,根据其中一个等量关系设未知数,根据另一个等量关系列方程. 1.有一个专项加工茶杯的车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?设安排加工杯身的人数为x ,则加工杯盖的为(90-x )人,每小时加工杯身12x 个,杯盖15(90-x )个,则可列方程为12x =15(90-x ),解得x =50.间接设法:设共生产杯身x 个,共生产杯盖x 个.则生产杯身的工人为x 12个,生产杯盖的工人为x 15个,则可列方程为x 12+x 15=90.解得x =600.x 12=60012=50,x 15=60015=40. 2.(教材P101练习T1变式)(曲靖中考)某种仪器由1个A 部件和1个B 部件配套构成.每个工人每天可以加工A 部件1 000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?解:安排x 人生产A 部件,安排(16-x )人生产B 部件.由题意,得1 000x =600(16-x ).解得x =6.所以16-x =10.答:安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B 部件配套.知识点2 工程问题(1)解决工程问题时,常把总工作量看作1,并利用“工作量=人均效率×人数×时间”的关系考虑问题.(2)用一元一次方程分析和解决实际问题的基本步骤是:①设未知数;②分析问题中的数量关系,找出其中的等量关系,并由此列出方程;③解方程;④检验解的正确性与合理性,并写出答案.3.(教材P101练习T2变式)一件工作,甲单独做需要10小时完成,乙单独做需要15小时完成,甲、乙合作需要x 小时完成,则可列方程为x 10+x 15=1,解得x =6. 4.一批文稿,若由甲抄30小时可以抄完,若由乙抄20小时可以抄完,现由甲抄3小时后改由乙抄余下部分,则乙还需抄18小时.5.(昆明月考)整理一批图书,如果由一个人单独做要用30 h ,现先安排一部分人用1 h 整理,随后又增加6人和他们一起又做了2 h ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少? 解:设先安排整理的人员有x 人,由题意,得130x +130(x +6)×2=1, 解得x =6.答:先安排整理的人员有6人.中档题6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是(D )A.x +312+x 8=1 B.x +312+x -38=1 C.x 12+x 8=1 D.x 12+x -38=1 7.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x 人做上衣,则做裤子的人数为(54-x )人,根据题意,可列方程为8x =10(54-x ),解得x =30.8.某瓷器厂共有120个工人,每个工人一天能做200只茶杯或50只茶壶.若8只茶杯和1只茶壶为一套,则安排40人生产茶壶可使每天生产的瓷器配套.9.学校图书管理员整理一批图书,由一个人做要80小时完成,现在计划由一部分人先做8小时,再增加2人和他们一起做16小时完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工作8小时?解:设应先安排x 人工作8小时,根据题意,得8x 80+16(x +2)80=1. 解得x =2.答:应先安排2人工作8小时.10.(民大附中月考)某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?解:设分配x 名工人生产螺母,则(22-x )名工人生产螺钉,由题意,得2 000x =2×1 200(22-x ),解得x =12.则22-x =10.答:应安排生产螺钉和螺母的工人分别为10名,12名.综合题11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?解:(1)能履行合同.设甲、乙合作x 天完成,则(130+120)x =1,解得x =12. 因为12<15,所以两人能履行合同.(2)调走甲更合适.由(1)知,两人合作完成这项工程的75%需要的时间为12×75%=9(天).剩下6天必须由某人做完余下的工程,故他的工作效率为25%÷6=124,因为130<124<120,故调走甲合适.。

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)

人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)1.数轴是学习初中数学的一个重要工具利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:数轴上点A、点B表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为;AB=a﹣b线段AB的中点M表示的数为.如图,已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位长度的速度沿数轴向右匀速运动,点B以每秒2个单位长度向左匀速运动,设运动时间为t 秒(t>0).(1)运动开始前,A、B两点的距离为个单位长度;线段AB的中点M所表示的数为;(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为.(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A、B按上述方式运动,A、B两点经过多少秒,线段AB的中点M与原点重合?2.已知两点A、B在数轴上,AB=9,点A表示的数是a,且a与(﹣1)3互为相反数.(1)写出点B表示的数;(2)如图1,当点A、B位于原点O的同侧时,动点P、Q分别从点A、B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P、Q所表示的数;(3)如图2,当点A、B位于原点O的异侧时,动点P、Q分别从点A、B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当|OM﹣ON|=2时,求动点P、Q运动的速度.3.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合).4.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.5.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示﹣12,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:(1)动点Q从点C运动至点A需要秒;(2)P、Q两点相遇时,求出t的值及相遇点M所对应的数是多少?(3)求当t为何值时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍(即P点运动的路程=Q点运动的路程).6.【阅读理解】点A、B在数轴上对应的数分别是a,b,且|a+2|+(b﹣8)2=0.A、B两点的中点表示的数为;当b>a时,A、B两点间的距离为AB=b﹣a.(1)求AB的长.(2)点C在数轴上对应的数为x,且x是方程2x+8=x﹣2的解,在数轴上是否存在点P,使PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由.(3)点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒8个单位的速度向左运动,点N从点B出发,以每秒5个单位的速度向右运动,P、Q 分别为ME、ON的中点,求证:在运动过程中,的值不变,并求出这个值.7.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?8.已知,如图所示,A、B、C是数轴上的三点,点C对的数是6,BC=4,AB=12.(1)写出A、B对应的数;(2)动点P、Q同时从A、C出发,分别以每秒6个单位,3个单位速度沿数轴正方向运动,M是AP的中点,N在CQ上且CN=CQ,设运动时间为t(t>0).①求点M、N对应的数(含t的式);②x为何值时OM=2BN.9.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B 以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.10.已知,数轴上两点A,B表示的数分别是9和﹣6,动点P从点A出发,以每秒3个单位的速度沿数轴向点B运动,运动到点B停止;(1)在数轴上表示出A,B两点,并直接回答:线段AB的长度是;(2)若满足BP=2AP,求点P的运动时间;(3)在点P运动过程中,若点M为线段AP的中点,点N为线段BP的中点,请计算线段MN的长度,并说出线段MN与线段AB的数量关系;(4)若另一动点Q同时从B点出发,运动的速度是每秒2个单位,几秒钟后,线段PQ 长度等于5?参考答案1.解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示数为.故答案是:18;﹣1(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t.故答案是:﹣10+3t;8﹣2t(3)设它们按上述方式运动,A、B两点经过x秒会相距4个单位长度.根据题意得3x+2x=18﹣4,解得x=2.8;3x+2x=18+4,解得x=4.4.答:A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)由题意得解得t=2.答:经过2秒A、B两点的中点M会与原点重合.2.解:(1)∵a与(﹣1)3互为相反数∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示,②当点A、点B在原点的异侧时,点B所表示的数为1﹣9=﹣8,如图2所示,故点B所表示的数为10或﹣8;(2)当点A、B位于原点O的同侧时,点B表示的数是10设点Q的运动速度为x,则点P的速度为2x∵3秒后两动点相遇∴3(x+2x)=9解得:x=1∴点Q的运动速度为1,则点P的速度为2运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9解得:t=;∴点P表示的数为:1+2×=,点Q表示的数为:10﹣=;②相遇后,再运动y秒,P、Q两点相距2,由题意有:y+2y=2解得:y=∴点P表示的数为:1+3×2+×2=,点Q表示的数为:10﹣3×1﹣×1=;(3)根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度∴点Q的运动速度为:9÷5=1.8设点P的速度为v,∵|OM﹣ON|=2∴|9+1﹣(5v+1)|=2解得:v=或∴点P的速度为或.3.解:(1)A、B两点的距离为:8﹣(﹣10)=18;线段AB的中点M所表示的数为﹣1.故答案为:18;﹣1;(2)由题意可得点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;故答案为:﹣10+3t;8﹣2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时,依题意列式,得3t+2t=18﹣4,解得t=2.8;当点A在点B右侧时,3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)能.设A,B按上述方式继续运动k秒线段的中点M能与原点重合,根据题意列方程,可得=0,解得k=2.运动开始前M点的位置是﹣1,运动2秒后到达原点,由此得M点的运动方向向右,其速度为:|﹣1÷2|=个单位长度.答:运动时间为2秒,中点M点的运动方向向右,其运动速度为每秒个单位长度.4.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.5.解:(1)点Q运动至点A时,所需时间t=(20﹣12)÷1+12÷2+12÷1=26(秒).答:动点Q从点C运动至点A需要26秒;(2)由题可知,P、Q两点相遇在线段OB上M处,设OM=x.则12÷2+x÷1=(20﹣12)÷1+(12﹣x)÷2,解得x=,12÷2+÷1=6+5=11.答:t的值是11,相遇点M所对应的数是.(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍有2种可能:①动点Q在OB上,动点P在BO上,相遇前,则:12+(t﹣12÷2)=[20﹣12+2(t﹣8÷1)],解得:t=.②动点Q在OA上,动点P在BC上,相遇后,则:12+12+2(t﹣18)=[8+12+(t﹣8÷1﹣12÷2)],解得:t=26.综上所述:当t为或26时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍.故答案为:26.6.(1)解:∵|a+2|+(b﹣8)2=0,∴a=﹣2,b=8,∴AB=8﹣(﹣2)=10;(2)解:2x+8=x﹣2,∴x=﹣10,∴C在数轴上对应的数为﹣10,设点P对应的数为y,由题意可知,点P不可能位于点A的左侧,所以存在以下两种情况:①点P在点B的右侧,∴(y﹣8)+[y﹣(﹣2)]=y﹣(﹣10),∴y=16,②当点P在A、B之间,∴(8﹣y)+[y﹣(﹣2)]=y﹣(﹣10),∴y=0,综上所述,点P对应的数是16或0;(3)证明:设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣8t,点N对应的数是8+5t,∵P是ME的中点,∴P点对应的数是=﹣1﹣t,又∵Q是ON的中点,∴Q点对应的数是=4+t,∴MN=(8+5t)﹣(﹣2﹣8t)=10+13t,OE=t,PQ=(4+t)﹣(﹣1﹣t)=5+6t,∴===2(定值).∴在运动过程中,的值不变,这个值是2.7.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.8.解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10.故点A对应的数是﹣10,点B对应的数是2;(2)①AP=6t,CQ=3t,如图1所示:∵M为AP的中点,N在CQ上,且CN=CQ,∴AM=AP=3t,CN=CQ=t,∵点A表示的数是﹣10,点C表示的数是6,∴点M表示的数是﹣10+3t,点N表示的数是6+t;②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,∴|﹣10+3t|=2(4+t)=8+2t,∴﹣10+3t=±(8+2t),当﹣10+3t=8+2t时,t=18;当﹣10+3t=﹣(8+2t)时,t=.∴当t=18或t=时,OM=2BN.9.解:(1)∵AB=15,OA:OB=2∴AO=10,BO=5∴A点对应数为﹣10,B点对应数为5,故答案为:﹣10、5.(2)画图如下:∵点E、F分别为BP、AO的中点∴OF=AO,BE=BP∴EF=OF+OB+BE=AO+OB+BP∴===2.(3)设运动时间为t秒,则点P对应的数:5+4t;点A对应的数:﹣10+2t;点B对应的数:5+5t;∴AP=5+4t﹣(﹣10+2t)=2t+15;OP=5+4t;BP=t.∴3AP+2OP﹣mBP=3(2t+15)+2(5+4t)﹣mt=(14﹣m)t+55.∴当m=14时,为定值55.10.解:(1)如图所示:线段AB的长度是9﹣(﹣6)=9+6=15,故答案为:15;(2)设AP=3t,则BP=6t,可得3t+6t=15,∴t=;(3)∵AP=3t,∴BP=15﹣3t,∵点M为线段AP的中点,点N为线段BP的中点,∴MP=AP=t,PN=(15﹣3t),则MN=MP+PN=t+(15﹣3t)=,∴MN=AB;(4)设BQ=2t,当Q在AB上时,①15﹣2t﹣3t=5,解得t=2;②2t+3t﹣15=5,解得t=4;当Q在AB外时,2t+(15﹣3t)=5,解得t=4;此时,点P不在线段AB外(舍去)综上所述,当2秒或4秒时,线段PQ的长度等于5.。

七年级上册数学期末复习《一元一次方程》试题

七年级上册数学期末复习《一元一次方程》试题

A.15x+3-2x-1=1
B.15x+3-2x+1=1
C.15x+3-2x+1=6
D.15x+3-2x-1=6
5.(曲靖中考)小明所在城市的“阶梯水价”收费办法是:每
户用水不超过 5 吨,每吨水费 x 元;超过 5 吨,超过部分每吨加收
2 元,小明家今年 5 月份用水 9 吨,共交水费为 44 元,根据题意列
【解答】 设乙船到达 C 地时,甲船距离 B 地 x km. ①当 C 地在 A,B 两地之间时,由题意,得 (7.5+2.5)×(4-7.5+x 2.5)-(7.5-2.5)×7.5+x 2.5=10, 解得 x=20. ②当 C 地在 A 地的上游时,由题意,得 (7.5-2.5)×7.5+x 2.5-(7.5+2.5)(4-7.5+x 2.5)=10, 解得 x=1030. 答:乙船到达 C 地时,甲船距离 B 地 20 km 或1030 km.
分类讨论思想:对于实际问题列方程时,若条件中给出的 等量关系表述不明确,则必须进行分类讨论.关键是要分清不明确的 条件中可能产生的情况.
【例 7】 如图,数轴上两个动点 A,B 开始时所对应的数分 别为-8,4,A,B 两点各自以一定速度在数轴上运动,且 A 点运 动的速度为 2 个单位/秒.
(1)A,B 两点同时出发相向而行,在原点处相遇,求 B 点运 动的速度;
一、选择题(每小题 4 分,共 32 分)
1.已知下列方程:①13x=2;②1x=3;③x2=2x-1;④2x2=1;
⑤x=2;⑥2x+y=1.其中一元一次方程的个数是(B)
A.2
B.3
C.4
D.5
2.下列方程中变形正确的是(A)
①3x+6=0 变形为 x+2=0;

人教版七年级上册期末复习试题:第三章《一元一次方程》应用题专练(四)

人教版七年级上册期末复习试题:第三章《一元一次方程》应用题专练(四)

七年级上册期末复习试题:第三章《一元一次方程》应用题专练(四)1.元旦期间,某商场用1400元购进了甲、乙两种商品,共100件,进价分别是18元、10元.(1)求甲、乙两种商品各购进了多少件?(2)商场搞促销活动,若同时购买甲、乙两种商品各1件,可享受标价的8折优惠,此时这两种商品的利润率是10%,求这两种商品的标价总共多少元?2.为丰富校园文化生活,某学校在元旦之前组织了一次百科知识竞赛.竞赛规则如下:竞赛试题形式为选择题,共50道题,答对一题得3分,不答或错一题倒扣1分.小明代表班级参加了这次竞赛,请解决下列问题:(1)如果小明最后得分为142分,那么他回答对了多少道题?(2)小明的最后得分可能为136分吗?请说明理由.3.2019年元旦期间,某超市打出促销广告,如下表所示:一次性所购物品的原价优惠办法不超过200元没有优惠超过200元,但不超过600元全部按九折优惠超过600元其中600元仍按九折优惠,超过600元部分按8折优惠(1)小张一次性购买物品的原价为400元,则实际付款为元;(2)小王购物时一次性付款580元,则所购物品的原价是多少元?(3)小赵和小李分别前往该超市购物,两人各自所购物品的原价之和为1200元,且小李所购物品的原价高于小赵,两人实际付款共1074元,则小赵和小李各自所购物品的原价分别是多少元?4.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t 秒.(1)数轴上点B表示的数为;点P表示的数为(用含t的代数式表示).(2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,P、Q停止运动.设运动时间为t秒.①当点P与点Q重合时,求t的值,并求出此时点P表示的数.②当点P是线段AQ的三等分点时,求t的值.5.已知线段AB=a,点P从点A出发沿射线AB以每秒3个单位长度的速度运动,同时点Q 从点B出发沿射线AB以每秒2个单位长度的速度运动,M、N分别为AP、BQ的中点,运动的时间为t.(1)若a=12,MN=AB,求t的值,并写出此时P、Q之间的距离;(2)点M、N能否重合为一点,若能,请直接写出此时线段PQ与线段AB之间的数量关系;若不能,说明理由.6.某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?7.A、B、C、D、E、F六个球队进行单循环比赛(每两队之间赛一场,比赛结果必须分出胜负),每天同时在三个场地各进行一场比赛,前四天的积分表如下(E、F的积分被遮挡):(1)根据积分榜,胜一场积几分,负一场积几分?(2)若E队前四天积分比F队多4分,问E、F两队前四天的战绩分别是几胜几负?(3)已知第一天B与D对阵,第二天C与E对阵,第三天D与F对阵,第四天B与C对阵,试分析第五天A和谁对阵比赛.8.甲、乙两人在400米的环形跑道上进行早锻炼,甲慢跑速度为105米/分,乙步行速度为25米/分,两人同时同地同向出发,经过多少时间,两人第一次相遇?(请列一元一次方程求解)9.用A4纸在某眷印社复印文件,复印页数不超过20时,每页收费1元;复印页数超过20时,超过部分每页收费降为0.4元,在某图书馆复印同样的文件,不论复印多少页,每页收费0.8元,当复印的张数超过20页时,请回答以下问题.(1)复印张数为多少页时,某眷印社与某图书馆的收费相同?(2)如何选择更省钱?10.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.参考答案1.解:(1)设甲购进了x件,则乙购进了(100﹣x)件,由题意,得:18x+10(100﹣x)=1400,解得:x=50,100﹣x=50,答:甲、乙两种商品各购进了50件;(2)设两种商品的标价总共y元.由题意,得:(18+10)×(1+10%)=0.8y,解得:y=38.5,答:两种商品的标价总共38.5元.2.解:(1)设小明回答对了x道题,根据题意,得:3x﹣(50﹣x)=142,解得:x=48,答:小明答对了48道题;(2)不可能得到136分,设小明回答对了y道题,根据题意,得:3y﹣(50﹣y)=136,解得y=46.5,∵46.5不是整数,∴不可能得到136分.3.解:(1)小张一次性购买物品的原价为400元,则实际付款为400×0.9=360(元),故答案为:360.(2)若所购物凭的原价为600元,则实际付款为540元,因为580>540,所以小王所购物品原价超过600元,设小王所购物品原价为x元,根据题意,得:600×0.9+0.8(x﹣600)=580,解得x=650,答:所购物品的原价是650元;(3)∵小赵和小李各自所购物品的原价之和为1200元,且小李所购物品的原价高于小赵,所以小赵所购物品的原价低于600元,小李所购物品的原价高于600元,设小赵所购物品原价为y元,则小李所购物品的原价为(1200﹣y)元,①若小赵所购物品的原价低于200元,根据题意,得:y+600×0.9+0.8(1200﹣y﹣600)=1074,解得y=270>200,不符合题意;②若小赵所购物品的原价超过200元,但不超过600元,根据题意,得:0.9y+600×0.9+0.8(1200﹣y﹣600)=1074,解得:y=540,∴1200﹣540=660,符合题意;答:小赵所购物品原价为540元,则小李所购物品的原价为660元.4.解:(1)由题意知,点B表示的数是﹣3+12=9,点P表示的数是﹣3+2t,故答案为:9,﹣3+2t;(2)①根据题意,得:(1+2)t=12,解得:t=4,∴﹣3+2t=﹣3+2×4=5,答:当t=4时,点P与点Q重合,此时点P表示的数为5;②P与Q重合前:当2AP=PQ时,有2t+4t+t=12,解得t=;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后:当AP=2PQ时,有2(8﹣t)=2(t﹣4),解得t=6;当2AP=PQ时,有4(8﹣t)=t﹣4,解得t=;综上所述,当t=秒或3秒或6秒或秒时,点P是线段AQ的三等分点.5.解:(1)由题意得,AP=3t,BQ=2t,∵M、N分别为AP、BQ的中点,∴AM=PM=AP=t,AN=AB+BN=AB+BQ=a+t∴MN=|t﹣(a+t)|=||,PQ=|3t﹣a﹣2t|=|t﹣a|,若a=12,MN=AB=4,∴||=4,解得:t1=32或t2=16当t=32时,PQ=|32﹣12|=20,当t=16时,PQ=|16﹣12|=4;综上所述:若a=12,MN=AB,则t=32时,PQ=20,或t=16时,PQ=4,(2)结论:点M、N能重合为一点,此时PQ=AB;理由如下:若点M、N重合为一点,即MN=0,∴||=0,解得t=2a,则PQ=|2a﹣a|=a,此时PQ=AB.6.解:(1)设衬衫的单价为x元,则西装的单价为5x元,根据题意,得30×5x+45x=39000解得:x=200 则:5x=1000答:衬衫的单价为200元,则西装的单价为1000元;(2)设购买衬衫的数量为y件,则购买西装的数量为(55﹣y)件,根据题意,得 200y+1000(55﹣y)=32000,解得:y=28.75(不符合题意),所以,帐肯定算错了.7.解:(1)由D队情况可得,负4场积4分∴负一场得1分设胜一场积x分,得:3x+1=10解得:x=3答:胜一场积3分,负一场积1分.(2)设E队胜y场,F队胜z场,依题意得:解得:答:E队3胜1负,F队1胜3负.(3)由条件可知,第二天B与A或F对阵,若第二天B与A对阵,即当天比赛是:B与A,C与E,D与F(与第三天才有D与F对阵矛盾),不成立∴第二天B与F对阵,比赛为:C与E,B与F,A与D∴第五天B与A对阵答:第五天A和B对阵比赛.8.解:设经过x分钟后两人第一次相遇,可列方程:105x﹣25x=400解得x=5答:经过5分钟,两人第一次相遇.9.解:(1)设复印张数为x页,(x>20),列方程得:20+0.4(x﹣20)=0.8x解得:x=30答:复印张数为30页时,某眷印社与某图书馆的收费相同.(2)20+0.4(x﹣20)>0.8x解得:x<30答:当复印张数大于0小于30页时,选某图书馆;当复印张数为30页时,两店一样;当复印张数大于30页时,选某眷印社.10.解:(1)由题意可知,一次性购物总额是400元时:甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元故甲、乙两家超市实付款分别352元和360元.(2)设购物总额是x元,由题意知x>500,列方程得:0.88x=500×(1﹣0.1)+0.8(x﹣500)解得x=625故当购物总额是625元时,甲、乙两家超市实付款相同.(3)∵500×0.9=450<482,∴该顾客购物实际金额多于500.设该顾客购物金额为y,由题意得:500×(1﹣0.1)+0.8(y﹣500)=482解得y=540若顾客在甲超市购物,则实际付款金额为:540×0.88=475.2元475.2元<482元故该顾客的选择不划算.。

第3章 一元一次方程 初中数学人教版七年级上册章末检测卷(含答案)

第3章 一元一次方程 初中数学人教版七年级上册章末检测卷(含答案)

第3章一元一次方程章末检测卷01本卷满分150分,考试时间120分钟一、单项选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.B.C.D.【答案】B【分析】首先理解题意找出题中存在的等量关系:成本价×(1+40%)×80%=售价240元,根据此列方程即可.【详解】设这件商品的成本价为x元,成本价提高40%后的标价为x(1+40%),再打8折的售价表示为x(1+40%)×80%,又因售价为240元,列方程为:x(1+40%)×80%=240,故选:B.【点睛】本题考查了一元一次方程的应用,解此题的关键是理解成本价、标价、售价之间的关系及打8折的含义.2.书店有书x本,第一天卖了全部的,第二天卖了余下的,还剩( )本.A.x-B.x-C.x-D.x-【答案】D【分析】根据书店有书x本,第一天卖出了全部的,求出第一天还余下的本数,再根据第二天卖出了余下的,即可求出剩下的本数.【详解】∵书店有书x本,第一天卖出了全部的,∴第一天还余下(x−x)本,∵第二天卖出了余下的,∴还剩下x −x−(x−x)本;故选D.【点睛】本题考查列代数式.3.已知a=b,下列变形正确的有( )个.①a+c=b+c;②a﹣c=b﹣c;③3a=3b;④ac=bc;⑤.A.5B.4C.3D.2【答案】B【分析】运用等式的基本性质求解即可.①、②根据等式性质1判断,③、④、⑤根据等式的性质2判断,要注意应用等式性质2时,等式两边同除以一个数时必须具备该数不等于零这一条件.【详解】解:已知a=b,①根据等式性质1,两边同时加上c得:a+c=b+c,故①正确;②根据等式性质1,两边同时减去c得:a﹣c=b﹣c,故②正确;③根据等式的性质2,两边同时乘以3,3a=3b,故③正确;④根据等式的性质2,两边同时乘以c,ac=bc,故④正确;⑤因为c可能为0,所以与不一定相等,故⑤不正确.故选B.【点睛】本题考查等式的性质,选择相应的基本性质作依据是解题关键.要注意应用等式基本性质2时,等式两边同除以一个数时必须具备该数不等于零这一条件.4.已知x=y,则下列等式不一定成立的是( )A.x﹣k=y﹣k B.x+2k=y+2k C.D.kx=ky【答案】C【分析】根据等式的基本性质1是等式两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式两边都乘以(或除以)同一个数(除数不为0),所得的结果仍是等式可以得出答案.【详解】解:A、因为x=y,根据等式性质1,等式两边都减去k,等式仍然成立,所以A正确;B、因为x=y,根据等式性质1,等式两边都加上2k,等式仍然成立,所以B正确;C、因为x=y,根据等式性质2,等式两边都同时除以一个不为0的数,等式才成立,由于此选项没强调k≠0,所以C不一定成立;D、因为x=y,根据等式的基本性质2,等式两边都乘以k,等式仍然成立,所以D正确.故选C.【点睛】本题主要考查了等式的基本性质,熟练掌握等式的基本性质以及理解到位除数不能为0是解决本题的关键.5.若x=-3是方程的解,则的值是()A.6B.-6C.12D.-12【答案】B【分析】把x=-3,代入方程得到一个关于m的方程,即可求解.【详解】解:把x=-3代入方程得:2(-3-m)=6,解得:m=-6.故选:B.【点睛】本题考查了方程的解的定义,理解定义是关键.6.下列等式变形正确的是( )A.如果,那么B.如果,那么x=3C.如果mx=my,那么x=yD.如果x﹣3=y﹣3,那么x﹣y=0【答案】D【分析】根据等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立,可得答案.【详解】A、如果,那么,故A错误;B、如果,那么x=12,故B错误;C、当m=0时,错误;D、等式的两边都加3后移项,故D正确;故选:D.【点睛】本题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题关键.7.下列方程中:①;②;③;④;⑤;⑥.一元一次方程有()A.2个B.3个C.4个D.5个【答案】B【分析】根据一元一次方程的定义:只含有一个未知数,且未知数的最高次幂为1的整式方程进行判断即可.【详解】是分式方程,故①不符合题意;是一元一次方程,故②符合题意;是一元一次方程,故③符合题意;是一元二次方程,故④不符合题意;是一元一次方程,故⑤符合题意;是二元一次方程,故⑥不符合题意.故选:B【点睛】本题考查的是一元一次方程的判断,掌握一元一次方程的定义是关键.8.运用等式的性质变形,正确的是()A.如果,那么B.如果,那么C.如果,那么D.如果那么【答案】B【分析】根据等式的基本性质进行判断即可.【详解】如果,那么,故A错误;如果,那么,故B正确;如果,那么(c≠0),故C错误;如果那么,故D错误.故选:B【点睛】本题考查的是等式的基本性质,掌握等式的基本性质是关键,需要注意的是,在等式的两边除以一个相同的数(或代数式)时,这个数(或代数式)不能为0.9.下列方程中,是一元一次方程的是()A.B.C.D.【答案】B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、最高项的次数是2,故不是一元一次方程,选项不符合题意;B、正确,符合题意;C、含有2个未知数,故不是一元一次方程,选项不符合题意;D、不是整式方程,故不是一元一次方程,选项不符合题意;故选:B.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.10.下列运用等式的性质对等式进行的变形中,错误的是()A.若,则B.若,则C.若,则D.若,则【答案】C【分析】根据等式的性质,逐项判断即可.【详解】解:A、根据等式性质2,a(x2+1)=b(x2+1)两边同时除以(x2+1)得a=b,原变形正确,故这个选项不符合题意;B、根据等式性质2,a=b两边都乘c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,c可能为0,等式两边同时除以c2,原变形错误,故这个选项符合题意;D、根据等式性质1,x=y两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C.【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.11.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A.B.C.42D.44【答案】C【详解】解:设每一份为x,则图②中白色的面积为8x,灰色部分的面积为3x,由题意,得8x+3x=33,解得:x=3,∴灰色部分的面积为:3×3=9,∴图(①)纸片的面积为:33+9=42.故选C.【点睛】本题考查了比列问题在解实际问题中的运用,一元一次方程的解法的运用,解答时根据条件建立方程求出灰色部分的面积是关键.12.如图,长方形ABCD中,,,点P从A出发,以的速度沿运动,最终到达点C,在点P运动了3秒后点Q开始以的速度从D运动到A,在运动过程中,设点P的运动时间为t,则当的面积为时,t的值为()A.2或B.2或C.1或D.1或【答案】A【分析】首先分P运动了3秒以内和3秒以后两种情况,分别结合速度和距离的关系列出等式,从而完成求解.【详解】四边形ABCD是矩形,当点P在AB边时此时点Q还在点D处,∴∴;3秒后,点P在BC上∴∴∴∴当的面积为时,t的值为2或.故选A.【点睛】本题考察了矩形、一元一次方程、三角形面积计算等知识;求解的关键是熟练掌握矩形、一元一次方程的性质,并运用到实际问题的求解过程中,即可得到答案.二、填空题:本题共4小题,每小题5分,共20分.13.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3 小时,若船速为26 千米/小时,水速为 2 千米/时,则 A 港和 B 港相距_____千米.【答案】【分析】轮船航行问题中的基本关系为:(1)船的顺水速度=船的静水速度+水流速度;(2)船的逆水速度=船的静水速度一水流速度.若设A港和B港相距x千米,则从A港顺流行驶到B 港所用时间为小时,从B港返回A港用小时,根据题意列方程求解.【详解】解:设A港和B港相距x千米,根据题意,得+3=,解之得x=504.故答案为:504.【点睛】本题考查了一元一次方程的应用,考验学生对顺水速度,逆水速度的理解,注意:船的顺水速度、逆水速度、静水速度、水流速度之间的关系.14.某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,限定其提价的幅度只能是原价的10%,则该药品现在降价的幅度是_____%.【答案】45.【解析】【分析】设进价为a,则提价后售价为a(1+100%)=2a,现在的降价幅度为x%,等量关系为:提价后的价格×(1-x)=降价后的价格.【详解】解:设进价为a,则提价后售价为a(1+100%)=2a,现在的降价幅度为x%,根据题意得:2a(1﹣x%)=a(1+10%),解得:x=45.故答案为45.【点睛】本题考查一元一次方程的应用,题中的百分数很多,充分理解这些百分数的含义是解题的关键.15.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.【答案】15【分析】根据题中的“数值转换机”计算即可求出所求.【详解】解:根据题意得:3x﹣2=127,解得:x=43,可得3x﹣2=43,解得:x=15,则输入的数是15,故答案为15【点睛】考核知识点:解一元一次方程.理解程序意义是关键.16.我们规定:若关于的一元一次方程的解为,则称该方程为“和解方程”.例如:方程的解为,而,则方程为“和解方程".请根据上述规定解答下列问题:(1)已知关于的一元一次方程是“和解方程”,则的值为________.(2)己知关于的一元一次方程是“和解方程”,并且它的解是,则的值为_________.【答案】,,【分析】(1)根据“和解方程“的定义得出,再将其代入方程之中进一步求解即可;(2)根据“和解方程“的定义得出,结合方程的解为进一步得出,然后代入原方程解得,之后进一步求解即可.【详解】(1)依题意,方程解为,∴代入方程,得,解得:,故答案为:;(2)依题意,方程解为,又∵方程的解为,∴,∴,∴把,代入原方程得:,解得:∵,∴,∴,故答案为:.【点睛】本题主要考查了一元一次方程的求解,根据题意准确得知“和解方程”的基本性质是解题关键.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如表:(注:获利=售价-进价)甲乙进价(元/件)2230售价(元/件)2940(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?【答案】(1)购进甲种商品150件、乙种商品90件;(2)1950元;(3)8.5折【分析】(1)设第一次购进甲种商品x件,则购进乙种商品件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【详解】解:(1)设第一次购进甲种商品x件,则购进乙种商品件,根据题意得:22x+30=6000,解得:x=150,∴=90,答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29-22)×150+(40-30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29-22)×150+(40×-30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.18.(12分)一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?【答案】成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x元,则成本加5成后的售价为(1+50%)x元,再按七五折后的售价为0.75(1+50%)x元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.19.(12分)某商场计划拨款万元从厂家购进台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台元,乙种每台元,丙种每台元.若商场同时购进其中两种不同型号的电视机台,用去万元,请你研究一下商场的进货方案;若商场销售一台甲、乙、丙电视机分别可获利元,元,元,在以上的方案中,为使获利最多,商场应选择哪种进货方案?【答案】有种方案.方案一:甲种台,乙种台;方案二:甲种台,丙种台;购买甲种电视机台,丙种电视机台获利最多.所以应选择方案二.【分析】(1)可分甲、乙,甲、丙和乙、丙三种方案,分别列式求解,再根据实际意义取舍即可;(2)分别求出方案一和方案二的利润,通过比较两个方案利润的大小即可得解.【详解】(1)①设购进甲台,乙台,;∴;∴购进甲台,乙台.②设购进甲台,丙台;∴;购进甲台,丙台.③设购进乙台,丙台;∴(舍)所以选择有种方案.方案一:甲种台,乙种台;方案二:甲种台,丙种台;(2)利润应为:方案一:元,方案二:元,∵元元,∴方案二获利多,购买甲种电视机台,丙种电视机台获利最多.所以应选择方案二.【点睛】此题主要考查了二元一次方程组的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程组.20.(12分)如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.【答案】大正方形的面积是36cm2【分析】设小正方形的边长为x,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】设小正方形的边长为x,则大正方形的边长为4+(5−x)cm或(x+1+2)cm,根据题意得:4+(5−x)=(x+1+2),解得:x=3,∴4+(5−x)=6,∴大正方形的面积为36cm2.答:大正方形的面积为36cm2.【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.21.(12分)如图,数轴上A,B,C三点对应的数分别是a,b,14,满足,动点P从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.则______,______.当P点运动到数2的位置时,Q点对应的数是多少?是否存在t的值使,若存在求出t值,若不存在说明理由.【答案】(1)-4,8;(2)Q点对应的数是11;(3)存在,t的值为6或18.【分析】根据数形结合即可求出a,b的值;根据P,Q两点运动时间相等和各自的速度,即可求出Q 点对应的数;要讨论P点在C点的左边和P点过了C点在C点的右边两种情况,根据到C 点的距离相等即可列出方程,解出t的值.【详解】解:,,;,,;故答案为:;8秒,.故Q点对应的数是11;在C点的左边,则,解得;P在C点的右边,则,解得.综上所述,t的值为6或18.故答案为:6;18.【点睛】本题主要考查了有理数,一元一次方程等知识点,利用数形结合思想准确找出等量关系是解题关键.22.(12分)某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?【答案】(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,再列出方程.。

人教版七年级数学上册《一元一次方程应用题》期末专题练习-带答案

人教版七年级数学上册《一元一次方程应用题》期末专题练习-带答案

人教版七年级数学上册《一元一次方程应用题》期末专题练习-带答案学校:班级:姓名:考号:1.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?2.列方程解决问题:某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,两种笔共卖出60支,卖得金额84元.求卖出铅笔的支数.3.家具厂制作一张桌子需要一个桌面和3条桌腿,1立方米木材可制作20个桌面,或者制作360条桌腿,现有7立方米木材,应该用多少立方米木材生产桌面,才能使所有木材生产出的桌面与桌腿正好配套?4.一项工程,甲队独做10ℎ完成,乙队独做15ℎ完成,丙队独做20ℎ完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6ℎ,问甲队实际工作了几小时?5.某机械加工厂计划在规定期限内完成一批零件的生产任务,如果每天生产零件25个,那么到期将比原计划少生产100个;如果每天生产零件30个,那么到期将比原计划多生产80个,求原计划几天完成任务?6.某儿童服装店欲购进A、B两种型号的儿童服装;经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元.求A、B两种型号童装的进货单价各是多少元?7.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,已知每名同级别的技工每天的工作效率相同,每名一级技工比二级技工一天多粉刷10m2墙面.求每个一级技工和二级技工每天粉刷的墙面各是多少平方米?8.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域交流越来越深,在北京故宫博物院成立90周年院庆时,两岸故宫同根同源,合作举办了多项纪念活动.据统计,北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中台北故宫博物院藏品数量比北京故宫博物院藏品数量的12还少25万件,求北京故宫博物院约有多少万件藏品?9.举世瞩目的2019年中国北京世界园艺博览会在长城脚下的北京延庆开园,它给人们提供了看山、看水、看风景的机会.一天小龙和朋友几家去延庆世园会游玩,他们购买普通票比购买优惠票的数量少5张,买票共花费了1400元,符合他们购票的条件如下表,请问他们买了多少张优惠票?平日普通票•适用所有人•除指定日外任一平日参观120 优惠票•适用残疾人士、60周岁以上老年人、学生、中国现役军人(具体人群规则同指定日优惠票)•购票及入园时需出示相关有效证件•除指定日外任一平日参观8010.某商场开展优惠促销活动,将甲种商品六折出存,乙种商品八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,问:商场销售甲、乙两种商品各一件时是盈利还是亏损了?具体金额是多少?11.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示:品名甲种乙种进价(元/kg)7 12售价(元/kg)10 16(1)求这两种水果各购进多少千克?(2)如果这批水果当天售完,水果店除进货成本外,还需其它成本0.1元/kg,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)12.为开展阳光体育活动,某班需要购买一批羽毛球拍和羽毛球,现了解情况如下:甲、乙两家商店出售同样品牌的羽毛球拍和羽毛球,羽毛球拍每副定价30元,羽毛球每盒定价5元,且两家都有优惠:甲店每买一副球拍赠一盒羽毛球;乙店全部按定价的9折优惠.(1)若该班需购买羽毛球拍5副,购买羽毛球x盒(不小于5盒)当购买多少盒羽毛球时,在两家商店购买所花的钱相等?(2)若需购买10副羽毛球拍,30盒羽毛球,怎样购买更省钱?13.某商场十月以每件500元的进价购进一批羽绒服,当月以标价销售,售出20件.十一月搞促销活动,每件降价50元,售出的数量是十月的1.5倍,这样销售额比十月增加了5500元.(1)求每件羽绒服的标价是多少元?(2)十二月商场决定把剩余的羽绒服按十月标价的八折销售,如果全部售完这批羽绒服总获利12700元,求这批羽绒服共购进多少件?14.庆祝建党100周年,学校七、八年级开展“追寻建党足迹,传承红船精神”的革命纪念馆研学活动,根据防控要求,入馆前需体温检测.其中A通道是电子测温,B通道是人工测温,A通道每分钟通过的人数是B通道的2倍.已知该校七、八年级学生人数分别为96人和144人,七年级学生进馆时,同时开通了A、B两通道,经过4分钟,学生全部进馆.(1)分别求A、B两通道每分钟通过的人数.(2)八年级学生进馆时,先同时开通A、B两通道,1分钟后增开一个人工测温通道C,已知C通道每分,求八年级学生全部进馆所需时间.钟通过的人数是B通道的3415.为庆祝新年晚会,各学校准备参加县里组织的文艺汇演,其中甲、乙两所学校共有102人参加(甲学校的人数多于乙学校的人数,且甲学校的人数不足100人),两学校准备购买统一服装参加演出,下面是服装厂给出的演出服的价格表.服装套数1~50套51~100套101套及以上每套演出服的价格70元60元50元(1)如果两所学校分别购买演出服,那么一共应付6570元,甲乙两所学校各有多少名学生准备参加演出?(2)请你为两所学校设计一种最省钱的购买方案,并计算出这种方案比两所学校分别购买演出服省了多少钱?16.桐梓县为了扎实落实脱贫攻坚中“两不愁,三保障”的住房保障工作,娄山关街道进行住房改造工程,有甲乙两个工程队加入到住房改造中来,如果由甲工程队单独做需要30天完成,甲、乙两个工程队合做12天完成.(1)求乙工程队单独完成这项工程需要几天?(2)甲工程队先单独做6天,因特殊事物离开,余下的乙工程队单独做.因2020年脱贫攻坚收官之年,为了是人民能够更快住上干净漂亮的房屋,要求乙工程队提高一倍的工作效率来完成房屋改造工程,问乙工程队还需要几天完成此项工程?17.某超市先后以每千克12元和每千克14元的价格两次共购进大葱800千克,且第二次付款是第一次付款的1.5倍.(1)求两次各购进大葱多少千克?(2)该超市以每千克18元的标价销售这批大葱,售出500千克后,受市场影响,把剩下的大葱标价每千克22元,并打折全部售出.已知销售这批大葱共获得利润4440元,求超市对剩下的大葱是打几折销售的?(总利润=销售总额-总成本)倍18.贵阳市人民广场某超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)甲乙进价(元/件)22 30售价(元/件)29 40(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?19.暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:船型两人船(仅限两人)四人船(仅限四人)六人船(仅限六人)八人船(仅限八人)每船租金(元/小时)100 130(1)其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元;②租2只两人船,3只八人船,游玩一个小时,共需花费630元.请根据以上信息,求出两人船项目和八人船项目每小时的租金;(2)若该班本次共有18名同学一起来游玩,每人乘船的时间均为1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.参考答案1.解:设剩下的部分由乙单独做,由题意得4×(110+115)+x15=1解得x=5.答:乙还需5天完成.2.解:设卖出铅笔的支数为x,则圆珠笔卖出了(60-x)支根据题意得:1.2x+2(60-x)=84解得:x=45∴卖出铅笔45支.3.解:设用x立方米木材生产桌面3×20x=360(7−x)x=6答:用6立方米木材生产桌面.4.解:设三队合作时间为xh,乙、丙两队合作为(6−x)ℎ,总工程量为1由题意得:(110+115+120)x+(115+120)(6−x)=1解得:x=3答:甲队实际工作了3小时5.解:设原计划x天完成任务由题意得:25x+100=30x−80解得x=36答:原计划36天完成任务.6.解:设A型号的进货单价为x元,则B型号的进货单价为2x元根据题意得:60x+40×2x=2100 解得:x=15,则2x=30答:A、B两种型号童装的进货单价分别是15元、30元7.解:设每个二级技工每天刷 xm2,则每个一级技工每天刷(x+10)m2依题意得5x−40 10=3(x+10)+508解得x=112x+10=122答:每个一级和二级技工每天粉刷的墙面各是 122 和 112平方米.8.解:设北京故宫博物院约有x万件藏品,则台北故宫博物院约有(12x−25)万件藏品.根据题意列方程得x+(12x−25)=245解得x=180.答:北京故宫博物院约有180万件藏品.故答案为180万件.9.解:设小龙和几个朋友购买了x张优惠票,则普通票购买了(x-5)张根据题意列方程,得:80x+120(x-5)=140080x+120x-600=1400200x=2000x=10答:小龙和几个朋友购买了10张优惠票.10.(1)解:设甲商品原销售单价为x元,则乙商品的原销售单价为(1400-x)元根据题意得:0.6x+0.8(1400-x)=1000解得:x=600∴1400-x=800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)解:设甲商品的进价为a元/件,乙商品的进价为b元/件根据题意得:(1-25%)a=60%×600,(1+25%)b=80%×800解得:a=480,b=512∴1000-a-b=1000-480-512=8.答:商场在这次促销活动中盈利,盈利了8元.11.(1)解:设购进甲种水果xkg,则购进乙种水果(50-x)kg,根据题意得7x+12(50-x)=500解之:x=20则50-x=50-20=30答:购进甲种水果20kg,则购进乙种水果30kg。

人教版-学年度上学期七年级数学期末复习试卷三 一元一次方程(含答案)

人教版-学年度上学期七年级数学期末复习试卷三 一元一次方程(含答案)

2018-2019七上期末复习试题三学生版第三章一元一次方程检测卷(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.如果方程(m-1)x+3=0是关于x 的一元一次方程,那么m 的取值范围( ) A.m ≠0 B.m ≠1 C.m = - 1 D. m>1 2.以下等式变形不正确的是( )A.由x+2=y+2,得到x=yB.由2a-3=6-3,得到2a=bC.由am=an,得到m=nD.由m=n ,得到2am=2an 3.下列判断错误的是( )A.若a=b ,则a-3=b-3B.若a=b,则20192019ba -=- C.若ax=bx ,则a=b D.若x=2018,则x x 20182=4.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A .x =-5 B .x =-3 C .x =-1 D .x =5 5.在3×3方格上做填数字游戏,要求第行、每列及每条对角线上的三个格子中的数字之和都等于s ,且填在三个格子中的数字如图所示,若要能填成,则( )A .s =24B .s =30C .s =31D .s =396.解方程3x +312-x =3-21+x ,去分母正确的是( ) A .18x +2(2x -1)=18-3(x +1) B .3x +(2x -1)=3-(x +1)C .18x +(2x -1)=18-(x +1)D .3x +2(2x -1)=3-3(x +1)7.用一根长为(单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ),得到新的正方形,则这根铁丝需增加( ).A.4cmB.8cmC.( +4) cmD. (+8) cm8.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且EF =3,CD =12.则图中阴影部分的面积为( )A .108B .72C .60D .489.某市举行歌手大奖赛,今年共有a 人参加,比赛的人数比去年增加20%还多3人,则去年参赛的有( )人.A. B. (1+20%)a+3 C. D.(1+20%)a-310.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x) =87B.1.2×0.8x+2×0.9(60-x) =87C.2×0. 9x+l.2×0.8(60+x) =87D.2×0.9x+l.2×0.8(60-x) =87二、填空题(每小题3分,共15分)11.若方程(a-3)x|a|-2-7=0是一个一元一次方程,则a= .12.已知关于x的方程2x+a-5=0的解是x=2,则a的值为.13.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是.14.关于x的方程=1-的解是整数,则整数m= .15. 一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.三、解答题(共75分)16.(6分)解下列方程;(1))20-y=6y-4(y-11);(2)=1+;17.(6分)当k为何整数时,关于x的方程2kx-4=x+5的解是整数?18.(7分)关于x的方程-2=a与方程8x-2(3x+2)=-5的解互为倒数,求a的值.19.(7分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?20.(8分攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了24.8元.求该同学的家到学校的距离在什么范围?思路分析:先列一元一次方程求出付费24.8元时可行驶的最大距离,再根据题意和所得结果求出付费24.8元时的距离范围.21.(8分)为迎接“七·一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上期末复习(一元一次方程)知识点1:方程、方程的解知识回顾:(1)含有未知数的等式,叫做方程。

(2)使方程两边相等的未知数的值叫做方程的解。

巩固练习:1.(2015-2016东营市广饶县七上期末)方程2x-1=3x+2的解为( )A .x=1;B .x=﹣1;C .x=3;D .x=﹣3。

2.(2015-2016吕梁市孝义市七上期末)方程2x 63x -1=+的解为( ) A .21x -=; B .43x =; C .49x =; D .x=1。

3.(2015-2016韶关市南雄市七上期末)已知5是关于x 的方程3x-2a=7的解,则a 的值为 .4.(2015-2016临沂市平邑县七上期末)若关于x 的方程)1x (42a x 2-=+的解为x=3,则a 的值为 .5.(2015-2016吕梁市孝义市七上期末)关于x 的方程2x-3m=-1解为x=-1,则m=___.6.(2015-2016重庆市南岸区七上期末)若x=2是方程mx+3=x-5的解,则m 的值为 .7.(2015-2016阜阳市太和县七上期末)x=2是3x+2a=4的解,则a 的值为( )A .﹣1;B .1;C .﹣5;D .5。

8.(2015-2016深圳市龙华新区七上期末)若x=3是方程ax+2x=14-a 的解,则a 的值为( )A .10;B .5;C .4;D .2。

9.(2015-2016赣州市寻乌县七上期末)已知关于x 的方程2x+2m=5的解是x=-2,则m 的值为( )A .21;B .21-;C .29; D .29-。

10.(2015-2016重庆市石柱县七上期末)如果x=-2是关于x 的方程3a-2x=7的解,那么a 的值是( )A .311a =;B .a=1;C .21a -=;D .213a -=。

11.(2015-2016重庆市荣昌县七上期末)某同学解方程5x ﹣1=□x+3时,把□处数字看错得x=2,它把□处看成了( )A .3;B .﹣9;C .8;D .﹣8。

12.(2015-2016赣州市寻乌县七上期末)如果关于x 的方程2x+1=3和方程03x k 2=--的解相同,那么k 的值为______.13.(2015-2016北京市海淀区七上期末)若方程2x+1=-1的解是关于x 的方程1-2(x-a)=2的解,则a 的值为( )A .﹣1;B .1;C .23-;D .21-。

14.(2015-2016潍坊市寿光市七上期末)方程2+3x=1与3a-(1+x)=0的解相同,则a= .15.(2015-2016营口市大石桥市七上期末)若方程2x-3=11与关于x 的方程4x+5=3k 有相同的解,则k 的值是_______.16.(2015-2016武汉市黄陂区七上期末)下列结论:①若关于x 的方程ax+b=0(a≠0)的解是x=1,则a+b=0;②若b=2a ,则关于x 的方程ax+b=0(a≠0)的解为x=21-; ③若a+b=1,且a≠0,则x=1一定是方程ax+b=1的解.其中正确的结论是( )A .①②;B .②③;C .①③;D .①②③。

知识点2:列方程知识回顾:列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含未知数的等式——方程。

巩固练习:1.(2015-2016吕梁市孝义市七上期末)某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天.设该中学库存x 套桌椅根据题意列方程是__.2.(2015-2016北京市海淀区七上期末)一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( )A .0.8(1+0.5)x=x+28;B .0.8(1+0.5)x=x-28;C .0.8(1+0.5x)=x-28;D .0.8(1+0.5x)=x+28。

3.(2015-2016北京市海淀区七上期末)某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h 完成.现在该小组全体同学一起先做8h 后,有2名同学因故离开,剩下的同学再做4h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x 名同学,根据题意可列方程为 .4.(2015-2016武汉市黄陂区七上期末)把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x 人,下列方程正确的是( )A .3x+20=4x-25;B .3x-25=4x+20;C .4x-3x=25-20;D .3x-20=4x+25。

5.(2015-2016宿州市埇桥区七上期末)甲乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米,设x 秒后,甲可以追上乙,则下列方程不正确结果是( )A .7x=6.5x+5;B .7x-5=6.5;C .(7-6.5)x=5;D .6.5x=7x-5。

6.(2015-2016营口市大石桥市七上期末)京﹣沈高速铁路河北承德段通过一隧道,估计从车头进入隧道到车尾离开隧道共需45秒,整列火车完全在隧道的时间为32秒,车身长180米,设隧道长为x 米,可列方程为_______.7.(2015-2016潍坊市寿光市七上期末)一学生从家去学校每小时走5千米,按原路返回时,每小时走4千米,结果返回的时间比去的时间多用10分钟,设去学校所用的时间为x 小时,则正确列出的方程是( )A .)6010x (4x 5+=;B .)6010x (4x 5-=;C .x 4)6010x (5=-;D .x 4)6010x (5=+。

8.(2015-2016吕梁市孝义市七上期末)轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( )A .324x 28x -=;B .324x 28x +=;C .3262x 262x +-=+;D .3262x 262x -+=-。

9.(2015-2016重庆市石柱县七上期末)甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨.若设甲仓库原来存粮x 吨,则有( )A .(1-60%)x-(1-40%)(450-x)=30;B .60%x-40%(450-x)=30;C .(1-40%)(450-x)-(1-60%)x=30;D .40%(450-x)-60%x=30。

10.(2015-2016赣州市寻乌县七上期末)在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x 支,则可得的一元一次方程为( )A .0.8×1.2x+0.9×2(60-x)=87;B .0.8×1.2x+0.9×2(60+x)=87;C .0.9×2x+0.8×1.2(60+x)=87;D .0.9×2x+0.8×1.2(60-x)=87。

11.(2015-2016广东省深圳市七上期末)下列说法,正确的是( )①用长为10米的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形的长比宽多1米,设长方形的长为x 米,则可列方程为2(x+x-1)=10.②小明存人银行人民币2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为x ,则可列方程2000(1+x)80%=2120.③ x 表示一个两位数,把数字3写到x 的左边组成一个三位数,这个三位数可以表示为300+x .④甲、乙两同学从学校到少年宫去,甲每小时走4千米,乙每小时走6千米,甲先出发半小时,结果还比乙晚到半小时,若设学校与少年宫的距离为s 千米,则可列方程216s 214s +=-. A .①,②; B .①,③; C .②,④; D .③,④。

知识点3:一元一次方程的概念知识回顾:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

巩固练习:1.(2015-2016宿州市埇桥区七上期末)若关于x 的方程(m-2)x |m|-1=5是一元一次方程,则m=__________.2.(2015-2016韶关市南雄市七上期末)下列方程为一元一次方程的是( )A .y+3=0;B .x+2y=3;C .x 2=2x ;D .2y y1=+。

3.(2015-2016潍坊市寿光市七上期末)已知下列方程:①x12x =-;②0.2x=1;③3x 3x -=;④x-y=6;⑤x=0,其中一元一次方程有( ) A .2个; B .3个; C .4个; D .5个。

4.(2015-2016合肥市瑶海区七上期末)试写出一个解为x=1的一元一次方程: .知识点4:等式的性质知识回顾:(1)用等号连接的式子,叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

即:如果a=b ,那么a ±c=b ±c 。

(3)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

即:如果a=b ,那么ac=bc ;如果a=b(c ≠0),那么cb c a =。

巩固练习:1.(2015-2016临沂市平邑县七上期末)以下等式变形不正确的是( )A .由x=y ,得到x+2=y+2;B .由2a ﹣3=b ﹣3,得到2a=b ;C .由m=n ,得到2am=2an ;D .由am=an ,得到m=n 。

2.(2015-2016广州市海珠区七上期末)下列运用等式性质进行的变形,其中不正确的是( )A .如果a=b ,那么a+3=b+3;B .如果a=b ,那么21b 21a -=-; C .如果a=b ,那么ac=bc ; D .如果a=b ,那么cb c a =。

3.(2015-2016武汉市黄陂区七上期末)下列变形正确的是( )A .0x 31=变形得x=3; B .3x=2x ﹣2变形得3x ﹣2x=2; C .3x=2变形得x=23; D .x 1x 32=-变形得2x ﹣3=3x 。

4.(2015-2016吕梁市孝义市七上期末)下列变形正确的是( )A .若3x=2,则23x = ; B .若x=y ,则2x=y+x ; C .若x=y ﹣2,则y=x ﹣2; D .若x=y ,则ay a x =。

相关文档
最新文档