(新版教材)2020-2021学年上学期高二第二次月考备考金卷 数学(B卷)-学生版

合集下载

北京市第二中学2023-2024学年高二上学期12月第二学段考试数学试卷

北京市第二中学2023-2024学年高二上学期12月第二学段考试数学试卷

北京市第二中学2023-2024学年高二上学期12月第二学段考
试数学试卷
学校:___________姓名:___________班级:___________考号:___________
二、多选题
9.四名同学各掷骰子5次,分别记录每次骰子出现的点数.根据四名同学的统计结果,可以判断可能出现点数为6的是()
A.平均数为3,中位数为2 B.中位数为3,众数为2
C.平均数为2,方差为2.4 D.中位数为3,方差为2.8
三、单选题
πππ
π3π
(1)求n的值及频率分布直方图中t 的值;
点M 的轨迹方程是()()22
421x y -+-=. (1)求曲线C 的方程;
(2)已知斜率为k 的直线l 与曲线C 相交于异于原点O 的两点E F ,,直线OE OF ,的斜率分别为1k ,2k ,且122k k =.证明:直线l 恒过定点.
23.设A 是正整数集的一个非空子集,如果对于任意x A ∈,都有1x A -∈或1x A +∈,则称A 为自邻集.记集合{1,2,}(2,N)n A n n n =>∈L 的所有子集中的自邻集的个数为n a .
(1)直接写出4A 的所有自邻集;
(2)若n 为偶数且6n >,求证:n A 的所有含5个元素的子集中,自邻集的个数是偶数; (3)若4n ≥,求证:12n n a a -≤.。

数学-高二年级第二次月考数学试题

数学-高二年级第二次月考数学试题

王淦昌高级中学2022-2023学年第二学期高二年级第二次月考数学试题2023.5(考试时间:120分钟分值:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设,a b 均为非零实数且a b <,则下列结论正确的是()A .11a b > B .22a b < C .2211a b<D .33a b <2.25()x x -的展开式中含5x 项的系数为 () A . 1-B . 5-C . 1D . 53.命题“2[1,2],0x x a ∀∈-≤”为真命题的一个充分不必要条件是 ( )A . 4a ≥B .4a ≤C . 5a ≥D . 5a ≤4.袁隆平院士是我国的杂交水稻之父,他一生致力于杂交水稻的研究,为解决中国人民的温饱和保障国家粮食安全作出了重大贡献.某杂交水稻研究小组先培育出第一代杂交水稻,再由第一代培育出第二代,带二代培育出第三代,以此类推,且亲代与子代的每穗总粒数之间的关系如下表示:(注:亲代是产生后一代生物的生物,对后代生物来说是亲代,所产生的后一代交子代)通过上面四组数据得到了x 与y 之间的线性回归方程是ˆˆ4.4yx a =+,预测第五代杂交水稻每穗的总粒数为 ( ) A .211 B .212C .213D .2145. 某班50名同学参加体能测试,经统计成绩c 近似服从2(90,)N σ,()90950.3P c ≤≤=,则可估计该班体能测试成绩低于85分的人数为 ( ) A . 5B . 10C . 15D . 306. 某校拟从5名班主任及5名班长(3男2女)中选派1名班主任和3名班长去参加“党史主题活动”, 要求2名女班长中至少有1人参加,则不同的安排方案有( )种. A . 9B . 15C . 60D . 457. 现行排球比赛规则为五局三胜制,前四局每局先得25分者为胜,第五局先得15分者为胜,并且每赢1球得1分,每次得分者发球;当出现24平或14平时,要继续比赛至领先2分才能取胜.在一局比赛中,甲队发球赢球的概率为12,甲队接发球赢球的概率为35,在比分为24∶24平且甲队发球的情况下,甲队以27∶25赢下比赛的概率为( )A .18B .320C .310D .7208. 设函数,(),x xx af x e x x a ⎧≥⎪=⎨⎪<⎩,若函数存在最大值,则实数a 的取值范围是( )A . 1a ≤B . 1a <C . 1a e ≤D . 1a e<二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分. 9. 已知a ,b ∈R ,0,0a b >>,且2a b +=,则下列说法正确的为 ( ) A .ab 的最小值为1 B .22log log 0a b +≤C . 224a b +≥D . 1222a b+≥10. 甲、乙、丙、丁、戊五人并排站成一排,下列说法正确的是 ( ) A . 如果甲,乙必须相邻,那么不同的排法有24种B . 最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种C . 甲乙不相邻的排法种数为72种D . 甲乙丙按从左到右的顺序排列的排法有20种11. 某车间加工同一型号零件,第一、二台车床加工的零件分别占总数的40%,60%,各自产品中的次品率分别为6%,5%.记“任取一个零件为第i 台车床加工(1,2)i =”为事件i A ,“任取一个零件是次品”为事件B ,则 ( ) A .()0.054P B = B .()20.03P A B = C .()10.06P B A = D .()259P A B = 12.已知函数()()2ln f x x ax x a R =--∈,则下列说法正确的是( )A .若1a =-,则()f x 是1(0,)2上的减函数 B .若01a ≤≤,则()f x 有两个零点 C .若1a =,则()0f x ≥D .若1a >,则曲线()y f x =上存在相异两点M ,N 处的切线平行 三、填空题:本题共4小题,每小题5分,20分.把答案填在题中的横线上. 13.已知关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<,则20cx bx a -+>的解集是___________.14.命题“x ∃∈R ,()()22210a x a x +++-≥”为假命题,则实数a 的取值范围为______.15.某学校有一块绿化用地,其形状如图所示.为了让效果更美观,要求在四个区域内种植花卉,且相邻区域颜色不同.现有五种不同颜色的花卉可供选择,则不同的种植方案共有________种.(用数字作答) 16.已知x >1,y <0,且3y (1-x )=x +8,则x -3y 的最小值为 .四、解答题:本大题共6小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知集合{}|132A x m x m =-≤≤-,不等式411x ≥+的解集为B . (1)当3m =时,求AB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.18.(本小题满分12分)已知在n的展开式中,第5项的系数与第3项的系数之比是14:3.(1)求展开式中二项式系数最大的项; (2)求展开式中含5x 的项.19.(本小题满分12分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同. (1)若抽取后又放回,抽3次.①分别求恰2次为红球的概率及抽全三种颜色球的概率; ②求抽到红球次数η的数学期望及方差.(2)若抽取后不放回,写出抽完红球所需次数ξ的分布列.20.(本小题满分12分)某校成立了生物兴趣小组,该兴趣小组为了探究一定范围内的温度x 与豇豆种子发芽数y该兴趣小组确定的研究方案是:先从这7组数据中任选5组数据建立y 关于x 的线性回归方程,并用该方程对剩下的2组数据进行检验.(1)若选取的是星期一、二、三、六、日这5天的数据,求出y 关于x 的线性回归方程; (2)若由线性回归方程得到的估计数据与选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?附:回归直线的斜率和截距的最小二乘估计公式分别为121()()ˆ()niii nii x x yy bx x ==--=-∑∑,ˆˆay b x =-⋅.21.(本小题满分12分)疫情过后,百业复苏,某餐饮店推出了“三红免单”系列促销活动,为了增加活动的趣味性与挑战性,顾客可以从装有3个红球、7个白球的袋子中摸球参与活动,商家提供A 、B 两种活动规则:规则A :顾客一次性从袋子中摸出3个球,如果3个球都是红球,则本次消费免单;如果摸出的3个球中有2个红球,则获得价值200元的优惠券;如果摸出的3个球中有1个红球,则获得价值100元的优惠券;如果摸出的3个球中没有红球,则不享受优惠.规则B :顾客分3次从袋子中摸球,每次摸出1只球记下颜色后放回,按照3次摸出的球的颜色计算中奖,中奖优惠方案和规则A 相同.(1)某顾客计划消费300元,若选择规则A 参与活动,求该顾客参加活动后的消费期望; (2)若顾客计划消费300元,则选择哪种规则参与活动更加划算?试说明理由.22.(本小题满分12分)已知函数2()ln (12)1f x x mx m x =-+-+. (1)若1m =,求()f x 的极值;(2)若对任意0x >,()0f x ≤恒成立,求整数m 的最小值.。

2023-2024学年全国高中高二上数学苏教版月考试卷(含解析)

2023-2024学年全国高中高二上数学苏教版月考试卷(含解析)

2023-2024学年全国高二上数学月考试卷考试总分:146 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 直线=的倾斜角为( )A.B.C.D. 2. 已知直线=与直线=,且,则的值为( )A.或B.C.或D.3. 在平面直角坐标系中,圆的方程为,若直线上存在一点,使过点所作的圆的两条切线相互垂直,则点的横坐标为( )A.B.C.D.4. 在平面直角坐标系中,以点为圆心且与直线=相切的所有圆中,半径最大的圆的面积为( )3x +y +13–√0150∘120∘60∘30∘:x −my +3l 10:mx +(m −2)y −8l 20⊥l 1l 2m 303−211xOy C +−4x =0x 2y 2y =2x +1P P P ±3–√5±15−−√3±15−−√5±5–√3xOy O mx −y −m −10(m ∈R)A. B.C.D.5. 过点作圆的弦,其中弦长为整数的共有( )A.条B.条C.条D.条6. 已知圆的方程为,过点的直线与圆相交的所有弦中,弦长最短的弦为,弦长最长的弦为,则四边形的面积为( )A.B.C.D.7. 直线与曲线有两个不同的交点,则实数的取值范围是( )A.B.C.D.8. 圆与圆的位置关系为( )A.内切B.相交C.外切D.外离ππ2π3πA (16,6)++16x −12y −525=0x 2y 236377274M +−6x −8y =0x 2y 2P (0,4)l M AC BD ABCD 30406080y =k (x −2)+4x +=03+2y −y 2−−−−−−−−−√k (,]51234(,]51212(,]1234[,+∞)12:+=4C 1x 2(y −3)2:++8x =0C 2x 2y 29. 直线与圆相交于,两点,若,则的取值可以是( )A.B.C.D.10. 已知圆=,点为轴上一个动点,过点作圆的两条切线,切点分别为,,直线与交于点,则下列结论错误的是( )A.四边形周长的最小值为B.的最大值为C.若,则三角形的面积为D.若(,,则的最大值为 11. 若,则方程表示的曲线形状可以是()A.两条直线B.椭圆C.圆D.抛物线12. 若直线=与曲线=有公共点,则的取值范围是( )A.B.C.D.卷II (非选择题)y =kx +3(x −3+(y −2=4)2)2M N MN ≥23–√k −1−121M :+(y −2x 2)21P x P M A B AB MP C PAMB 2+|AB |2P(1,0)PAB Q 0)|CQ |α∈[0,π]+cos α=1x 2y 2y x +b y 3−b13. 已知,方程=表示圆,则圆心坐标是________.14. 已知圆:关于直线对称,则________.15. 若圆上有且只有两个点到直线的距离等于,则半径的取值范围是________.16. 已知函数,则曲线在点处的切线方程为________.四、 解答题 (本题共计 6 小题 ,每题 11 分 ,共计66分 )17. 写出下列图中各条直线的方程,并化为一般式:18. 已知点,动点满足.若点为曲线,求此曲线的方程;已知直线在两坐标轴上的截距相等,且与中的曲线只有一个公共点,求直线的方程. 19. 已知圆,直线.(1)求证:直线恒过定点;(2)判断直线与圆的位置关系;(3)当时,求直线被圆截得的弦长.20. 已知:,,是同一平面内的三个向量,其中.若,且,求的坐标;若,且与垂直,求与的夹角.a ∈R +(2−a)+8x −4y −5aa 2x 2y 20C (x −1+(y +2=2)2)22ax +by −2=0b −a =(x −3+(y +5=)2)2r 24x −3y −2=01r f (x)=x sin x +cos x +xy =f (x)(0,f (0))A(−4,0),B(2,0)P |PA|=2|PB|(1)P C (2)l (1)C l C :(x −1+(y −2=25)2)2l :(2m +1)x +(m +1)y −7m −4=0(m ∈R)l l C m =0l C a →b →c →=(1,2)a →(1)||=2c →5–√//c →a →c →(2)||=b →5–√2+2a →b →2−a →b →a →b →θF(−,0)–√21. 已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,上顶点为,设点.(1)若是椭圆上的动点,求线段中点的轨迹方程;(2)过原点的直线交椭圆于点,,若的面积为,求直线的斜率. 22. 已知椭圆:的离心率为,短轴一个端点到右焦点的距离为.(1)求椭圆的方程;(2)若直线与椭圆交于不同的两点,,是否存在实数,使线段的中点恒在圆上,若存在,求出的值;若不存在,说明理由.xOy F(−,0)3–√D(0,1)A (1,)12P PA M O B C △ABC 2–√BC k C +=1(a >b >0)x 2a 2y 2b22–√222–√C y =x +m C A B m AB +=5x 2y 2m。

学易金卷:20202021学年高二生物上学期期末测试卷02(人教版2019选择性必修2)(含答案)

学易金卷:20202021学年高二生物上学期期末测试卷02(人教版2019选择性必修2)(含答案)

2020-2021学年高二生物上学期期末测试卷02(考试时间:90分钟试卷满分:100分)一、选择题:本题共25个小题,每小题2分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.近几十年来,我国东南沿海城市人口密度急剧增长,造成这一现象的主要原因是A. 年龄组成呈增长型B. 性别比例适当C. 迁入率大于迁出率D. 出生率大于死亡率【答案】 C【考点】种群的特征【解析】【分析】影响种群密度的直接因素有出生率和死亡率、迁入率和迁出率。

结合题意,东南沿海城市人口密度增加的原因主要是因为经济发展的不平衡,导致大量外来人口迁入东南沿海城市导致的。

2.下列关于细胞结构与功能的说法正确的是()A. 生物膜的特定功能主要由膜蛋白决定B. 蛋白质与RNA可以从核孔自由出入C. 蓝藻与绿藻都在叶绿体中完成光合作用D. 核糖体和线粒体都是既有核酸又有外膜【答案】 A【考点】细胞膜的成分,原核细胞和真核细胞的形态和结构的异同,细胞的生物膜系统,细胞核的结构【解析】【解答】解:A、生物膜的主要成分是蛋白质和磷脂,生物膜的功能是由蛋白质的种类和数量来决定的,A正确;B、核孔是某些大分子的运输孔道,蛋白质和RNA可以从核孔出入,但不是所有的都能自由进出,B错误;C、蓝藻是原核生物没有叶绿体,只有核糖体一种细胞器,C错误;D、核糖体是细胞内蛋白质合成的场所,没有膜结构,D错误.故选:A.【分析】阅读题干可知本题涉及的知识点是生物膜的功能、核孔的作用、细胞器的结构和功能,梳理相关知识点,根据选项描述结合基础知识做出判断.3.我省黔东南等地一直都有稻田养鱼的传统,建设了“稻一红萍(水生植物)一鱼”立体农田。

下列说法正确的是()A. “稻—红萍—鱼”构成了该生态系统的一条食物链B. 稻田中鱼的引入加快了该生态系统的物质和能量循环C. 该生产模式能提高该生态系统能量传递效率D. 立体农田是充分利用了空间和资源而发展起来的一种生产模式【答案】 D【考点】生态系统的功能,生态系统的结构【解析】【解答】解:根据题意,红萍为水生植物,而生产者都应该位于食物链的起点,且鱼有多种,不一定位于一个营养级,因此“稻一红萍一鱼”构成的不是一条食物链,A不符合题意;能量流动的特点是单向流动、逐级递减,能量不能循环,B不符合题意;该生产模式能提高该生态系统能量利用率,但不能提高能量传递效率,C不符合题意;立体农田是充分利用了空间和资源而发展起来的一种生产模式,D符合题意。

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

四川省成都2024-2025学年高二上学期10月月考试题 数学含答案

成都2024—2025学年度高二上期10月月考数学试卷(答案在最后)注意事项:1.本试卷分第I 卷和第II 卷两部分;2.本堂考试120分钟,满分150分;3.答题前,考生务必将自己的姓名、学号正确填写在答题卡上,并使用2B 铅笔填涂;4.考试结束后,将答题卡交回.第I 卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项符合题目要求.1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为()A .①随机数法,②抽签法B .①随机数法,②分层抽样C .①抽签法,②分层抽样D .①抽签法,②随机数法2.已知向量()1,2,1a =- ,()3,,b x y = ,且//a b r r,那么实数x y +等于()A .3B .-3C .9D .-93.若,l n 是两条不相同的直线,,αβ是两个不同的平面,则下列命题中为真命题的是()A .若l n ⊥,n β⊥,则l //βB .若αβ⊥,l α⊥,则l //βC .若//αβ,l α⊂,则l //βD .若//l α,//αβ,则l //β4.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA上,且2ON NA =,则MN =()A .121232a b c--+B .211322a b c-++C .211322a b c-- D .111222a b c+-5.为了养成良好的运动习惯,某人记录了自己一周内每天的运动时长(单位:分钟),分别为53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =()A .58或64B .59或64C .58D .596.已知点D 在ABC V 确定的平面内,O 是平面ABC 外任意一点,正数,x y 满足23DO xOA yOB OC =+- ,则yx 21+的最小值为()A .25B .29C .1D .27.现有一段底面周长为12π厘米和高为12厘米的圆柱形水管,AB 是圆柱的母线,两只蜗牛分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行π厘米后再向下爬行3厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行π厘米后再向上爬行3厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A .B .C .6D .128.如图,四边形,4,ABCD AB BD DA BC CD =====ABD △沿BD 折起,当二面角A BD C --的大小在[,63ππ时,直线AB 和CD 所成角为α,则cos α的最大值为()A .16B C .16D .8二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()2,0,1a =-,()4,0,2b =- ,则12//l l B .直线l 的方向向量()1,1,2c =-,平面α的法向量是()6,4,1m =- ,则l α⊥C .两个不同的平面α,β的法向量分别是()2,2,1u =-,()3,4,2v =- ,则αβ⊥D .直线l 的方向向量()0,1,1d = ,平面α的法向量()1,0,1n =,则直线l 与平面α所成角的大小为π310.小刘一周的总开支分布如图①所示,该周的食品开支如图②所示,则以下说法正确的是()A .娱乐开支比通信开支多5元B .日常开支比食品中的肉类开支多100元C .娱乐开支金额为100元D .肉类开支占储蓄开支的1311.已知四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点.N M ,是该四面体内切球球面上的两点,P 是该四面体表面上的动点.则下列选项中正确的是()A.DE 的长为44B.D 到平面ABC 的距离为66C.当线段MN 最长时,PN PM ⋅的最大值为31D.直线OE 与直线AB 所成角的余弦值为33第II 卷三、填空题:本题共3小题,每小题5分,共15分.12.某校高一年级共有学生200人,其中1班60人,2班50人,3班50人,4班40人.该校要了解高一学生对食堂菜品的看法,准备从高一年级学生中随机抽取40人进行访谈,若采取按比例分配的分层抽样,则应从高一2班抽取的人数是.13.已知(2,1,3),(1,4,2)a b =-=-- ,c (4,5,)λ=,若,,a b c 三向量不能构成空间向量的一组基底,则实数λ的值为.14.在正方体ABCD A B C D -''''中,点P 是AA '上的动点,Q 是平面BB C C ''内的一点,且满足A D BQ '⊥,则平面BDP 与平面BDQ 所成角余弦值的最大值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.(满分13分)15.已知向量()6a m = ,,()1,0,2=b ,()()2R c m =∈ (1)求()a b c ⋅-的值;(2)求cos b c ,;(3)求a b - 的最小值.(满分15分)16.成都市政府委托市电视台进行“创建文明城市”知识问答活动,市电视台随机对该市1565~岁的人群抽取了n人,绘制出如图所示的频率分布直方图,回答问题的统计结果如表所示.组号分组回答正确的人数回答正确的人数占本组的频率第一组[15,25)500.5第二组[25,35)180a第三组[35,45)x0.9第四组[45,55)90b第五组[55,65)y0.6a b x y的值;(1)分别求出,,,(2)从第二、三、四、五组回答正确的人中用分层抽样的方法抽取7人,则从第二、三、四、五组每组回答正确的人中应各抽取多少人.-中,ABCD是边长为2的正方形,平面PBC⊥(满分15分)17.如图,在四棱锥P ABCDPC=.平面ABCD,直线PA与平面PBC所成的角为45︒,2(1)若E,F分别为BC,CD的中点,求证:直线AC⊥平面PEF;(2)求二面角D PA B--的正弦值.(满分17分)18.随着时代不断地进步,人们的生活条件也越来越好,越来越多的人注重自己的身材,其中体脂率是一个很重要的衡量标准.根据一般的成人体准,女性体脂率的正常范围是20%至25%,男性的正常范围是15%至18%.这一范围适用于大多数成年人,可以帮助判断个体是否存在肥胖的风险.某市有关部门对全市100万名成年女性的体脂率进行一次抽样调查统计,抽取了1000名成年女性的体脂率作为样本绘制频率分布直方图,如图.(1)求a ;(2)如果女性体脂率为25%至30%属“偏胖”,体脂率超过30%属“过胖”,那么全市女性“偏胖”,“过胖”各约有多少人?(3)小王说:“我的体脂率是调查所得数据的中位数.”小张说:“我的体脂率是调查所得数据的平均数.”那么谁的体脂率更低?(精确到小数点后2位)(满分17分)19.如图,四面体ABCD 中,2,AB BC BD AC AD DC ======(1)求证:平面ADC ⊥平面ABC ;(2)若(01)DP DB λλ=<<,①若直线AD 与平面APC 所成角为30°,求λ的值;②若PH ⊥平面,ABC H 为垂足,直线DH 与平面APC 的交点为G .当三棱锥CHP A -体积最大时,求DGGH的值.高二上10月月考数学答案一、单选题:C D C C A B A B二、多选题:AC;BCD;BC3三、填空题:10;5;318:(1)由频率直方图可得,(2)由频率分布直方图可得样本中女性⨯=,所以全市女性50.020.1⨯=,10000000.1100000。

福建省龙岩第一中学2022-2023学年高二上学期第二次月考数学试题(含答案)

福建省龙岩第一中学2022-2023学年高二上学期第二次月考数学试题(含答案)

龙岩一中2022-2023学年第一学期高二第二次月考数学试题(考试时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1()320y m m --=∈R 的倾斜角为A .120B .60C .30D .1502.已知n S 是等差数列{}n a 的前n 项和,若378a a +=,则9S = A .24B .36C .48D .723.直线250x y ++=与直线20kx y +=互相垂直,则它们的交点坐标为 A .(1,3)--B .(2,1)--C .1,12⎛⎫-- ⎪⎝⎭D .(1,2)--4.数列1,12+,2122++,⋯ ,23112222n -+++++,的前n 项和为A .21n n --B .122n n +--C .2nD .12n n +-5.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22420x y x +++=,则PAB △面积的取值范围是A .B .C .[2,6]D .[4,12]6.数列122022n ⎧⎫⎨⎬-⎩⎭A .既有最大项,又有最小项B .有最大项,无最小项C .无最大项,有最小项D .既无最大项,又无最小项7.几何学史上有一个著名的米勒问题:“设点M ,N 是锐角AQB ∠的一边QA 上的两点,试在QB 边上找一点P ,使得MPN ∠最大.”如图,其结论是:点P 为过M ,N 两点且和射线QB 相切的圆与射线QB 的切点.根据以上结论解决以下问题:在平面直角坐标系xOy 中,给定两点M (-1,2),N (1,4),点P 在x 轴上移动,当MPN ∠取最大值时,点P 的横坐标是 A .1B .-7C .1或-1D .2或-78.已知数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-).则222122020232021a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A .2018B .2019C .2020D .2021二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若两平行线分别经过点A (5,0),B (0,12),则它们之间的距离d 可能等于 A .14B .5C .12D .1310.等差数列{}n a 中,10a >,公差0d <,n S 为其前n 项和,对任意正整数n ,若点(),n n S 在以下4条曲线中的某一条上,则这条曲线不可能是A .B .C .D .11.下列说法正确的是A .过点()1,2P 且在x 、y 轴截距相等的直线方程为30x y +-=B .过点()1,2-且垂直于直线230x y -+=的直线方程为20x y +=C .圆的一般方程为D .直线()24y k x =-+与曲线1y =k 的取值范围12220x y Dx Ey F ++++=53,124⎛⎤⎥⎝⎦.某县位于沙漠边缘,当地居民与风沙进行着艰苦的斗争,到2020年底全县的绿地占全县总面积的70%.从2021年起,市政府决定加大植树造林、开辟绿地的力度,预计每年能将前一年沙漠的18%变成绿地,同时,前一年绿地的2%又被侵蚀变成沙漠.则下列说法正确的是A .2021年底,该县的绿地面积占全县总面积的74%B .2023年底,该县的绿地面积将超过全县总面积的80%C .在这种政策之下,将来的任意一年,全县绿地面积都不能超过90%D .在这种政策之下,将来的某一年,绿地面积将达到100%全覆盖三、填空题:本题共4小题,每小题5分,共20分.13.数列{}n a 中,1111,,21n n n a a a a --==+则n a =_____________.14.设是公差为的等差数列,是公比为的等比数列.已知数列的前项和,则的值是_______.15.在直角坐标系xOy 中,已知直线:cos sin 1l x y θθ⋅+⋅=,当θ变化时,动直线始终没有经过点P ,定点Q 的坐标()2,0-,则PQ 的取值范围为 . 16.已知动点(,)P m n 在圆22 1O x y +=:上,则31n m --的取值范围是____________,若点1,02A ⎛⎫- ⎪⎝⎭,点,则2||||PA PB +的最小值为____________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知等比数列 的首项,公比,数列. (1)证明:数列 为等差数列;(2)设数列{}n b 前n 项和为n S ,求使 的所有正整数 的值的和. 18. (12分)已知圆C 的方程为:2224690()x y mx y m m R +--+-=∈. (1)试求m 的值,使圆C 的周长最小;{}n a d {}n b q {}n n a b +n 2*21()nn S n n n N =-+-∈d q +()1,1B 181a =19q =3log n n b a ={}n a {}n b n 36n S >-(2)求与满足(1)中条件的圆C 相切,且过点()1,2-的直线方程. 19.(12分)记为数列的前项和,已知是公差为的等差数列.(1)求的通项公式;(2)记,试判断与2的大小并证明. 20. (12分)已知圆()22:15C x y +-=,直线:10l mx y m -+-=. (1)求证:对m R ∈ ,直线l 与圆C 总有两个不同的交点;(2)若直线l 与圆C 交于,A B 两点,当AB =l 的倾斜角. 21.(12分)已知数列{}n a 满足11a =,()*1121n n a a n N n +⎛⎫=+∈ ⎪⎝⎭.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,并求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令2n nn M m b +=,称数列{}n b 是数列{}n a 的“中程数数列”.(i )求“中程数数列”{}n b 的前n 项和n S ; (ii )若m k b a =(*,m k N ∈且m k >),求所有满足条件的实数对(),m k .22.(12分)平面直角坐标系中,圆M 经过点A ,(0,4)B ,(2,2)C -. (1)求圆M 的标准方程;(2)设(0,1)D ,过点D 作直线1l ,交圆M 于PQ 两点,PQ 不在y 轴上.(i )过点D 作与直线1l 垂直的直线2l ,交圆M 于EF 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(ii )设直线OP ,BQ 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.n S {}n a n 11,n n S a a ⎧⎫=⎨⎬⎩⎭13{}n a n T 12111n nT a a a =+++龙岩一中2022-2023学年第一学期高二第二次月考数学试题参考答案13.121n - 14.4 15.()1,3 16.4,3⎡⎫+∞⎪⎢⎣⎭17.(1)证明:因为等比数列{}n a 的首项181a =,公比19q =, 所以1162118139n n n n a a q---⎛⎫==⨯= ⎪⎝⎭,...................2分所以6233log log 362n n n n b a -==-=,............................3分 所以()()1621622n n n b n b +--+-=-=-,14b =,所以{}n b 是首项为4,公差为2-的等差数列;.................5分 (2)解:由(1)可得62n b n =-,所以()()46252n n nn n S +-==-,....................6分令36nS >-,解得49n -<<,........................8分又N*n ∈,所以1n =、2、3、4、5、6、7、8,.........................9分 ∴1+2+3+4+5+6+7+8=36∴所有正整数n 的值的和为36..............................10分 18.(1)2224690x y mx y m +--+-=,配方得:222()(2)(3)4x m y m -+-=-+,................2分 当3m =时,圆C 的半径有最小值2,此时圆的周长最小...................4分 (2)由(1)得,3m =,圆的方程为:22(3)(2)4x y -+-=.当直线与x 轴垂直时,1x =,此时直线与圆相切,符合条件;..............6分 当直线与x 轴不垂直时,设()12y k x =--,............7分2=,解得34k =,..............10分 所以切线方程为31144y x =-,即34110x y --=..................................11分 综上,直线方程为1x =或34110x y --=......................12分19.(1)∵ ,∴ ,∴,又∵是公差为的等差数列,∴,∴,...............3分∴当 时,,........................4分∴,......................5分整理得: , 即,..........................6分∴,显然对于 也成立, ∴ 的通项公式;...........................8分(2)....................10分∴∴...................12分20.(1)证明:直线 的方程可化为,令1010x y -=⎧⎨-=⎩,解得11x y =⎧⎨=⎩.∴直线l 恒过定点()1,1P ...............3分∵||1PC =<3451(1)1123212n n n n n n ++=⨯⨯⨯⨯⋅⋅⋅⨯⨯=--2n T <l ()11y m x -=-∴点P 在圆C 内,∴直线l 与圆C 总有两个不同的交点. ...............6分(2)由()2215,10,x y mx y m ⎧+-=⎪⎨-+-=⎪⎩消去y 整理得()22221250mx m x m +-+-=,显然()22222(2)41(5)4(45)0m m m m ∆=--+-=+>. ....................8分 设()()1122,,,A x y B x y ,12,x x 则是一元二次方程的两个实根,∴2212122225,11m m x x x x m m -+==++,....................9分∵12AB x =-=....................10分=,解得23,m =∴m =l的斜率为分∴直线l 的倾斜角为3π或23π....................12分21.解:(1)证明:依题意,()*1121n n a a n N n +⎛⎫=+∈ ⎪⎝⎭,即11111122n n n n a a a n n ++⎛⎫==+⋅⎪⎝⎭, 故1112n n a a n n +=⋅+,故数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,首项为111a =,公比为12的等比数列, 故1112n n a n -⎛⎫=⨯ ⎪⎝⎭,即112n n a n -⎛⎫=⋅ ⎪⎝⎭;....................4分(2)因为11112n n a a n +⎛⎫=+ ⎪⎝⎭,即11112n n n a a +⎛=⎫+ ⎪⎝⎭, 故1n =时11n na a +=,即12a a =,1n >时,11n n aa +<,即1n n a a +<, 故1234...a a a a =>>>,故11n M a ==,112n n n m a n -⎛⎫=⋅ ⎪⎝⎭=,所以1111122222n nn n n n M m b n -⎛⎫+⋅ ⎪+⎛⎫⎝⎭===+⋅ ⎪⎝⎭.......................6分①设数列12n n ⎧⎫⎪⎪⎛⎫⋅⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和为n T ,则1231111123...2222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,234111111123...22222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式作差得,1231111111...222222n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即01211111111122...21222222212nn n nn n n T n n -⎛⎫- ⎪+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=++++-⋅=-⋅=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,故123112 (2222)n n n n n b b b b T n S n +=++++=+=+-;....................8分 ②因为1122mm b m ⎛⎫=+⋅ ⎪⎝⎭,1102k k a k -⎛⎫=⋅> ⎪⎝⎭,m k b a =,所以1111111222222m m m k b m a a -⎛⎫=+⋅=+=> ⎪⎝⎭,即1122k m a a -=, 又因为3411422a ⎛⎫=⨯= ⎪⎝⎭,2313324a ⎛⎫=⨯= ⎪⎝⎭,121a a ==,且1234...a a a a =>>>,可知4k <且k *∈N ,即1,2,3k =,由1122k m a a -=知,1k =时,11111222m m a a a -=-=,故1m a =,即1,2m =,但m k >,故2m =符合题意;2k =时,21111222m m a a a -=-=,故1m a =,即1,2m =,但m k >,故无解; 3k =时,313112422m m a a a -=-=,故12m a =,即4m =,又m k >,故4m =符合题意;综上,所有满足条件的实数对(),m k 有()()2,1,4,3....................12分 22.(1)解:设圆M 的方程为()()222x a y b r -+-=,则)()()()()()22222222210422a b r a b r a b r ⎧+-=⎪⎪-+-=⎨⎪--+-=⎪⎩,解得2024a b r =⎧⎪=⎨⎪=⎩, 所以圆M 的标准方程为()2224x y +-=;....................4分 (2)解:设直线1l 的方程为1y kx =+,即10kx y -+=, 则圆心()0,2到直线1l的距离1d ==所以PQ == (i )若0k =,则直线2l 斜率不存在,则PQ =4EF =,则12S EF PQ =⋅= 若0k ≠,则直线2l 得方程为11y x k =-+,即0x ky k +-=,则圆心()0,2到直线1l的距离2d =所以EF = 则12S EF PQ =⋅=7===, 当且仅当221k k =,即1k =±时,取等号,综上所述,因为7 所以S 的最大值为7;.................8分 (ii )设()()1122,,,P x y Q x y ,10 联立()22241x y y kx ⎧+-=⎪⎨=+⎪⎩,消y 得()221230k x kx +--=, 则12122223,11k x x x x k k -+==++, 直线OP 的方程为11y y x x =, 直线BQ 的方程为2244y y x x -=+, 联立112244y y x x y y x x ⎧=⎪⎪⎨-⎪=+⎪⎩,解得121243x x x x x =+, 则()121121211212124144333kx x y x x y x y x x x x x x x +=⋅==+++ 1221212124462233kx x x x x x x x x +--===-++, 所以12124,23x x N x x ⎛⎫- ⎪+⎝⎭, 所以点N 在定直线2y =-上...................12分。

2023_2024学年天津市南开区高二第一学期第二次月考数学测检测模拟试题(附解析)

2023_2024学年天津市南开区高二第一学期第二次月考数学测检测模拟试题(附解析)

C : x 1 y 1 4
2
【详解】解:因为
所以圆心

C 1,1
2

到直线 l : x y 2 0 的距离
AB 2 4 2 2 2
d
11 2
2
2

.
故选:B
3.B
【分析】利用等差数列的性质可求得
a4 的值,再结合等差数列求和公式以及等差中项的性质
,因此,双曲线的标准方程为
.
故选:C.
5.B
【分析】结合抛物线的定义求得正确答案.
【详解】由于抛物线的准线方程是 x 2 ,
所以抛物线的开口向左,设抛物线的方程为
y 2 2 px p 0

p
2, 2 p 8
2
则2
,所以抛物线的标准方程为 y 8 x .
故选:B
6.C
可求得 S7 的值.
a 6,
【详解】由等差数列的性质可得 2a6 a8 6 a8 a4 ,则 4

S7
7 a1 a7
7 a4 42
2
.
故选:B.
4.C
【分析】由已知可得出 c 的值,求出点 A 的坐标,分析可得
AF1 F1 F2
,由此可得出关于 a 、
b 、 c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.


2
F 5, 0
F
【详解】抛物线 y 4 5 x 的准线方程为 x 5 ,则 c 5 ,则 1
、 2
5, 0,
b
x c


y x
bc

(新高考地区新教材)2020-2021学年高一上学期第一次月考备考金卷语文试卷(A卷)(解

(新高考地区新教材)2020-2021学年高一上学期第一次月考备考金卷语文试卷(A卷)(解

(新教材)2020-2021学年上学期高一第一次月考备考金卷语文(A)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷阅读题一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成下列小题。

从民间文化的角度看,守住青山绿水,是中国传统自然观、宇宙观的体现。

失去了青山绿水,人们对众生万物的敬畏和想象,对自然山水的能动和悦纳,对生活空间的叙述和表达,就失去了依托。

人类对自然的认识,经历了一个漫长的发展历程。

对万物众生的敬畏和想象,是中国人认识自然的起点。

如在先秦古籍《山海经》(包含神话、地理、物产等内容)中,我们可以感受神州大地幅员之辽阔,见识山川物产之丰饶,更会为里面诡谲华丽的自然世界所震惊。

日本民俗学家伊藤清司曾将《山海经》中的空间划分为内部世界和外部世界,前者指人类的生活空间,与之相对的即外部世界,二者相对独立、互为依存。

在虔诚仰慕并企图利用大自然之余,人类对神秘而又神圣的未知世界充满了敬畏。

循着对善灵瑞兽的正面想象,人类赋予自身走向自然的合法性;对怪力乱神的负面想象,又恰如其分地给予人类种种约束,避免因过度索取而对自然造成严重破坏。

人们对自然的敬畏和想象,不仅在((博物志))《述异记》等历代文献中得以记载,而且在世代民众生活中实践传承。

我们在乡间田野常见的山神庙、龙王庙,正是内部世界与外部世界的象征边界。

敬畏在信仰中流淌,想象在仪式中演绎。

进入内部世界,民众对生活环境的选择更有能动性,对秀美山水的悦纳更具艺术性,同时也更能反映民众的生活关学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. 6 2
B. 8 2
C.6
D.8
5.已知抛物线
y2
4x 的焦点为 F
,准线为 l ,若 l 与双曲线
x2 a2
y2 b2
1(a
0,b
0) 的两条渐近
线分别交于点 A 和点 B ,且 | AB | 4 | OF | ( O 为原点),则双曲线的离心率为( )
A. 2
B. 3
C. 2
D. 5
6.抛物线 y2 4x 的焦点为 F,准线为 l,点 P 为抛物线上一点, PA l ,垂足为 A,若直线 AF
x2 a2
y2 b2
1(a
0, b
0) , M
,N
是双曲线 C 上关于坐标原点对称的两点, P 为
双曲线 C 上的一动点,若 kPM ·kPN 4 ,则双曲线 C 的离心率为( )
A.2
B. 3
C. 5
D.5
二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项 符合题目要求.全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分.
C
的离心率为
1 2
D.
cos
A1PA2
的最小值为
1 7
第Ⅱ卷
三、填空题:本大题共 4 小题,每小题 5 分.
13.椭圆 x2 y2 1 的右焦点为 F ,以点 F 为焦点的抛物线的标准方程是__________. 4
14.设双曲线
x2 a2
y2 b2
1(a
0, b
0) 的离心率为
3 ,则 C 的渐近线方程为________.
15.椭圆与双曲线有相同的焦点 F1(c, 0) , F2 (c, 0) ,椭圆的一个短轴端点为 B ,直线 F1B 与双曲
线的一条渐近线平行,若椭圆与双曲线的离心率分别为 e1, e2 ,则 e1e2 _______;且 3e12 e22 的最小
值为__________.
16.已知直线
y
a 与双曲线 C :
19.(12 分)已知椭圆 M
:
x2 a2
y2 b2
1(a
b
0) 的离心率为
3 ,焦距为 2 2
3 ,斜率为 k 的直线 l
与椭圆 M 有两个不同的交点, A , B . (1)求椭圆 M 的方程;
(2)若直线 l 过椭圆左焦点,且 k 1,求 | AB | .
,过 F
点作 x 轴的垂线交椭圆于
A, B
两点,
若 OAOB 0 ,则椭圆的离心率等于( )
A. 1 5 2
B. 1 3 2
1 C.
2
D. 3 2
4.若椭圆 C : x2 y2 1 的右焦点为 F ,过左焦点 F 作倾斜角为 60 的直线交椭圆 C 于 P ,Q 两 84
点,则 △PQF 的周长为( )







封 座位号
班级
姓名
准考证号
考场号
(新教材)2020-2021 学年上学期高二第二次月考 备考金卷
数 学(B)
注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形
码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂
x2 a2
y2 b2
1 a
0,b 0 的一条渐近线交于点 P ,双曲线 C 的左、
右顶点分别为 A1 , A2 ,若 PA2
5 2
A1 A2 ,则双曲线 C 的离心率为_____.
四、解答题:本大题共 6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.
17.(10 分)已知直线 l : y kx m 与椭圆 x2 y2 1 交于 A, B 两点. 4
1.抛物线 y 2x2 的焦点坐标( )
A.
1 2
,
0
B.
1 4
,
0
C.
0,
1 8
D.
0,
1 4
2.已知椭圆 x2 y2 1 ,长轴在 y 轴上,若焦距为 4,则 m 等于( ) 11 m m 3
A.5
B.6
C.9
D.10
3.已知椭圆
x2 a2
y2 b2
1(a
b
0) 的右焦点为 F
12.已知椭圆 C :
x2 a2
y2 b2
1(a
b 0 )的左、右端点分别为
A1, A2 ,点
P,Q
是椭圆
C
上关于原
点对称的两点(异于左右端点),且 kPA1 kPA2
3 ,则下列说法正确的有( 4

A.椭圆 C 的离心率不确定 C. kPA1 kQA1 的值受点 P,Q 的位置影响
B.椭圆
的斜率为 3 ,则 PF 等于( )
A.8
B. 4 3
C.4
D. 2 3
7.过椭圆 C :
x2 a2
y2 b2
1a
b
0 的左焦点 F
的直线过 C 的上端点 B ,且与椭圆相交于点
A,
若 BF 3FA ,则 C 的离心率为( )
1
A.
3
B. 3 3
C. 3 2
D. 2 2
8.设双曲线 C :
(1)在 k 0 , 0 m 1条件下,求 △AOB 的面积 S 的最大值; (2)当 k 1 , AB 4 6 时,求直线 l 的方程.
5
18.(12 分)已知抛物线 C : y2 2 px p 0 上的点 M 5,m 到焦点 F 的距离为 6 .
(1)求 p, m 的值;
(2)过点 P 2,1 作直线 l 交抛物线 C 于 A, B 两点,且点 P 是线段 AB 的中点,求直线 l 方程.
D.双曲线 C 的焦点到渐近线的距离为 3 11.设抛物线 y2 2 px( p 0) 的焦点为 F .点 M 在 y 轴上,若线段 FM 的中点 B 在抛物线上,
且点 B 到抛物线准线的距离为 3 2 ,则点 M 的坐标为( 4
A. (0, 1)
B. (0, 2)
C. (0, 2)

D. (0,1)
9.椭圆 x2 y2 1的焦距是 4,则实数 m 的值可以为( ) m9
A.5
B.8
C.13
D.16
10.已知双曲线 C 的标准方程为 x2 y2 1,则(

3
A.双曲线 C 的离心率为 2 B.直线 x 2 与双曲线 C 相交的弦长为 6
C.双曲线 y2 x2 1与双曲线 C 有相同的渐近线 3
黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草
稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只 有一项是符合题目要求的.
相关文档
最新文档