小学数学竞赛第七讲 从不定方程1n = 1x + 1y的整数解谈起

小学数学竞赛第七讲  从不定方程1n = 1x + 1y的整数解谈起
小学数学竞赛第七讲  从不定方程1n = 1x + 1y的整数解谈起

第七讲从不定方程1/n = 1/x + 1/y的整数解谈起

求不定方程的整数解.这里n是取定的一个自然数.对于方程

显见x=y=12是一个整数解.还有没有别的解?如何求解?有人凭直觉能看出一些解来,但数学要求我们有一个成熟的方法去处理同一类问题。

式更简明,我们不妨把x-6看成一个整体,即令t=x-6,那么x=t+6.因此

必须是整数,这样我们推知:t是62的因数(约数)。

个未知数x、y的困难问题,转换成找简单的62的因子t的问题了.

一个完全平方数的因子必然是奇数个,如62有因子6、1和36,2和18,3和12,4和9.6称为自补的因子.后面的2和18等都称为互补因子,这样,不妨记为:

t0=6,t1=1,t1′=36;t2=2,t2′=18;t3=3,t3′=12;t4=4,

这里t和t′是62=36的互补因子(当t=t′=6时自补因子也包括在内),所以

成一种了。

以上情况推广到一般情况:求不定方程

的整数解,只要找出n2的全部成组互补因子t和t′,则

就可得到全部解。

例如,求不定方程:

(即n=12)的整数解,首先分解122=(22·3)2=24·32,它的因子根据分解式的结构特点可以排成一个表。

按照互补或自补因子配对有:(1,144),(2,72),(3,48),(4,36),(6,24),(8,18),(16,9),(12,12)。

初中数学竞赛定理大全

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

初中数学竞赛教程

七年级 第一讲 有理数(一) 一、【能力训练点】 1、正负数,数轴,相反数,有理数等概念。 2、有理数的两种分类: 3、有理数的本质定义,能表成 m n (0,,n m n ≠互质)。 4、性质:① 顺序性(可比较大小); ② 四则运算的封闭性(0不作除数); ③ 稠密性:任意两个有理数间都存在无数个有理数。 5、绝对值的意义与性质: ① (0)||(0) a a a a a ≥?=? -≤? ② 非负性 2 (||0,0)a a ≥≥ ③ 非负数的性质: i )非负数的和仍为非负数。ii )几个非负数的和为0,则他们都为0。 二、【典型例题解析】: 1. 如果m 是大于1的有理数,那么m 一定小于它的( ) A.相反数 B.倒数 C.绝对值 D.平方 2.已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求 22006 ()( )()x a b c d x a b c d -+++++-的值。 3.如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( ) A.2a B.2a - C.0 D.2b 4.有3个有理数a,b,c ,两两不等,那么,, a b b c c a b c c a a b ------中有几个负数? 5.设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0, b a ,b 的形式,求20062007a b +。

6.三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac = +++++则321ax bx cx +++的值是多少? 7.若,,a b c 为整数,且2007 2007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。 第二讲 有理数(二) 一、【能力训练点】: 1、绝对值的几何意义 ① |||0|a a =-表示数a 对应的点到原点的距离。② ||a b -表示数a 、b 对应的两点间的距离。 2、利用绝对值的代数、几何意义化简绝对值。 二、【典型例题解析】: 1.若20a -≤≤,化简|2||2|a a ++- 2.试化简|1||2|x x +-- 3.若|5||2|7x x ++-=,求x 的取值范围。 4.已知()|1||2||3||2002|f x x x x x =-+-+-++-求()f x 的最小值。 5.若|1|a b ++与2 (1)a b -+互为相反数,求321a b +-的值。

学而思小学奥数知识点梳理

学而思小学奥数知识点梳理 学而思教材编写组 前言 小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。 概述 一、计算 1.四则混合运算繁分数 ⑴运算顺序 ⑵分数、小数混合运算技巧 一般而言: ①加减运算中,能化成有限小数的统一以小数形式; ②乘除运算中,统一以分数形式。 ⑶带分数与假分数的互化 ⑷繁分数的化简 2.简便计算 ⑴凑整思想 ⑵基准数思想 ⑶裂项与拆分 ⑷提取公因数 ⑸商不变性质 ⑹改变运算顺序 ①运算定律的综合运用 ②连减的性质 ③连除的性质 ④同级运算移项的性质 ⑤增减括号的性质 ⑥变式提取公因数 形如: 3.估算 求某式的整数部分:扩缩法 4.比较大小 ①通分 a. 通分母 b. 通分子 ②跟“中介”比 ③利用倒数性质 若,则c>b>a.。形如:,则。 5.定义新运算

6.特殊数列求和 运用相关公式: ① ② ③ ④ ⑤ ⑥ ⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 二、数论 1.奇偶性问题 奇奇=偶奇×奇=奇 奇偶=奇奇×偶=偶 偶偶=偶偶×偶=偶 2.位值原则 形如:=100a+10b+c 3.数的整除特征: 整除数特征 2 末尾是0、2、4、6、8 3 各数位上数字的和是3的倍数 5 末尾是0或5 9 各数位上数字的和是9的倍数 11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数 4和25 末两位数是4(或25)的倍数 8和125 末三位数是8(或125)的倍数 7、11、13 末三位数与前几位数的差是7(或11或13)的倍数 4.整除性质 ①如果c|a、c|b,那么c|(a b)。 ②如果bc|a,那么b|a,c|a。 ③如果b|a,c|a,且(b,c)=1,那么bc|a。 ④如果c|b,b|a,那么c|a. ⑤a个连续自然数中必恰有一个数能被a整除。 5.带余除法 一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0?r<b,使得a=b×q+r 当r=0时,我们称a能被b整除。 当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0?r<b a=b×q+r 6. 唯一分解定理 任何一个大于1的自然数n都可以写成质数的连乘积,即 n= p1 × p2 ×...×pk 7. 约数个数与约数和定理

中学数学竞赛中常用的几个重要定理

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ? ?=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且 满足FB AF EA CE DC BD ? ?=1,则D 、E 、F 三点共线. 【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P. 证明:△MPQ ∽△ABC j M Q G A C B X Y P

【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC 【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.

【练习1】设凸四边形ABCD 的对角线AC 和BD 交于点M ,过M 作AD 的平行线分别交AB ,CD 于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点. 求证:∠OPF=∠OEP 【练习2】 在△ABC 中,∠A=900,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F. 若BE :ED=2AC :DC ,则∠ADB=∠FDC D

塞瓦定理:设O是△ABC内任意一点,AO、BO、CO分别交对边于N、P、M,则1= ? ? PA CP NC BN MB AM 塞瓦定理的逆定理:设M、N、P分别在△ABC的边AB、BC、CA上,且满足1= ? ? PA CP NC BN MB AM , 则AN、BP、CM相交于一点. 【例1】B E是△ABC的中线,G在BE上,分别延长AG,CG交BC,AB于点D,F, 过D作DN∥CG交BG于N,△DGL及△FGM是正三角形. 求证:△LMN为正三角形. G C L M E D F N

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

小学四年级奥数 第13讲:位值原理

位值原理 叁仟陆佰伍拾捌 3 6 5 8 加油站 位值原理的定义: 同一个数字,由于它在所写的数里的位置不同,所表示 的数值也不同.也就是说,每一个数字除了有自身的一个值外, 还有一个“位置值”.例如“2”,写在个位上,就表示2个一, 写在百位上,就表示2个百,这种数字和数位结合起来表示数

的原则,称为写数的位值原理. 【例1】(★) 填空: ⑴ 123=1个( )+2个( )+3个( ) ⑵234=( )个100+( )个10+( )个1 ⑶24=2×( )+4×( ) 【例2】(★ ★) : ⑴ 30300 3 3 ⑵ 22030 2 2 3 ⑷657=( )×100+( )×10+( )×1 2 3 ⑸ ( )=5×100+7×10+9×1 ⑹ 23+45=( )×10+( )×1 ⑺ 234+321=( )×100+( )×10+( )×1 =( )×111 ⑶ abc 100 10+ 1 ⑷ abcd a b c d ⑸ 1

【例3】(★★★)【例5】(★★★)(希望杯五年级一试试题) ⑴ 三位数abc比三位数cba小99,若a,b,c彼此不 同,则abc最大是_____。 ⑵a b a b 98790807 【例6】(★★★★) 【例4】(★★★) 计算:(123456+234561+345612+456123+561234+612345)÷7 从1~9九个数字中取出三个,用这三个数可组成六个不同的三 位 数.若这六个三位数之和是3330,则这六个三位数中最小至少是 多 少?最大的至多是多少? 【例7】(★★★★★)(希望杯四年级二试试题) 本讲总结 数abcd,abc,ab,a依次表示四位数、三位数、 两位数及一位abcd abc ab a 1787,那么满足条件的是多少? abcd a c=a c 重要应用: ①计算——分位计算 ②代数化表示——分类讨论

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理、公式及结论 代数篇 【乘法公式】 完全平方公式:(a±b)2=a2±2ab+b2, 平方差公式:(a+b)(a-b)=a2-b2, 立方和(差)公式:(a±b)(a2 ?ab+b2)=a3±b3 多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd 二项式定理:(a±b)3=a3±3a2b+3ab2±b3 (a±b)4=a4±4a3b+6a2b2±4ab3+b4) (a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5) ………… 在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- … +ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1 类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n 公式的变形及其逆运算 由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab 由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b) 由公式的推广③可知:当n为正整数时 a n- b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。重要公式(欧拉公式) (a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc 【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。当被 除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式: f(x)=g(x)q(x)-r(x) 其中r(x)的次数小于g(x)的次数,或者r(x)=0。当r(x)=0时,就是f(x)能被g(x)整除。 【余式定理】多项式f(x)除以x-a所得的余数等于f(a)。 【因式分解方法】拆项、添项、配方、待定系数法、求根法、对称式和轮换对称式等。 【部分分式】把一个分式写成几个简单分式的代数和,称为将分式化为部分分式,它是分式运算的常用技巧。分式运算的技巧还有:换元法、整体法、逐项求和、拆项求和等。 【素数和合数】2是最小的素数,也是唯一的一个既是偶数又是素数的数.

五年级奥数位值原理

位值原理 知识框架 当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使像古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会. 1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理. 2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f. 3.解位值一共有三大法宝: (1)最简单的应用解数字谜的方法列竖式 (2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x,列方程解答 例题精讲 知识点一:位值原理的认识 【例 1】填空:

365= ×100+ ×10+ ×1 365=36×+5× =2×+3×+a×+b×=203 +× 【例 2】ab与ba的和被11除,商等于______与______的和。 【例 3】把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来数加起来的和恰好是121,这个两位数的数字和是多少? 【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少? 【例 4】(1)用数字1、2、3各一个可以组成三位数,所有这样的三位数之和是多少?这个和是三位数的数字和的多少倍? (2)有三个不同的数字,用它们组成六个不同的三位数,如果这六个三位数的和是1554,那么这 三个数字分别是多少? 【巩固】从1-9这九个数字中取出3个,用这三个数字可以组成6个不同的三位数,若这六个三位数之和是2442,则这三个数字的和是多少?

初中数学竞赛专题辅导-代数式的求值

初中数学竞赛专题辅导代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 分析x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解已知条件可变形为3x2+3x-1=0,所以 6x4+15x3+10x2 =(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1 =(3x2+3x-1)(2z2+3x+1)+1 =0+1=1. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,①

求a+b+c的值. 解将②式因式分解变形如下 即 所以 a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则 (a+b+c)2=a2+b2+c2+2(bc+ac+ab) =a2+b2+c2=1, 所以a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:

即 前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式. 2.利用乘法公式求值 例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值. 解因为x+y=m,所以 m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy, 所以 求x2+6xy+y2的值.

37-初中数学竞赛中常用重要定理

初中数学竞赛辅导 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: r=(s-a)(s-b)(s-c)ss为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有 AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有 n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形, 21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。 22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。 23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1 初中竞赛需要,重要 24、梅涅劳斯定理的逆定理:(略) 25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。

初中数学竞赛题汇编(代数部分1)

初中数学竞赛题汇编 (代数部分1) 江苏省泗阳县李口中学沈正中精编、解答 例1若m2=m+1,n2=n+1,且m≠n,求m5+n5的值。 解:由已知条件可知,m、n是方程x2-x-1=0两个不相等的根。∴m+n=1,mn=-1 ∴m2+n2=(m+n)2-2mn=3或m2+n2=m+n+2=3 又∵m3+n3=(m+n) (m2-mn+n2)=4 ∴m5+n5=(m3+n3) (m2+n2)-(mn)2(m+n)=11 例2已知 解:设,则 u+v+w=1……①……② 由②得即 uv+vw+wu=0 将①两边平方得 u2+v2+w2+2(uv+vw+wu)=1 所以u2+v2+w2=1 即 例3已知x4+x3+x2+x+1=0,那么1+x+x2+x3+x4+……x2014=。解:1+x+x2+x3+x4+…x2014=(1+x+x2+x3+x4)+(x5+x6+x7+x8+x9)+…+(x2010+x2011+x2012+x2013+x2014)=(1+x+x2+x3+x4)+x5(1+x+x2+x3+x4)+… + x2010(1+x+x2+x3+x4)=0 例4:证明循环小数为有理数。 证明:设=x…① 将①两边同乘以100,得 …② ②-①,得99x=261.54-2.61 即x=。

例5:证明是无理数。 证明(反证法):假设不是无理数,则必为有理数,设 =(p、q是互质的自然数),两边平方有p2=2q2…①, 所以p一定是偶数,设p=2m(m为自然数),代入①整理得q=2m2,所以q也是偶数。p、q均为偶数与p、q是互质矛盾,所以不是有理数,即为有理数。 例6:;;。 解: 例7:化简(1);(2) (3);(4); (5); (6)。 解:(1)方法1

中学数学竞赛中常用的几个重要定理资料

中学数学竞赛中常用的几个重要定理

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ? ?=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点 D 、 E 、 F ,且满足FB AF EA CE DC BD ? ?=1,则D 、E 、F 三点共线. 【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于 点P. 证明:△MPQ ∽△ABC j M Q G A C B X Y P

【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC 【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.

【练习1】设凸四边形ABCD的对角线AC和BD交于点M,过M作AD的平行线分 别交AB,CD于点E,F,交BC的延长线于点 O,P是以O为圆心,以OM为半径的圆上一点. 求证:∠OPF=∠OEP 【练习2】在△ABC中,∠A=900,点D在AC上,点E在BD 上,AE的延长线交BC于F. 若BE:ED=2AC:DC,则∠ADB=∠FDC D

塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则 1=??PA CP NC BN MB AM 塞瓦定理的逆定理: 设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足 1=??PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点.

初中数学竞赛专题选讲对称式(含答案)

初中数学竞赛专题选讲(初三.5) 对称式 一、内容提要 一.定义 1. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式. 例如: 代数式x+y , xy , x 3+y 3+z 3-3xyz, x 5+y 5+xy, y x 11+, xyz x z xyz z y xyz y x +++++. 都是对称式. 其中x+y 和xy 叫做含两个变量的基本对称式. 2. 在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 循环变换后代数式的值不变,则称这个代数式为轮换对称式,简称轮换式. 例如:代数式 a 2(b -c)+b 2(c -a)+c 2(a -b), 2x 2y+2y 2z+2z 2x, abc c b a 1111-++, (xy+yz+zx )( )111z y x ++, 2 22222222111b a c a c b c b a -++-++-+. 都是轮换式. 显然,对称式一定是轮换式,而轮换式不一定是对称式. 二.性质 1. 含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.这将在下一讲介绍. 2. 对称式中,如果含有某种形式的一式,则必含有,该式由两个变量交换后的一切同型式,且系数相等. 例如:在含x, y, z 的齐二次对称多项式中, 如果含有x 2项,则必同时有y 2, z 2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为: m(x 2+y 2+z 2)+n(xy+yz+zx) 其中m, n 是常数. 3. 轮换式中,如果含有某种形式的一式,则一定含有,该式由变量字母循环变换后所得的一切同型式,且系数相等.

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

初中数学竞赛——代数式的求值

初中数学竞赛代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,① 求a+b+c的值. 解 2.利用乘法公式求值 例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值. 解 求x2+6xy+y2的值. 解 3.设参数法与换元法求值 如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.

4.利用非负数的性质求值 若几个非负数的和为零,则每个非负数都为零,这个性质在 代数式求值中经常被使用. 例8 若x 2 -4x+|3x -y|=-4,求y x 的值. 解 例9 未知数x ,y 满足 (x 2 +y 2 )m 2 -2y(x+n)m+y 2 +n 2 =0, 其中m ,n 表示非零已知数,求x ,y 的值. 解 5.利用分式、根式的性质求值 分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明. 例10 已知xyzt=1,求下面代数式的值: 解

小学奥数四年级加乘原理

第一讲加乘原理 加法原理:做一件事情,完成它有N类方式,第一类方式有M1种方法,第二类方式有 M2种方法,……,第N类方式有M(N)种方法,那么完成这件事情共有M1+M2+……+M(N) 种方法。 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有ml种不同的方法,做第二 步有m2不同的方法,,做第n步有mn不同的方法。那么完成这件事共有N=m1 x m2 Xm3 n 种不同的方法。 核心:分布相乘、分步相加 例题1 : (1)从天津到上海的火车,上午、下午各发一列;也可以乘飞机,有3个不同的航班,还有一艘轮船直达上海。那么从天津到上海共有多少种不同的走法? (2 )请观察下面的树状图,请问从A到“树叶”节点的路线一共有多少条? 练习1 : (1 )从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有4班,汽车有3班,轮船有2班。问:一天中乘坐这些交通工具从甲地到乙地,共有多少种 不同走法? (2 )下图中,一只甲虫要从A点沿着线段爬到B 段和点不得重复经过,问家中最多有多少种走法? 点,要求任何线*干

例题 2 :泡泡有许多套服装,帽子数量为 5 顶、上衣有10 件,裤子有8 条,还有运动鞋6双,早晨要从几种服装中各取一个搭配,问:有多少种搭配? 练习 2 :书架上有 6 本不同的外语书, 4 本不同的语文书, 3 本不同的数学书,从中任取外语、语文、数学书各一本,有多少种不同的取法? 例题3:由数字1、2 、3、4、5、6、7、8 可组成多少个没有重复数字的三位数?百位为 7 的没有重复数字的三位数? 练习3:利用数字1,2,3,4,5 共可组成⑴多少个数字不重复的三位数?⑵多少个数字不重复的三位偶数?⑶多少个数字不重复的偶数? 例题4:甲、乙、丙、丁、戊五人要驾驶A、B、C、D、E 这五辆不同型号的汽车,一共有 多少种不同的安排方式? 如果会驾驶汽车 A 的只有甲和乙,一共有多少种安排方式?

初中数学竞赛题汇编代数部分

初中数学竞赛题汇编(代数部分)

————————————————————————————————作者:————————————————————————————————日期:

初中数学竞赛题汇编 (代数部分1) 江苏省泗阳县李口中学沈正中精编、解答 例1若m2=m+1,n2=n+1,且m≠n,求m5+n5的值。 解:由已知条件可知,m、n是方程x2-x-1=0两个不相等的根。∴m+n=1,mn=-1 ∴m2+n2=(m+n)2-2mn=3或m2+n2=m+n+2=3 又∵m3+n3=(m+n) (m2-mn+n2)=4 ∴m5+n5=(m3+n3) (m2+n2)-(mn)2(m+n)=11 例2已知 解:设,则 u+v+w=1……①……② 由②得即 uv+vw+wu=0 将①两边平方得 u2+v2+w2+2(uv+vw+wu)=1 所以u2+v2+w2=1 即 例3已知x4+x3+x2+x+1=0,那么1+x+x2+x3+x4+……x2014=。解:1+x+x2+x3+x4+…x2014=(1+x+x2+x3+x4)+(x5+x6+x7+x8+x9)+…+(x2010+x2011+x2012+x2013+x2014)=(1+x+x2+x3+x4)+x5(1+x+x2+x3+x4)+… + x2010(1+x+x2+x3+x4)=0 例4:证明循环小数为有理数。 证明:设=x…① 将①两边同乘以100,得 …② ②-①,得99x=261.54-2.61 即x=。

例5:证明是无理数。 证明(反证法):假设不是无理数,则必为有理数,设 =(p、q是互质的自然数),两边平方有p2=2q2…①, 所以p一定是偶数,设p=2m(m为自然数),代入①整理得q=2m2,所以q也是偶数。p、q均为偶数与p、q是互质矛盾,所以不是有理数,即为有理数。 例6:;;。 解: 例7:化简(1);(2) (3);(4); (5); (6)。 解:(1)方法1

五年级奥数.位值原理(AB级).学生版

位值原理 当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会. 1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理. 2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f. 3.解位值一共有三大法宝: (1)最简单的应用解数字谜的方法列竖式 (2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答 (1)最简单的应用解数字谜的方法列竖式 (2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答 知识框架 重难点 位值原理

竞赛常用定理--数学

几何篇 梅涅劳斯定理:当直线交三角形ABC三边所在直线BC、AC、A于点D、E、F时,(AF/FB)×(BD/DC)×(CE/EA)=1 以及逆定理:在三角形ABC三边所在直线上有三点D、E、F ,且(AF/FB)×(BD/DC)×(CE/EA)=1 ,那么D、E、F三点共线。 角元形式梅捏劳斯定理: (sin∠BAD/sin∠DAC)×(sin∠ACF/sin∠FCB)×(sin∠CBE/sin∠EBA)=1 塞瓦定理:指在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)×(CE/EA)×(AF/FB)=1。 角元塞瓦定理:AD,BE,CF交于一点的充分必要条件是: (sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1 逆定理:在△ABC的边BC,CA,AB上分别取点D,E,F, 如果(AF/FB)(BD/DC)(CE/EA)=1那么直线AD,BE,CF相交于同一点。”

正弦定理:在△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。则有: a/sinA=b/sinB=c/sinC=2R 余弦定理: ,在△ABC中,余弦定理可表示为: c2=a2+b2-2ab cosC a2=b2+c2-2bc cosA b2=a2+c2-2ac cosB 托勒密定理:指圆内接凸四边形两对对边乘积的和等 于两条对角线的乘积。 三弦定理:由圆上一点引出三条弦,中间一弦与最大角 正弦的积等于其余每条弦与不相邻角正弦的积之和。用图表述;圆上一点A,引出三条弦AB(左)、AC(右)、及中间弦AD,BC与AD交于P,根据《三弦定理》,有以下关系, ABsin∠CAP +ACsin∠BAP= ADsin∠BAC。 西姆松定理:过三角形外接圆上异于三角形顶点的 任意一点作三边的垂线,则三垂足共线。(此线常称为西 姆松线) 斯特瓦尔特定理设已知△ABC及其底边上B、C两 点间的一点D,则有 AB2·DC+AC2·BD-AD2·BC=BC·DC·BD。

初中数学竞赛专项训练之代数式、恒等式、恒等变形附答案

初中数学竞赛专项训练之代数式、恒等式、恒等变形 一、选择题:下面各题的选项中,只有一项是正确的,请将正确选项的代号填在括号内。 1、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( ) A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 2、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值为 ( ) A. 0 B. 1或-1 C. 2或-2 D. 0或-2 3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则b c a b a c ++ +的值为 ( ) A. 2 1 B. 2 2 C. 1 D. 2 4、设a <b <0,a 2+b 2=4ab ,则b a b a -+的值为 ( ) A. 3 B. 6 C. 2 D. 3 5、已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab-bc-ca 的值为 ( ) A. 0 B. 1 C. 2 D. 3 6、设a 、b 、c 为实数,2 26 23 2222 π π π + -=+ -=+-=a c z c b y b a x ,,,则x 、y 、z 中,至少有一个值 ( ) A. 大于0 B. 等于0 C. 不大于0 D. 小于0 7、已知abc ≠0,且a+b+c =0,则代数式ab c ca b bc a 2 22+ +的值是 ( ) A. 3 B. 2 C. 1 D. 0 8、若13649832 2 ++-+-=y x y xy x M (x 、y 是实数),则M 的值一定是 ( ) A. 正数 B. 负数 C. 零 D. 整数 二、填空题 1、某商品的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d 可用p 表示为_____ 2、已知-1<a <0,化简4)1(4)1(22+-+-+a a a a 得_______

相关文档
最新文档