热处理工艺比较资料
铝合金镁合金热处理工艺的比较研究

铝合金镁合金热处理工艺的比较研究铝合金和镁合金是现代工业中常见的金属材料,在汽车、航空、航天以及电子等领域都有广泛应用。
然而,这两种材料在使用过程中会遇到很多问题,例如强度不足、耐腐蚀性差等。
因此,需要进行热处理处理来改变这些材料的组织结构和性能特点。
本文将对铝合金和镁合金的热处理工艺进行比较研究,以探究哪种材料的热处理效果更好。
一、铝合金的热处理工艺铝合金是由铝、铜、锰、镁、硅等元素组成的合金,具有轻weight、高强度、高耐腐蚀性和良好的可加工性等特点。
铝合金通过热处理可以改善其强度和硬度,提高其耐腐蚀性和可加工性。
铝合金的热处理工艺包括固溶退火、时效处理和淬火等步骤:1.固溶退火:在480℃左右的温度下进行加热处理,使铝合金的固溶体中溶解其他元素,形成均匀的单相固溶体。
该过程可以增加铝合金的可加工性和塑性。
2.时效处理:在固溶退火后,将铝合金加热至100-200℃,使合金中的固溶体分解,形成脆性和硬度较高的质体。
该过程可以提高铝合金的强度和硬度。
3.淬火处理:在铝合金表面形成一层较硬的表面层,以提高铝合金的磨损耐用度。
二、镁合金的热处理工艺镁合金是由镁、铝、锌、锶、锗等元素组成的合金,具有轻weight、高比强度、高耐腐蚀性和良好的可加工性等特点。
镁合金也需要进行热处理来改变其组织结构和性能特点。
镁合金的热处理工艺一般包括固溶退火、时效处理、淬火和强化等步骤:1.固溶退火:在400-500℃的温度下进行加热处理,使镁合金中的固溶体达到均匀的状态。
2.时效处理:在固溶退火后,在100-250℃的温度下对镁合金进行时效处理,使镁合金中的固溶体分解,形成脆性和硬度较高的质体。
3.淬火:该步骤可使镁合金表面形成一层较硬的表面层,以提高其耐磨性。
4.强化:将镁合金固溶体中的氢、氧、氮等元素去除,使镁合金的组织结构更加致密,且具有良好的塑性和可加工性。
三、铝合金与镁合金热处理的比较1.机械性能比较铝合金的热处理可以大大提高其强度和硬度,但会降低其可塑性和韧性。
热处理工艺及水冷炉冷空冷的比较

精心整理以共析钢为例:共析钢从高温炉冷变成粗波来铁空冷变成中波来铁油冷变成细波来铁+麻田散铁+残留沃斯田铁炉冷V1:随炉冷却(相当于退火),比较缓慢,它分别与C 曲线的转变开始和转变终了线相交于1、2点,这两点位于C曲线上部珠光体转变区域,估计它的转变产物为珠光体,硬度170~220HBS。
(珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间油冷V3:在油中的冷却(相当于在油中淬火),与C曲线的转变开始线交于5、6点,没有与转变终了线相交,所以仅有一部分过冷奥氏体转变为托氏体,其余部分在冷却至M s线以下转变为马氏体组织。
因此,转变产物应是托氏体和马氏体的混合组织,硬度45~55HRC。
(托氏体/屈氏体:troostite,奥氏体等温转变所得珠光体300~450冷却到350~500)(马氏体/麻田散铁,是碳在α称为M始针状,并伴有马氏体的硬度随碳量增水中淬火的),它不与C曲线相交,过冷奥氏体将直接冷却至M s以下进行马氏体转变。
最后得到马氏体和残余奥氏体组织,硬度55~65HRC。
等温转变“TTT曲线”在连续冷却转变中的应用:由于连续冷却“CCT转变曲线”的测定较为困难,而连续冷却转变可以看作由许多温度相差很小的等温转变过程所组成的,所以连续冷却转变得到的组织可认为是不同温度下等温转变产物的混合物。
故生产中常用TTT曲线(C曲线)近似地分析连续冷却过程。
[号“M,针叶状马氏体转变特点:降(如–183期。
,的主要原因。
贝氏体,也称变韧铁,是由奥氏体在珠光体温度范围以下和马氏体点(马氏体转变开始的温度)以上的温度范围内分解而成的铁素体和渗碳体的混合体。
贝氏体分为两种,在较高温度(350~550℃)形成的称“上贝氏体”,其组织在光学显微镜下呈羽毛状;在较低温度形成的称“下贝氏体”,其组织在光学显微镜下呈针状或竹叶状。
贝氏体由于碳化物颗粒周围受腐蚀而变得比较粗糙,故在显微镜下呈黑色。
1)退火:等温退火球化退火将过共析碳钢加热到~4h,使片状渗碳体发生不完全分布在奥氏体基体上,随后的缓冷均匀1100℃左右,保温10~15h,空冷。
热处理的方法

热处理的方法热处理是一种通过加热和冷却金属材料来改变其物理和机械性能的工艺。
它在工程领域中被广泛应用,可以使材料获得所需的硬度、韧性、强度和耐磨性。
热处理方法有很多种,下面将介绍几种常见的热处理方法。
首先,淬火是一种常见的热处理方法。
在淬火过程中,将金属材料加热至临界温度以上,然后迅速冷却至室温。
这样可以使材料获得高硬度和强度,但韧性会降低。
淬火可分为油淬、水淬和气淬等不同方式,具体选择取决于材料的种类和要求。
其次,回火是一种常用的热处理方法。
在淬火后,金属材料的硬度往往过高,韧性不足,这时需要进行回火处理。
回火是将材料加热至较低的温度,然后保温一段时间,最后冷却至室温。
这样可以降低材料的硬度,提高韧性,使其达到理想的性能指标。
另外,正火也是一种常见的热处理方法。
正火是将金属材料加热至临界温度以上,然后在空气中冷却。
这种方法可以使材料获得一定的硬度和强度,同时保持一定的韧性。
正火适用于一些对材料性能要求较为平衡的情况。
除了上述几种方法,还有很多其他的热处理方法,如退火、时效处理、表面强化等。
每种方法都有其特定的应用领域和优势,需要根据具体情况进行选择。
总的来说,热处理是一种非常重要的金属材料加工工艺,可以显著改善材料的性能,提高其使用价值。
在实际应用中,需要根据材料的种类、要求和工艺条件选择合适的热处理方法,以确保材料达到最佳的性能表现。
通过以上介绍,相信大家对热处理的方法有了更深入的了解。
在实际工程中,热处理是一个非常重要的环节,需要我们认真对待,以确保材料的性能达到设计要求。
希望本文能够对大家有所帮助,谢谢阅读!。
金属材料热处理方法有几种

金属材料热处理方法有几种?各有什么特点?金属材料热处理方法有退火、谇火及回火,渗碳、氮化及氰化等。
(1) 退火处理退火处理按工艺温度条件的不同,可分为完全退火、低温退火和正火处理。
①完全退火是把钢材加热到Ac3 (此时铁素体开始溶解到奥氏体中,指铁碳合金平衡图中Ac3,即临界温度)以上20〜30℃,保温一段时间后,随炉温缓冷到400〜500(,然后在空气中冷却。
完全退火适用于含碳量小于0.83%的铸造、锻造和焊接件。
目的是为了通过相变发生重结晶,使晶粒细化,减少或消除组织的不均匀性,适当降低硬度,改善切削加工性,提高材料的韧性和塑性,消除内应力。
② 低温退火是一种消除内应力的退火方法。
对钢材进行低温退火时.先以缓慢速度加热升温至500〜600匸,然后经充分的保温后缓慢降温冷却。
低温退火(消除内应力退火)主要适用于铸件和焊接件,是为了消除零件铸造和焊接过程中产生的内应力,以防止零件在使用工作中变形。
采用这种退火方法,钢材的结晶组织不发生变化。
③ 正火是退火处理中的一种变态,它与完全退火不同之处在于零件的冷却是在静止的空气中,而不是随炉缓慢降温冷却。
正火处理后的晶粒比完全退火更细,增加了材料的强度和韧性,减少内应力,改善低碳钢的切削性能。
正火处理主要适合那些无需调质和淬火处理的一般零件和不能进行淬火和调质处理的大型结构零件。
正火时钢的加热温度为753〜900°C。
(2) 淬火及回火处理淬火可分整体淬火和表面淬火,淬火后的钢一般都要进行回火。
回火是为了消除或降低淬火钢的残余应力,以使淬火后的钢内纟且织趋于稳定。
钢材淬火后为了得到不同的硬度,回火温度可采用几种温度段。
① 淬火后低温回火目的是为了降低钢中残余应力和脆性、而保持钢淬火后的高硬度和耐磨性,硬度在HRC58〜64范围内。
适合于各种工具、渗碳零件和滚动轴承。
回火温度为150〜250匸。
② 淬火后中温回火目的是为了保持钢材有一定的韧性、在此基础上提高其弹性和屈服极限。
机械加工常见热处理工艺

渗碳渗碳热处理渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。
相似的还有低温渗氮处理。
这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。
概述渗碳(carburizing/carburization)是指使碳原子渗入到钢表面层的过程。
也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。
渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。
渗碳后﹐钢件表面的化学成分可接近高碳钢。
工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。
渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。
渗碳工艺在中国可以上溯到2000年以前。
最早是用固体渗碳介质渗碳。
液体和气体渗碳是在20世纪出现并得到广泛应用的。
美国在20年代开始采用转筒炉进行气体渗碳。
30年代﹐连续式气体渗碳炉开始在工业上应用。
60年代高温(960~1100℃)气体渗碳得到发展。
至70年代﹐出现了真空渗碳和离子渗碳。
分类按含碳介质的不同﹐渗碳可分为气体渗碳、固体渗碳﹑液体渗碳﹑和碳氮共渗(氰化)。
气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂(甲烷、乙烷等)或液体渗剂(煤油或苯、酒精、丙酮等),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。
固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种最早的渗碳方法。
液体渗碳是利用液体介质进行渗碳,常用的液体渗碳介质有:碳化硅,―603‖渗碳剂等。
模具材料三大热处理表面淬火、退火工艺、正火工艺区别

学习模具一定要了解模具材料的热处理 大家好好学习 天天向上 !
表面淬火? 钢的表面淬火有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表பைடு நூலகம்层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。? 感应加热表面淬火感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点:1.热源在工件表层,加热速度快,热效率高2.工件因不是整体加热,变形小3.工件加热时间短,表面氧化脱碳量少4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命5.设备紧凑,使用方便,劳动条件好6.便于机械化和自动化7.不仅用在表面淬火还可用在穿透加热与化学热处理等。? 感应加热的基本原理将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。? 感应表面淬火后的性能1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高 2~3 个单位(HRC)。2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。
热处理工艺规程资料

热处理工艺规程资料热处理是指通过加热、保温和冷却等工艺控制材料的晶体结构和物理性能的改变过程。
热处理工艺规程是指对于不同种类材料进行热处理时所需的具体工艺参数和要求的规定。
下面就热处理工艺规程的内容进行详细介绍:1.热处理流程:热处理工艺规程首先需要明确热处理流程,包括加热、保温和冷却等各个环节的操作流程和时间控制。
2.加热温度:加热温度是热处理过程中非常重要的参数。
不同材料的加热温度会有所区别,需要根据材料的组织结构和性能要求进行合理的选择。
3.保温时间:保温时间是指材料在一定温度下保持稳定状态的时间。
保温时间的长短会对材料的组织结构和性能产生影响,需要根据具体材料的特性和要求进行合理的设置。
4.冷却速率:冷却速率也是热处理的重要参数之一、冷却速率的不同会影响材料的组织结构和性能,需要合理地控制冷却速率。
5.热处理设备:热处理工艺规程还需要明确所采用的热处理设备,包括热处理炉、加热元件、温度控制系统等。
这些设备的性能和稳定性对于热处理工艺的实施有着重要的影响。
6.热处理介质:一些特定的热处理工艺可能需要在特定的介质中进行,比如油、水、盐等。
这些介质的选择和使用方法都需要在热处理工艺规程中进行明确。
7.目标性能要求:热处理工艺规程还需要明确对于材料的目标性能要求。
这些要求可能包括硬度、韧性、耐磨性等,需要根据具体应用和材料的要求进行合理的设定。
8.检测方法和标准:热处理工艺规程还需要明确热处理后材料性能的检测方法和标准。
这些检测方法可以包括金相显微分析、化学成分分析、机械性能测试等,需要根据实际情况进行选择。
9.工艺控制要求:热处理工艺规程还需要明确对于工艺过程的控制要求,包括温度的控制精度、时间的控制精度、冷却速率的控制精度等。
这些要求对于保证热处理效果和稳定性有着重要的作用。
10.安全操作规程:热处理工艺规程还需要明确对于操作人员的安全操作规程,包括材料的装卸、炉门打开和关闭、温度调整等操作过程中的注意事项和操作规范。
各种钢的热处理工艺参数资料

35SiMn
750 830 330
1150
645
-
1220 ≥ 860 800
炉冷
≤ 229
900 空冷
11
42SiMn
765 820 -
645
-
1150 1180 ≥ 840
850
炉冷
≤ 229
875
空冷
≤ 244
12
20SiMn2MoV
830 877 312
1150
740 816 -
1220 ≥ 710 850
735 855 680 835 -
-
1225 > 850 800
炉冷
≤ 156
935
空冷
≤ 156
735 840 680 824 -
-
1225 > 870 炉冷 800
890
空冷
≤ 170
732 813 380 677 796 -
-
1200 > 875 炉冷 800
875
空冷
≤ 179
724 802 350 680 744 190
790
炉冷
≤ 229
840
空冷
≤ 269
721 740 -
670
-
-
1075 825
-
炉冷
-
空冷
≤ 164
合金结构钢钢材料工艺参数
临界温度/℃ 锻打温度/℃
退火
正火
Ac1 Ac3 Ms Ar1 Ar3 Mf
加热
始锻 终锻
温度
冷却
硬度 温度 HBS /℃
冷却
硬度 HBS
725 840 400
1190
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热处理工艺比较
退火
概念:将钢加热到低于或高于A c1点温度,保持一定时间后随炉缓慢冷却,以获得接近于平衡状态的组织。
目的:降低钢的硬度、改善切削加工性能;消除应力或加工硬化、提高塑性,便于继续冷加工;消除组织缺陷,提高工艺性能和使用性能;细化晶粒、改善碳化物的分布和形态,为最终热处理作好组织准备。
常用退火工艺
扩散退火(均匀退火):为了改善或消除在冶金过程中形成的成分不均匀性及夹杂物偏聚而进行的退火。
加热温度一般高于A c3以上
150~250℃,加热速度不宜过快,应控制在100~200℃,加热后随炉冷却至350℃左右出炉空冷。
一般安排在钢锭开坯,锻轧之后进行。
完全退火:将钢加热到A c3以上30~50℃,保持一定时间后缓慢冷却以获得接近于平衡状态组织的工艺。
主要应用于消除亚共析钢中因停锻温度过高而引起粗大晶粒、铸件在浇注后冷却不当形成魏氏组织、轧制工艺不合要求而产生带状组织等缺陷。
等温退火:加热温度与完全退火大致相似,只是冷却方式不同,其冷却方式是使高温奥氏体以较快的速度冷却至A r1以下某一温度等温一段时间,使奥氏体完全分解转变成珠光体,然后出炉空冷。
球化退火:将工件加热到A c1+30-50℃保温后缓冷或者加热后冷却到略低于A r1的温度下保温。
主要用于共析和过共析钢及合金工具钢,主要目的在于降低硬度,改善切削加工系,为淬火处理作好组织准备。
收集于网络,如有侵权请联系管理员删除
低温退火(去应力退火):主要用于消除切削加工和铸件、锻件、焊接件中因快冷而引起的参与内应力以稳定尺寸,避免引起变形。
碳钢和低合金钢为550~650℃,高合金钢为600~750℃,退火保温时间约1~2小时,退火后的冷却均应缓慢。
正火
定义:把钢加热到临界点A c3或A ccm以上30~50℃或更高的温度,保温足够时间,然后再空气中冷却的工艺方法。
目的:低碳钢正火的目的之一是提高切削性能;过共析钢正火,主要是为了消除网状碳化物。
工艺规范:含碳量低于0.2%的钢,应适当提高加热温度(A r1+100℃);过共析钢正火,加热温度应比正常值稍高出20~40℃,采用较大冷却速度;对于某些锻件中的过热组织或铸件的粗大组织,一次正火后不能达到细化组织的目的应进行两次重复正火,第一次正火采用高于A c3以上150~200℃,第二次正火采用正常加热温度进行。
淬火
定义:将钢加热到临界温度(A c3或A c1)以上,保温一定时间后随之以大于临界冷却速度(V c)的冷速进行冷却,使过冷奥氏体转变为马氏体或下贝氏体组织的工艺方法。
目的:提高工件中硬度和耐磨性;提高强韧性;提高弹性;获得某些物理化学性能。
工艺规范
收集于网络,如有侵权请联系管理员删除
亚共析钢淬火加热温度是A c3+30~50℃,淬火后可得到细晶粒的马氏体组织;过共析钢淬火加热温度是A c1+30~50℃。
对于中小件的淬火加热时间多按来计算,为加热系数,K为装炉系数,一般去1~1.5,D为有效厚度。
应该在保证热处理质量的前提下,尽可能采用快速加热方法。
单液淬火:将奥氏体化的工件直接淬入单一的淬火介质中的方法。
双重冷却淬火:由于单一淬火介质不能满足某些工件对淬火变形及组织性能的要求,所以采用先后在两种介质中进行冷却的方法。
分级淬火:将奥氏体化后的工件首先淬入温度较低的分级盐浴中停留一段时间,使工件的表面与心部温差减小,再取出空冷工件在缓慢冷速下进行马氏体相变的淬火方法。
等温淬火:将工件淬入低于B s温度的等温盐浴中较长时间保温使其获得贝氏体组织,然后空冷。
冷处理:将淬火至室温的工件继续冷却到零度以下的处理方法。
回火
定义:将淬火后的钢加热到低于Ac1临界温度,保持一段时间而后再冷却到室温的工艺。
目的:回火工艺是淬火后必不可少的后续工序,主要目的是消除应力、调整性能、稳定组织。
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
界温度(A c3或A c1)以上,保温一定时间后随之以大于临界冷却速度(V c)的冷速进行冷却,使过冷奥氏体转变为马氏体或下贝氏体组织的工艺方法。
度和耐磨性;
提高强韧性;
提高弹性;获
得某些物理化
学性能。
加热温度:亚共析
钢淬火加热温度是
A c3+30~50℃,淬
火后可得到细晶粒
的马氏体组织;过
共析钢淬火加热温
度是
A c1+30~50℃。
对于中小件的淬火
加热时间多按
来计算,
为加热系数,K为
装炉系数,一般去
1~1.5,D为有效厚
度。
加热速度:应该在
保证热处理质量的
单液淬火:将
奥氏体化的工件直
接淬入单一的淬火
介质中的方法。
双重冷却淬
火:由于单一淬火
介质不能满足某些
工件对淬火变形及
组织性能的要求,
所以采用先后在两
种介质中进行冷却
的方法。
分级淬火:将
奥氏体化后的工件
首先淬入温度较低
的分级盐浴中停留
一段时间,使工件
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
收集于网络,如有侵权请联系管理员删除
精品文档
型砂、砂芯
干型砂、半干型砂、湿型砂油砂、合脂砂、树脂砂
收集于网络,如有侵权请联系管理员删除。