中考数学热点专题训练-规律探究问题
中考数学专题复习:规律探索题

中考链接 观察“田”字中各数之间的关系:
,…, ,则 的值为
.
七、学业检测
一.选择题(共4小题,每题10分,共40分) 1.教材上“阅读与思考”曾介绍“杨辉三角”(如图),
利用“杨辉三角”展开(1﹣3x)5= a0+a1x+a2x2+a3x3+a4x4+a5x5,那么a1+a2+a3+a4+a5=( )
“★”按一定规律组成的.已知第1个图形中有8个“●” 和1个“★”,第2个图形中有16个“●”和4个“★”,第 3个图形中有24个“●”和9个“★”,…,则第 个图 形中“★”的个数是“●”的个数的2倍.
类型三 图形变化类规律探索
针对训练4 4.我们将如图所示的两种排列形式的点
的个数分别称作“三角形数”(如1,3, 6,10…)和“正方形数”(如1,4,9, 16…),在小于200的数中,设最大 的“三角形数”为m,最大的“正方形数 ”为n,则m+n的值为 .
中考链接
将从1开始的连续自然数按以下规律排列:
第1行
1
第2行
234
第3行
56789
第4行
10 11 12 13 14 15 16
第5行 17 18 19 20 21 22 23 24 25
若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2) 表示6,则表示99的有序数对是 .
中考链接
如图,点B1在直线l:y=x上,点B1的横坐标为2,过点B1作 B1A1⊥l , 交x轴于点A1 , 以A1B1为边,向右作正方形A1B1B2C1 , 延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2 , 延 长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3 , 延长 B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形 AnBnBn+1Cn的边长为 ________(结果用含正整数n的代数式表 示).
中考数学专题复习--规律探究型问题

第5题第6题中考数学专题复习——规律探索型问题规律探索型问题是根据已知条件或问题中所提供的若干特例,通过观察,实验,归纳,类比等活动来发现或揭示所给信息中蕴含的本质规律特征的一类探究性问题,常见的规律探索型问题有数字类探究型问题,几何图形探究型问题,点的坐标变化探究型问题等。
类型一、数式递变规律:1.(2019安徽)观察以下等式:2.(2019云南)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,…,第n 个单项式为( )A. 121)1(---n n xB. 12)1(--n n xC. 121)1(+--n n xD. 12)1(+-n n x3.(2018天水)按一定规律排列的一组数:21,61,121,201,…,a 1,901,b1,(其中a ,b 为整数),则a+b 的值为--------------------------------------------------------------------------------------------------------------( )A.182B.172C.242D.2004.(2019达州)a 是不为1的有理数,我们把a -11称为a 的差倒数,如2的差倒数为1211-=-,1-的差倒数为21)1(11=--,已知51=a ,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,以此类推,则2019a 的值为--------------------------------------------------------------------------------------------------( )A.5B. 41- C. 34 D. 54 5.(2018淄博)将从1开始的自然数按以下规律排列,例如位于第3行第4列的数是12,则位于第45行第8列的数是 。
类型二、图形递变规律:按照上述规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n 个等式: ;(用含n 的代数式表示),并证明。
中考数学二轮-专题1-规律探究型问题针对训练

第二部分专题一类型1 数式规律1.(2018·梧州)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100 个数是( A )A.9 999 B.10 000C.10 001 D.10 0022.(2017·贺州)将一组数 2,2, 6,2 2, 10,…,2 10,按下列方式进行排列:2,2, 6,2 2,10;2 3, 14,4,3 2,2 5;…若2 的位置记为(1,2),2 3的位置记为(2,1),则38这个数的位置记为( B ) A.(5,4) B.(4,4)C.(4,5) D.(3,5)3.(2018·绵阳)将全体正奇数排成一个三角形数阵:135791113 15 17 1921 23 25 27 29…按照以上排列的规律,第25 行第20 个数是( A )A.639 B.637C.635 D.6334.(2018·枣庄)将从 1 开始的连续自然数按以下规律排列:第 1 行1第 2 行234第 3 行98765第 4 行10 11 12 13 14 15 16第 5 行25 24 23 22 21 20 19 18 17则2 018 在第45 行.5 7 9 11 415.(2018·百色)观察以下一列数:3,,,,,…,则第20 个数是 .4 9 16 25 4006.(2016·贵港)已知a=t,a=1,a=1,…,a =1(n为正整数,11+t121-a131-a2n+1 1-a n且t≠0,1),则a2016=-(用含有t的代数式表示).t1 1 17.(218·成都)已知a>,S1=2-134315,…(即a S2S41当n为大于1 的奇数时,S=;当n为大于1 的偶数时,S=-S -1),按此规律,Sa+1- .anSn-1n n-1 2 0181 1 1 18.(2018·咸宁)按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前 2 018 个数的和为2 018.2 0192 6 12 209.(2016·南宁)观察下列等式:第1 层1+2=3第2 层4+5+6=7+8第3 层9+10+11+12=13+14+15第4 层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2 016 在第44 层.10.(2018·桂林)将从1 开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10 记为(3,2),自然数15 记为(4,2)…按此规律,自然数2 018 记为(505,2) .行列第 1 列第 2 列第 3 列第 4 列第 1 行1234第 2 行8765第 3 行910 11 12第 4 行16 15 14 13………………第m行…………类型2 图形累加规律1.(2018·烟台)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按=此规律摆下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( C )A .28B .29C .30D .312.(2018·重庆 A 卷)把三角形按如图所示的规律拼图案,其中第①个图案中有 4 个三角形,第②个图案中有 6 个三角形,第③个图案中有 8 个三角形,…,按此规律排列下去, 则第⑦个图案中三角形的个数为( C )A .12B .14C .16D .183.观察下列一组图形中点的个数,其中第 1 个图中共有 4 个点,第 2 个图中共有 10 个点,第 3 个图中共有 19 个点,…,按此规律第 6 个图中点的个数是( C )A .46B .63C .64D .734.(2018·自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 018个图形共有6_055 个○.5.(2018·赤峰)观察下列一组由★排列的“星阵”,按图中规律,第 n 个“星阵”中 的★的个数是n22 .类型 3 图形成倍递变规律3)n -11.(2016·钦州)如图,∠M O N =60°,作边长为 1 的正六边形 A 1B 1C 1D 1E 1F 1,边 A 1B 1,F 1E 1 分别在射线 O M ,O N 上,边 C 1D 1 所在的直线分别交 O M ,O N 于点 A 2,F 2,以 A 2F 2 为边作正六边 形A 2B 2C 2D 2E 2F 2 ,边 C 2D 2 所在的直线分别交 O M ,O N 于点 A 3 ,F 3 ,再以 A 3F 3 为边作正六边形ABCDEF ,…,依此规律,经第 n 次作图后,点 B 到 O N 的距离是 3n -1· 3 .3 3 3 3 3 3n2.如图,在边长为 1 的菱形 A B C D 中,∠DAB =60°.连接对角线 A C ,以 A C 为边作第二个菱形A C C 1D 1,使∠D 1A C =60°.连接 A C 1,再以 A C 1 为边作第三个菱形 A C 1C 2D 2,使∠D 2A C 1=60°,……,按此规律所作的第 n 个菱形的边长是 ( .3.(2018·贵港)如图,直线 l 为 y = 3x ,过点 A 1(1,0)作 A 1B 1⊥x 轴,与直线 l 交于点 B 1,以原点 O 为圆心,O B 1 长为半径画圆弧交 x 轴于点 A 2;再作 A 2B 2⊥x 轴,交直线 l 于点 B 2, 以原点 O 为圆心,O B 2 长为半径画圆弧交 x 轴于点 A 3;……,按此作法进行下去,则点 A n 的 坐标为 (2n -1,0) .4.(2016·梧州)如图,在坐标轴上取点 A 1(2,0),作 x 轴的垂线与直线 y =2x 交于点 B 1,作等腰直角三角形 A 1B 1A 2;又过点 A 2 作 x 轴的垂线交直线 y =2x 交于点 B 2,作等腰直角 三角形 A 2B 2A 3;…,如此反复作等腰直角三角形,当作到 A n (n 为正整数)点时,则 A n 的坐标 是 (2×3n -1,0) .5.(2018·广东)如图,已知等边△OAB ,顶点 A 在双曲线 y = 3(x >0)上,点 B 的坐1 111x标为(2,0).过B1作B1A2∥O A1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(26,0).6.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点A6的坐标是(63,32).类型 4 图形周期变化规律1.(2018·钦州三模)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2018处,则点A2018与点A0间的距离是( C )第 1 题图A.0 B.2C.2 3 D.42.(2018·广州改编)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动 1 m.其行走路线如图所示,第1次移动到A,第2次移动到A,…,第n次移动到A,则△O AA的面积是504_m2.1 2 n 2 2 018第 2 题图3.等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(-6,0),点B在原点,CA =CB =5,把等腰三角形 ABC 沿 x 轴正半轴作无滑动顺时针翻转,第 1 次翻转到位置 ①,第 2 次翻转到位置②,…,依此规律,第 15 次翻转后点 C 的横坐标是 77 .第 3 题图14.(2018·衡阳)如图,在平面直角坐标系中,函数 y =x 和 y =- x 的图象分别为直线2l 1,l 2,过点 A 1(1,- 1)作 x 轴的垂线交 l 1 于点 A 2,过点 A 2 作 y 轴的垂线交 l 2 于点 A 3,过点 2A 3 作 x 轴的垂线交 l 1 于点 A 4,过点 A 4 作 y 轴的垂线交 l 2 于点 A 5,…依次进行下去,则点 A 2 018的横坐标为 21 008 .第 4 题图5.(2017·咸宁) 如图,边长为 4 的正六边形 A B C D E F 的中心与坐标原点 O 重合,A F ∥x 轴,将正六边形 A B C D E F 绕原点 O 顺时针旋转 n 次,每次旋转 60°.当 n =2 017 时,顶点 A 的坐标为 (2,2 3) .第 5 题图。
中考数学高频考点《规律探究题》专项测试卷-带答案

中考数学高频考点《规律探究题》专项测试卷-带答案(14道)一、单选题1.(2023·辽宁阜新·统考中考真题)如图,四边形1OABC 是正方形 曲线12345C C C C C 叫作“正方形的渐开线” 其中12C C 23C C 34C C 45C C …的圆心依次按O A B 1C 循环.当1OA =时 点2023C 的坐标是( )A .)12(022--,B .)20231(-,C .)12(023--,D .(2022)0,2.(2023·四川绵阳·统考中考真题)如下图,将形状 大小完全相同的“●”和线段按照一定规律摆成以下图形 第1幅图形中“●”的个数为1a 第2幅图形中“●”的个数为2a 第3幅图形中“●”的个数为3a … 以此类推 那么123191111a a a a +++⋅⋅⋅+的值为( )A .2021B .6184C .589840D .4317603.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m - 第2次操作后得到整式串m n n m - m - 第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( ) A .m n +B .mC .n m -D .2n4.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a = 以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-5.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41……A .2003B .2004C .2022D .2023二 填空题6.(2023·辽宁锦州·统考中考真题)如图,在平面直角坐标系中 四边形1121A B B C 2232A B B C 3343A B B C 4454A B B C …都是平行四边形 顶点1B 2B 3B 4B 5B …都在x 轴上 顶点1C 2C 3C 4C …都在正比例函数14y x =(0x ≥)的图象上 且21212B C A C = 32322B C A C = 43432B C A C = … 连接12A B 23A B 34A B 45A B … 分别交射线1OC 于点1O 2O 3O 4O … 连接12O A 23O A 34O A … 得到122O A B ∆ 233O A B ∆ 344O A B ∆ ….若()12,0B ()23,0B ()13,1A ,则202320242024O A B ∆的面积为 .7.(2023·江苏宿迁·统考中考真题)如图,ABC 是正三角形 点A 在第一象限 点()0,0B ()1,0C .将线段CA 绕点C 按顺时针方向旋转120︒至1CP 将线段1BP 绕点B 按顺时针方向旋转120︒至2BP 将线段2AP 绕点A 按顺时针方向旋转120︒至3AP 将线段3CP 绕点C 按顺时针方向旋转120︒至4CP ……以此类推,则点99P 的坐标是 .8.(2023·黑龙江大庆·统考中考真题)1261年 我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表 人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图 根据图中各式的规律 7()a b +展开的多项式中各项系数之和为 . 9.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .10.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)11.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在平面直角坐标系中 点A 在y 轴上 点B 在x 轴上4OA OB == 连接AB 过点O 作1OA AB ⊥于点1A 过点1A 作11A B x ⊥轴于点1B 过点1B 作12B A AB ⊥于点2A 过点2A 作22A B x ⊥轴于点2B 过点2B 作23B A AB ⊥于点3A 过点3A 作33A B x ⊥轴于点3B … 按照如此规律操作下去,则点2023A 的坐标为 .12.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中 ABC 的顶点A 在直线13:l y x =上 顶点B 在x 轴上 AB 垂直x 轴 且22OB = 顶点C 在直线2:3l y x 上 2BC l ⊥ 过点A 作直线2l 的垂线 垂足为1C 交x 轴于1B 过点1B 作11A B 垂直x 轴 交1l 于点1A 连接11A C 得到第一个111A B C △ 过点1A 作直线2l 的垂线 垂足为2C 交x 轴于2B 过点2B 作22A B 垂直x 轴 交1l 于点2A 连接22A C 得到第二个222A B C △ 如此下去 ……,则202320232023A B C 的面积是 .13.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .三 解答题14.(2023·山东潍坊·统考中考真题)[材料阅读] 用数形结合的方法 可以探究23...n q q q q +++++的值 其中01q <<.例求2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.方法1:借助面积为1的正方形 观察图①可知2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于该正方形的面积即23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.方法2:借助函数1122y x =+和y x =的图象 观察图①可知 2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于1a 2a 3a … n a …等各条竖直线段的长度之和即两个函数图象的交点到x 轴的距离.因为两个函数图象的交点(1,1)到x 轴的距为1所以 23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【实践应用】任务一 完善2322223333n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的求值过程.方法1:借助面积为2的正方形 观察图①可知2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.方法2:借助函数2233y x =+和y x =的图象 观察图①可知 因为两个函数图象的交点的坐标为______所以 2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.任务二 参照上面的过程 选择合适的方法 求23233334444⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.任务三 用方法2 求23n q q q q +++++的值(结果用q 表示).【迁移拓展】 51+的矩形是黄金矩形 将黄金矩形依次截去一个正方形后 得到的新矩形仍是黄金矩形.观察图① 直接写出2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.参考答案一、单选题1.(2023·辽宁阜新·统考中考真题)如图,四边形1OABC 是正方形 曲线12345C C C C C 叫作“正方形的渐开线” 其中12C C 23C C 34C C 45C C …的圆心依次按O A B 1C 循环.当1OA =时 点2023C 的坐标是( )A .)12(022--,B .)20231(-,C .)12(023--,D .(2022)0,【答案】A【分析】由题得点的位置每4个一循环 经计算得出2023C 在第三象限 与3C 7C 11C …符合同一规律 探究出3C 7C 11C ...的规律即可.【详解】解:由图得123450110()()()()(140)205C C C C C ---,,,,,,,,, 67(506)1()C C --,,, … 点C 的位置每4个一循环202350543=⨯+①2023C 在第三象限 与3C 7C 11C … 符合规律()11n --+,①2023C 坐标为)12(022--,. 故选:A .【点睛】本题考查了点的坐标的规律的探究 理解题意求出坐标是解题关键.2.(2023·四川绵阳·统考中考真题)如下图,将形状 大小完全相同的“●”和线段按照一定规律摆成以下图形 第1幅图形中“●”的个数为1a 第2幅图形中“●”的个数为2a 第3幅图形中“●”的个数为3a … 以此类推 那么123191111a a a a +++⋅⋅⋅+的值为( )A .2021B .6184C .589840D .431760【答案】C【分析】首先根据图形中“●”的个数得出数字变化规律 进而求解即可. 【详解】解:1313a2824a 31535a 42446a…()2n a n n =+ ①123191111a a a a +++⋅⋅⋅+ 11111132435461921=++++⋅⋅⋅+⨯⨯⨯⨯⨯11111111111232435461921⎛⎫=-+-+-+-+⋅⋅⋅+- ⎪⎝⎭ 11111222021⎛⎫=+-- ⎪⎝⎭589840=故选①C .【点睛】此题考查图形的变化规律 找出图形之间的联系 找出规律是解题的关键.3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作: 第1次操作后得到整式串m n n m - 第2次操作后得到整式串m n n m - m - 第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( ) A .m n + B .mC .n m -D .2n【答案】D【分析】先逐步分析前面5次操作 可得整式串每四次一循环 再求解第四次操作后所有的整式之和为:0m n n m m n n m ++----+= 结合202345053÷=⋅⋅⋅ 从而可得答案.【详解】解:第1次操作后得到整式串m n n m - 第2次操作后得到整式串m n n m - m - 第3次操作后得到整式串m n n m - m - n - 第4次操作后得到整式串m n n m - m - n - n m -+ 第5次操作后得到整式串m n n m - m - n -n m -+m⋅⋅⋅⋅⋅⋅归纳可得:以上整式串每六次一循环 ①202363371÷=⋅⋅⋅①第2023次操作后得到的整式中各项之和与第1次操作后得到整式串之和相等 ①这个和为2m n n m n ++-= 故选D【点睛】本题考查的是整式的加减运算 代数式的规律探究 掌握探究的方法 并总结概括规律并灵活运用是解本题的关键.4.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a = 以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B【分析】利用图形寻找规律()211,1n A n n --- 再利用规律解题即可. 【详解】解:第1圈有1个点 即1(0,0)A 这时10a = 第2圈有8个点 即2A 到()91,1A 第3圈有16个点 即10A 到()252,2A 依次类推 第n 圈 ()211,1n A n n ---由规律可知:2023A 是在第23圈上 且()202522,22A ,则()202320,22A 即2023202242a =+= 故A 选项不正确 2024A 是在第23圈上 且()202421,22A 即2024212243a =+= 故B 选项正确第n 圈 ()211,1n A n n --- 所以2122n a n -=- 故C D 选项不正确 故选B .【点睛】本题考查图形与规律 利用所给的图形找到规律是解题的关键.5.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004 C .2022 D .2023【答案】C【分析】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致.【详解】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致 故202023在第20列 即20b = 向前递推到第1列时 分数为201912023192042-=+ 故分数202023与分数12042在同一行.即在第2042行,则2042a =. ①2042202022.a b -=-= 故选:C .【点睛】本题考查了数字类规律探索的知识点 解题的关键善于发现数字递变的周期性和趋向性.二 填空题6.(2023·辽宁锦州·统考中考真题)如图,在平面直角坐标系中 四边形1121A B B C 2232A B B C 3343A B B C 4454A B B C …都是平行四边形 顶点1B 2B 3B 4B 5B …都在x 轴上 顶点1C 2C 3C 4C …都在正比例函数14y x =(0x ≥)的图象上 且21212B C A C = 32322B C A C = 43432B C A C = … 连接12A B 23A B 34A B 45A B … 分别交射线1OC 于点1O 2O 3O 4O … 连接12O A 23O A 34O A … 得到122O A B ∆ 233O A B ∆ 344O A B ∆ ….若()12,0B ()23,0B ()13,1A ,则202320242024O A B ∆的面积为 .【答案】2023202494【分析】根据题意和图形可先求得12312290A B B B B A ∠∠=︒= 34323290A B B B B A ∠∠=︒=45434390A B B B B A ∠∠=︒=11190n n n n n n B A B B A B +--∠∠=︒= 333,02B ⎛⎫⨯ ⎪⎝⎭2433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭3533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭233,02n n B -⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ 从而得2022202433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ 2023202533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭2023202220232024202533333222B B ⎛⎫⎛⎫⎛⎫=⨯-⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭2022202220232024143332342O n B ⎛⎫⎛⎫=== ⎪⎪⨯⎝⎭⨯⨯⎭⎝ 利用三角形的面积公式即可得解.【详解】解:①()12,0B ()23,0B ()13,1A①点()13,1A 与点()23,0B 的横坐标相同 12OB = 12321B B =-= 121A B = 23OB = ①12A B x ⊥轴 ①1290A B O ∠=︒ ①21212B C A C = ①21212B C A C = ①四边形1121A B B C 2232A B B C 3343A B B C 4454A B B C …都是平行四边形 ①1122A B A B ∥ 222A C OB ∥ 233A B OB ∥ 2223A B C B = 1121A B B C = ①112223A B B A B B ∠=∠ 12212C A C C B O ∠=∠ 12212C C A C OB ∠=∠ 2222111232B A B A B A BC == ①12212C C A C OB ∠∽ ①21222212232OB C B OB C A C A B B === ①23211322B B OB ==⨯①1222123232B B B B B A B C == 3233322OB OB ==⨯ ①212312A A B B B B ∽ ①12312290A B B B B A ∠∠=︒= ①333,02B ⎛⎫⨯ ⎪⎝⎭同理可得34323290A B B B B A ∠∠=︒= 45434390A B B B B A ∠∠=︒=11190n n n n n n B A B B A B +--∠∠=︒=2433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭3533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭233,02n n B -⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭①2022202433,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ 2023202533,02B ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭①2023202220232024202533333222B B ⎛⎫⎛⎫⎛⎫=⨯-⨯= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭①2022202333,2O n ⎛⎫⎛⎫⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭在14y x =上 ①2022202220232024143332342O n B ⎛⎫⎛⎫=== ⎪⎪⨯⎝⎭⨯⨯⎭⎝①202320242024202320232202302240464220242025404820240211333222223944O A B SB O A B ⎛⎫⎛⎫=⋅=⨯⨯== ⎪ ⎪⎝⨯⎭⎝⎭故答案为:2023202494.【点睛】本题考查相似三角形的判定及性质 平行四边形的性质 坐标与图形 坐标规律 熟练掌握相似三角形的判定及性质以及平行四边形的性质是解题关键.7.(2023·江苏宿迁·统考中考真题)如图,ABC 是正三角形 点A 在第一象限 点()0,0B ()1,0C .将线段CA 绕点C 按顺时针方向旋转120︒至1CP 将线段1BP 绕点B 按顺时针方向旋转120︒至2BP 将线段2AP 绕点A 按顺时针方向旋转120︒至3AP 将线段3CP 绕点C 按顺时针方向旋转120︒至4CP ……以此类推,则点99P 的坐标是 .【答案】(49,503-【分析】首先画出图形 然后得到旋转3次为一循环 然后求出点99P 在射线CA 的延长线上 点100P 在x 轴的正半轴上 然后利用旋转的性质得到99100CP = 最后利用勾股定理和含30︒角直角三角形的性质求解即可.【详解】如图所示由图象可得 点1P 4P 在x 轴的正半轴上 ①.旋转3次为一个循环 ①99333÷=①点99P 在射线CA 的延长线上 ①点100P 在x 轴的正半轴上 ①()1,0C ABC 是正三角形 ①由旋转的性质可得 11AC CP == ①112BP OC CP =+=①()12,0P ①212BP BP ==①3223AP AP OP AO ==+= ①433314CP CP CA AP ==+=+= ①445BP BC CP =+= ①()45,0P①同理可得 ()78,0P ()1011,0P ①()100101,0P ①100101BP = ①1001011100CP =-=①由旋转的性质可得 99100CP = ①如图所示 过点99P 作99P E x ⊥轴于点E①60ACB ∠=︒ ①9930EP C ∠=︒ ①991502EC P C == ①49EO EC OC =-= 229999503P E P C EC -=①点99P 的坐标是(49,503-. 故答案为:(49,503-.【点睛】本题考查了坐标与图形变化-旋转 勾股定理 等边三角形的性质.正确确定每次旋转后点与旋转中心的距离长度是关键.8.(2023·黑龙江大庆·统考中考真题)1261年 我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表 人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图 根据图中各式的规律 7()a b +展开的多项式中各项系数之和为 . 【答案】128【分析】仿照阅读材料中的方法将原式展开 即可得出结果. 【详解】根据题意得:()5a b +展开后系数为:1,5,10,10,5,1 系数和:515101051322+++++==()6a b +展开后系数为:1,6,15,20,15,6,1系数和:61615201561642++++++==()7a b +展开后系数为:1,7,21,35,35,21,7,1系数和:71721353521711282+++++++== 故答案为:128.【点睛】此题考查了多项式的乘法运算 以及规律型:数字的变化类 解题的关键是弄清系数中的规律. 9.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .【答案】(3【分析】先确定前几个点的坐标 然后归纳规律 按规律解答即可.【详解】解:由图形可得:()()()()()()2356892,0,3,0,5,0,6,0,8,0,9,0,A A A A A A 如图:过1A 作1A B x ⊥轴①12,OA A①111cos601,sin603,OB OA A B OA =︒⨯==︒⨯= ①(13A ,同理:(((47104,3,3,10,3,A A A -①点1A 的横坐标为1 点2A 的横坐标为2 点3A 的横坐标为3 ……纵坐标三个一循环 ①2023A 的横坐标为2023 ①202336741÷= 674为偶数①点2023A 在第一象限 ①(20233A . 故答案为(3.【点睛】本题主要考查了等边三角形的性质 解直角三角形 坐标规律等知识点 先求出几个点 发现规律是解答本题的关键.10.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=- 进而即可求解. 【详解】解:依题意 ()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-, ①123n a a a a ++++=()21432122n n n n n n +-==-=- 故答案为:22n n -.【点睛】本题考查了图形类规律 找到规律是解题的关键.11.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在平面直角坐标系中 点A 在y 轴上 点B 在x 轴上4OA OB == 连接AB 过点O 作1OA AB ⊥于点1A 过点1A 作11A B x ⊥轴于点1B 过点1B 作12B A AB ⊥于点2A 过点2A 作22A B x ⊥轴于点2B 过点2B 作23B A AB ⊥于点3A 过点3A 作33A B x ⊥轴于点3B … 按照如此规律操作下去,则点2023A 的坐标为 .【答案】20212021114,22⎛⎫- ⎪⎝⎭【分析】根据题意 结合图形依次求出123,,A A A 的坐标 再根据其规律写出2023A 的坐标即可. 【详解】解:在平面直角坐标系中 点A 在y 轴上 点B 在x 轴上 4OA OB == OAB ∴是等腰直角三角形 45OBA ∠=︒1OA AB ⊥1OA B ∴是等腰直角三角形同理可得:1111,OA B A B B 均为等腰直角三角形 1(2,2)A ∴根据图中所有的三角形均为等腰直角三角形 依次可得:()2342211113,1,4,,4,,2222A A A ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭由此可推出:点2023A 的坐标为20212021114,22⎛⎫- ⎪⎝⎭.故答案为:20212021114,22⎛⎫- ⎪⎝⎭.【点睛】本题主要考查了平面直角坐标系中点的坐标特征 以及点的坐标变化规律问题 等腰直角三角形的性质 解题的关键是依次求出123,,A A A 的坐标 找出其坐标的规律.12.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中 ABC 的顶点A 在直线13:l y x =上 顶点B 在x 轴上 AB 垂直x 轴 且22OB = 顶点C 在直线2:3l y x 上 2BC l ⊥ 过点A 作直线2l 的垂线 垂足为1C 交x 轴于1B 过点1B 作11A B 垂直x 轴 交1l 于点1A 连接11A C 得到第一个111A B C △ 过点1A 作直线2l 的垂线 垂足为2C 交x 轴于2B 过点2B 作22A B 垂直x 轴 交1l 于点2A 连接22A C 得到第二个222A B C △ 如此下去 ……,则202320232023A B C 的面积是 .【答案】23【分析】解直角三角形得出30AOB ∠=︒ 60BOC ∠=︒ 求出3ABC S 证明111ABC A B C ∽△△222ABC A B C ∽ 得出1114A B C ABCSS= ()22222242A B C ABCABCSSS=⋅=⋅ 总结得出()2222n n nn n A B C ABCABCSSS== 从而得出202320232023220232323A B C S⨯=【详解】解:①22OB =①()22,0B ①AB x ⊥轴①点A 的横坐标为2①13:l y =①点A 32622①2633tan 22AB AOB OB ∠==①30AOB ∠=︒ ①2:3l y x =①设(),C C C x y ,则3C C y x ①tan 3CCy BOC x ∠==①60BOC ∠=︒①1cos602222OC OB =⨯︒==3sin 60226BC OB =⨯︒==①130AOC BOC AOB ∠=∠-∠=︒ ①1AOB AOC ∠=∠ ①OA 平分BOC ∠ ①12AC l ⊥ AB OB ⊥ ①126AC AB ==①1AB AC = OA OA = ①1Rt Rt OAB OAC ≌ ①122OC OB ==①112222CC OC OC =-=①12ABCOABACC BOCSSSS=--126126122226222=⨯⨯--3①2BC l ⊥ ①90BCO ∠=︒①906030CBO ∠=︒-︒=︒ ①112B C l ⊥ 2BC l ⊥ 222B C l ⊥ ①2112B B C C B C ∥∥①112230C B O C B O CBO ∠=∠=∠=︒ ①1122C B O C B O CBO AOB ∠=∠=∠=∠ ①1AO AB = 112AO A B = ①AB x ⊥轴 11A B x ⊥轴①112OB OB = 1212OB OB =①AB x ⊥轴 11A B x ⊥轴 22A B x ⊥轴①1122AB A B A B ∥∥ ①11112AB OB A B OB ==22214AB OB A B OB == ①2112B B C C B C ∥∥ ①11112BC OB B C OB ==22214BC OB B C OB == ①1111AB BCA B B C = ①111903060ABC A B C ∠=∠=︒-︒=︒ ①111ABC A B C ∽△△ 同理222ABC A B C ∽ ①1114A B C ABCS S=()22222242A B C ABC ABCSSS=⋅=⋅ ①()2222n n nn n A B C ABCABCS SS==①202320232023220232323A B C S⨯=故答案为:23【点睛】本题主要考查了三角形相似的判定和性质 解直角三角形 三角形面积的计算 平行线的判定和性质 一次函数规律探究 角平分线的性质 三角形全等的判定和性质 解题的关键是得出一般规律()2222n n nn n A B C ABCABCSSS==.13.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .【答案】()2023,1-【分析】将四分之一圆弧对应的A 点坐标看作顺时针旋转90︒ 再根据A 1A 2A 3A 4A 的坐标找到规律即可.【详解】①A 点坐标为()1,1 且1A 为A 点绕B 点顺时针旋转90︒所得 ①1A 点坐标为()2,0又①2A 为1A 点绕O 点顺时针旋转90︒所得 ①2A 点坐标为()0.2-又①3A 为2A 点绕C 点顺时针旋转90︒所得 ①3A 点坐标为()3,1-又①4A 为3A 点绕A 点顺时针旋转90︒所得 ①4A 点坐标为()1,5由此可得出规律:n A 为绕B O C A 四点作为圆心依次循环顺时针旋转90︒ 且半径为1 2 3 n每次增加1. ①202355053÷=故2023A 为以点C 为圆心 半径为2022的2022A 顺时针旋转90︒所得 故2023A 点坐标为()2023,1-. 故答案为:()2023,1-.【点睛】本题考查了点坐标规律探索 通过点的变化探索出坐标变化的规律是解题的关键.三 解答题14.(2023·山东潍坊·统考中考真题)[材料阅读] 用数形结合的方法 可以探究23...n q q q q +++++的值 其中01q <<.例求2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.方法1:借助面积为1的正方形 观察图①可知2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于该正方形的面积即23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.方法2:借助函数1122y x =+和y x =的图象 观察图①可知 2311112222n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果等于1a 2a 3a … n a …等各条竖直线段的长度之和即两个函数图象的交点到x 轴的距离.因为两个函数图象的交点(1,1)到x 轴的距为1所以 23111112222n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【实践应用】任务一 完善2322223333n⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的求值过程.方法1:借助面积为2的正方形 观察图①可知2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.方法2:借助函数2233y x =+和y x =的图象 观察图①可知 因为两个函数图象的交点的坐标为______所以 2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.任务二 参照上面的过程 选择合适的方法 求23233334444⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.任务三 用方法2 求23n q q q q +++++的值(结果用q 表示).【迁移拓展】 51+的矩形是黄金矩形 将黄金矩形依次截去一个正方形后 得到的新矩形仍是黄金矩形.观察图① 直接写出2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.【答案】任务一、方法1:2 方法2:()2,2 2 任务二 3 任务三 1qq- [迁移拓展] 51- 【分析】任务一、仿照例题 分别根据方法1 2进行求解即可 任务二 借助函数3344y x =+和y x =得出交点坐标 进而根据两个函数图象的交点到x 轴的距离.因为两个函数图象的交点()2,2到x 轴的距为2 即可得出结果任务三 参照方法2 借助函数y qx q =+和y x =的图象 得出交点坐标 即可求解 [迁移拓展]观察图①第一个正方形的面积为051111-⨯==⎝⎭ 第二个正方形的面积为2251511⎫+-=⎪⎪⎝⎭⎝⎭ ……进而得出则2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值等于长51+的矩形减去1个面积为1的正方形的面积 即可求解. 【详解】解:任务一、方法1:借助面积为2的正方形 观察图①可知2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2故答案为:2. 方法2:借助函数2233y x =+和y x =的图象 观察图①可知 因为两个函数图象的交点的坐标为()2,2所以 2322223333n⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2.故答案为:()2,2 2.任务二:参照方法2 借助函数3344y x =+和y x =的图象 3344y x y x⎧=+⎪⎨⎪=⎩ 解得:33x y =⎧⎨=⎩ ①两个函数图象的交点的坐标为()3,3232333334444⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.任务三 参照方法2 借助函数y qx q =+和y x =的图象 两个函数图象的交点的坐标为,11q q q q ⎛⎫⎪--⎝⎭①231n qq q q q q +++++=- [迁移拓展]根据图① 第一个正方形的面积为051111-⨯==⎝⎭ 第二个正方形的面积为2251511⎫+-=⎪⎪⎝⎭⎝⎭ …… 则2462515151512n⎛⎫----+++++ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭51+的矩形减去1个面积为1的正方形的面积即24625151515151511122n⎛⎫----+-+++++=⨯-= ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【点睛】本题考查了一次函数交点问题 正方形面积问题 理解题意 仿照例题求解是解题的关键.。
规律探究问题(解析版)

2.(2019湖南省娄底市)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为 的弧AB多次复制并首尾连接而成.现有一点 从 为坐标原点)出发,以每秒 米的速度沿曲线向右运动,则在第2019秒时点 的纵坐标为
A. B. C.0D.1
【答案】B
【解析】点运动一个弧AB用时为 秒.
【答案】A
【解析】过A1作A1D1⊥x轴于D1,
∵OA1=2,∠OA1A2=∠α=60°,
∴△OA1E是等边三角形,
问题拓展:
解:延长AG交BC于E,交DC的延长线于Q,延长FH交CD于P,如图4:
则EG=AG= ,PH=FH,
∴AE=5,
在Rt△ABE中,BE= =3,
∴CE=BC﹣BE=1,
∵∠B=∠ECQ=90°,∠AEB=∠QEC,
∴△ABE∽△QCE,
∴ = =3,
∴QE= AE= ,
∴AQ=AE+QE= ,
【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论.
【解答】:根据题意得,点C的坐标可表示为(2,4,2),
故答案为:(2,4,2).
【点评】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.
【答案】A
【解析】连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:
在Rt△OA1P1中,OA1=1,OP1=2,
∴A1P1= = = ,
同理:A2P2= = ,A3P3= = ,……,
∴P1的坐标为(1, ),P2的坐标为(2, ),P3的坐标为(3, ),……,
2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。
2025中考复习数学考点专题探究课件:专题1 数与式规律探究

数与式
专题1
规律探究(一)
刷难关
专题1
刷难关
专题1
类型1
规律探究(一)
数或式规律探究
1. [2023湖南常德中考,中]观察下边的数表(横排为行,竖排为列),按数表中
的规律,分数
若排在第 a 行 b 列,则 a - b 的值为(
A. 2 003
B. 2 004
C. 2 022
下去,则 a1+ a2+ a3+…+ an = 2 n2- n
1
2
3
4
5
6
7
.(结果用含 n 的代数式表示)
回到目录
专题1
规律探究(一)
【解析】∵题图(1)有1个三角形,记作 a1=1;题图(2)有5个三角形,记作 a2=
5=1+4=1+4×1;题图(3)有9个三角形,记作 a3=9=1+4+4=1+
这 n 个自然数中,任取两数之和大于 n 的取法种数 k 进行了探究.发现:当 n =
2时,只有{1,2}一种取法,即 k =1;当 n =3时,有{1,3}和{2,3}两种取
法,即 k =2;当 n =4时,可得 k =4;….若 n =6,则 k 的值为
n =24,则 k 的值为
144
9
;若
.
【解析】当 n =6时,从1,2,3,4,5,6中取两个数的和大于6,则取法有
{23,2},{23,3},…,{23,22},
{22,3},{22,4},…,{22,21},…,
{14,11},{14,12},{14,13},
{13,12},
∴ k =23+21+19+…+3+1=144.
故答案为9,144.
2023年九年级数学中考专题:规律探索题(含简单答案)

2023年九年级数学中考专题:规律探索题一、单选题1.将一些相同的“O”按如图所示摆放,观察每个图形中的“O”的个数,若第n个图形中“O”的个数是78,则n的值是()……第1个图形第2个图形第3个图形第4个图形A.11B.12C.13D.142.桌子上有8只杯口朝上的茶杯,每次翻转3只,经过n次翻转可使这8只杯子的杯口全部朝下,则n的最小值为().A.3B.4C.5D.63.如图所示,图(1)中含“○”的矩形有1个,图(2)中含“○”的矩形有7个,图(3)中含“○”的矩形有17个,按此规律,图(6)中含“○”的矩形有()A.70B.71C.72D.734.如下表,从左到右在每一个小格中都填入一个整数,使任意三个相邻的格子所填的整数之和都相等,则第2017个格子中的整数是()A.-2B.6C.-4D.125.一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是()A.6 个B.7个C.8个D.9 个6.将正整数1至2016按一定规律排列如表:平移表中带阴影的方框,方框中三个数的和可能是()A.2000B.2019C.2100D.21487.把几个不同的数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2};{1,4,7};我们称之为集合,其中的每一个数称为该集合的元素.规定:当整数x是集合的一个元素时,100-x也必是这个集合的元素,这样的集合又称为黄金集合,例如{-1,101}就是一个黄金集合.若一个黄金集合所有元素之和为整数m,且1180<m<1260,则该黄金集的元素的个数是()A.23B.24C.24或25D.268.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,如图所示有序排列.根据图中的排列规律可知,有理数-5 在“峰1”中D的位置.则有理数-2021在“峰”中A,B,C,D,E中的位置.题中两空分别代表()A.403D B.404D C.403A D.404E二、填空题9.幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为____________.10.下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.11.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 2020的坐标为________________.12.在一次猜数字游戏中,小红写出如下一组数:1,69415,,,57311…,小军猜想出的第六个数字是1813,也是正确的,根据此规律,第n 个数是_____. 13.一列数按如下的规律排列:1213214321,,,,,,,,,1121231234,则从左边第一数开始数,34为第______个数. 14.下列单项式:-x 、2x 2、-3x 3、4x 4…-19x 19、20x 20…根据你发现的规律,第2015个单项式是___________.15.根据以下图形变化的规律,第2016个图形中黑色正方形的数量是______.16.如图,C 在直线BE 上,∠ABC 与∠ACE 的角平分线交于点1A ,∠A=m,若再作∠1A BE 、∠1A CE 的平分线,交于点2A ;再作∠2A BE 、∠2A CE 的平分线,交于点3A ;……;依次类推,则A n 为_______.三、解答题17.仔细观察下列等式:第1个:52﹣12=8×3第2个:92﹣52=8×7第3个:132﹣92=8×11第4个:172﹣132=8×15…(1)请你写出第6个等式:;(2)请写出第n个等式,并加以验证;(3)运用上述规律,计算:8×7+8×11+…+8×399+8×403.18.图∠是一个三角形,分别连接这个三角形三边的中点得到图∠;再分别连接图∠中间小三角形三边的中点,得到图∠.(1)图∠有个三角形;图∠有个三角形;(2)按上面的方法继续下去,第n个图形中有多少个三角形(用n的代数式表示结论).19.如图,是用三角形(黑色)和六边形(白色)按一定规律拼成的图案.(1)图∠中六边形与三角形的个数各是多少?(2)如果按这样的规律继续拼下去,第n个图案中,六边形的个数是多少?三角形的个数又是多少?(用含n的代数式表示)(3)能否拼成一个同时含有108个六边形和228个三角形的图案?20.观察下列有规律的数:111111,,,,,2612203042⋯根据据规律可知:(1)第7个数,第n个数是(n是正整数);(2)1132是第个数;(3)计算:1111111 261220304220182019+++++++⨯.参考答案:1.B2.B3.B4.C5.C6.D7.C8.D9.210.311.(1010,0)12.3 21n n+13.1914.-2015x201515.302416.2nm17.(1)252﹣212=8×23;(2)第n个等式是:(4n+1)2﹣(4n﹣3)2=8(4n﹣1),验证见解析;(3)164000.18.(1)5,9;(2)43n-19.(1)观察图形发现有3个六边形,8个三角形;(2)第n个图形有n个六边形,有(22n+)个三角形;(3)不能20.(1)156,1n(n1)+;(2)11;(3)20182019.答案第1页,共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学热点练习2规律探究问题数学中的所谓归纳,是指从许多个别的事物中概括出一般性概念、原则或结论的思维方法。
探索规律性问题就是根据新课程标准“创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。
学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。
创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终”的要求,近年中考数学经常出现的考题.归纳规律题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律。
它体现了“特殊到一般(再到特殊)”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.结合2019年全国各地中考的实例,我们从下面八方面探讨归纳规律性问题的解法:(1)根据数的排列或运算规律归纳;(2)根据式的排列或运算规律归纳;(3)根据图的变化规律归纳;(4)根据寻找的循环规律归纳;(5)根据代数式拆分规律归纳;(6)根据一阶递推规律归纳;(7)根据二阶递推规律归纳;(8)根据乘方规律归纳.考向1 数字类规律探究型问题1. (2019·海南)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两个数的和,如果第一个数是0,第二个数是1,那么前6个数的和是______,这2019个数的和是______.【答案】0,2【解析】根据题目的规则,0,1,1,0,-1,-1,0,1,1,0,-1,-1,……,每6个数是一个循环单位,∴前6个数的和是0,2019÷6=336…3,∴这2019个数的和=0+1+1=2.2.(2019·黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵147101316192225283134374043则第20行第19个数是_____________________. 【答案】625【解析】由图可得,第一行1个数,第二行2个数,第三行3个数,…,则前20行的数字有:1+2+3+…+19+20=210个数,∴第20行第20个数是:1+3(210﹣1)=628,∴第20行第19个数是:628﹣3=625.3. (2019·武威)已知一列数a ,b ,a b +,2a b +,23a b +,35a b +,⋯⋯,按照这个规律写下去,第9个数是 . 【答案】1321a b +【解析】 由题意知第7个数是58a b +,第8个数是813a b +,第9个数是1321a b +,故答案为1321a b +. 4. (2019·云南)按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A.(-1)n -1x 2n -1 B.(-1)n x 2n -1 C.(-1)n -1x 2n +1 D.(-1)n x 2n +1【答案】C【解析】本题考查了通过探究规律性列代数式的能力,∵x 3=(﹣1)1﹣1x 2×1+1,﹣x 5=(﹣1)2﹣1x 2×2+1,x 7=(﹣1)3﹣1x 2×3+1,﹣x 9=(﹣1)4﹣1x 2×4+1,x 11=(﹣1)5﹣1x 2×5+1,…… 由上可知,第n 个单项式是:(﹣1)n ﹣1x 2n+1,因此本题选C .5. (2019·聊城) 数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n (n≥3,n 是整数)处,那么线段A n A 的长度为________(n≥3,n 是整数).【答案】4-221-n【解析】∵AO=4,∴OA 1=2,OA 2=1,OA 3=12,OA 4=212,可推测OA n =221-n ,∴A n A=AO -OA n =4-221-n .6.(2019·安顺)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是 .【答案】2019【解析】观察图表可知:第n 行第一个数是n 2,∴第45行第一个数是2025,∴第45行、第7列的数是2025﹣6=2019,故答案为2019.7. (2019·永州)我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上数之和;图二是二项和的乘方(a +b)n 的展开式(按b 的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s +x)15的展开式按x 的升幂排列得:(s +x)15=a 0+a 1x +a 2x 2+…+a 15x 15. 依上述规律,解决下列问题: (1)若s=1,则a 2= .(2)若s=2,则a 0+a 1+a 2+…+a 15= .【答案】(1)105 (2)315【解析】(1)当s=1时, (1+x)1=1+x(1+x)2=1+2x +x 2 a 2=1(1+x)3=1+3x +3x 2+x 3 a 2=3=1+2 (1+x)4=1+4x +6x 2+4x 3+x4a 2=6=1+2+3(1+x)5=1+5x +10x 2+10x 3+5x 4+x 5 a 2=10=1+2+3+4(1+x)6=1+6x +15x 2+20x 3+15x 4+6x 5+x 6 a 2=15=1+2+3+4+5 当n=15时,a 2=1+2+3+4+ (14)21×(1+14)×14=105.(2)若s=2,令x=1,则(2+1)15= a 0+a 1+a 2+…+a 15,即a 0+a 1+a 2+…+a 15=315. 考向2 几何图形类规律探究型问题1.(2019·毕节)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是( )A .上方B .右方C .下方D .左方【答案】C【解析】如图所示:每旋转4次一周,2019÷4=504…3,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方.故选C .2.(2019·天水)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有 个〇.【答案】6058【解析】 由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10, 第4个图象中〇的个数为:1+3×4=13,……∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.3. (2019·甘肃)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n 幅图中有2019个菱形,则n =__________.【答案】1010【解析】解:根据题意分析可得:第1幅图中有1个. 第2幅图中有2213⨯-=个.第3幅图中有2315⨯-=个.第4幅图中有2417⨯-=个.⋯.可以发现,每个图形都比前一个图形多2个. 故第n 幅图中共有(21)n -个.当图中有2019个菱形时,212019n -=,1010n =,故答案为1010.4. (2019·大庆)归纳"T"字形,用棋子摆成的"T"字形如图所示,按照图①,图②的规律摆下去,摆成第n 个"T"字形需要的棋子个数为______. 【答案】3n+2【解析】第1个图形有5个棋子,第2个图形有8个棋子,第3个图形有11个棋子,所以第n 个图形有(3n+2)个棋子5. (2019·龙东地区)如图,四边形OAA 1B 1是边长为1的正方形,以对角线OA 1为边作第二个正方形OA 1A 2B 2,连接AA 2,得到△AA 1A 2;再以对角线OA 2为边作第三个正方形OA 2A 3B 3,连接A 1A 3,得到△A 1A 2A 3,再以对角线OA 3为边作第三个正方形OA 3A 4B 4,连接A 2A 4,得到△A 2A 3A 4,…,记△AA 1A 2,△A 1A 2A 3,△A 2A 3A 4…的面积分别为S 1,S 2,S 3…,如此下去,则S 2019=________.【答案】22017.【解析】△AA 1A 2中,AA 1=1,AA 1边上的高是1,它的面积S 1=12×1×1; △A 1A 2A 3中,A 1A 2A 1A 2边上的高是S 2=12△A 2A 3A 4中,A 2A 3A 2A 3边上的高是它的面积S 3=12…如此下去,△A 2018A 2019A 2020中,A 2018A 2019=201822222⨯⨯⨯⨯个相乘…=2018,A 2018A 2019边上的高是2018,它的面积S 2019=12×2018×2018=22017. 6. (2019 ·扬州)如图,在ABC ∆中,5AB =,4AC =,若进行以下操作,在边BC 上从左到右依次取点1D 、2D 、3D 、4D 、⋯;过点1D 作AB 、AC 的平行线分别交AC 、AB 于点1E 、1F ;过点1D 作AB 、AC 的平行线分别交AC 、AB 于点2E 、2F ;过点3D 作AB 、AC 的平行线分别交AC 、AB 于点3E 、3F ⋯,则1122201920191122201920194()5()D E D E D E DF D F D F ++⋯++++⋯+=__________.A 4AA 1【答案】40380【解析】11//D F AC ,11//D E AB ,∴111D F BF AC AB =,即1111D F AB DE AC AB-=, 5AB =,4BC =,11114520D E D F ∴+=,同理22224520D E D F +=,⋯,20192019201920194520D E D F +=,1122201920191122201920194()5()20201940380D E D E D E D F D F D F ∴++⋯++++⋯+=⨯=;故答案为40380.考向3 点的坐标变化的规律探究型问题1.(2019 ·河南)如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4).将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( ) A. (10,3) B. (-3,10) C. (10,-3) D. (3,-10)【答案】D【解题】延长DA 交x 轴于点M ∵A (-3,4),B (3,4),∴AB=6,AB ∥x 轴, ∵四边形ABCD 为正方形,∴AD=AB=6,∠DAB=90°,∴∠DM0=∠DAB=90°, 连结OD ,Rt △DMO 中,MO=3 DM=10 则D 点的坐标为(-3,10)将△OAB 和正方形ABCD 绕点O 每次顺时针旋转90°,Rt △DMO 也同步绕点O 每次顺时针旋转90° 当图形绕点O 顺时针第一次旋转90°后, D 点的坐标为(10,3), 当图形绕点O 顺时针第二次旋转90°后, D 点的坐标为(3,-10), 当图形绕点O 顺时针第三次旋转90°后, D 点的坐标为(-10,-3), 当图形绕点O 顺时针第四次旋转90°后, D 点的坐标为(-3,10), 当图形绕点O 顺时针第五次旋转90°后, D 点的坐标为(10,3),······每四次为一个循环,∵70÷4=17···2,∴旋转70次后,D 点的坐标为(3,-10), 故选D.2.(2019·菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A 1,第二次移动到点A 2……第n 次移动到点A n ,则点A 2019的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1)【答案】C【解析】A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…, 2019÷4=504…3,所以A 2019的坐标为(504×2+1,0), 则A 2019的坐标是(1009,0),故选C .3. (2019•广安)如图,在平面直角坐标系中,点1A 的坐标为(1,0),以1OA 为直角边作Rt △12OA A ,并使1260AOA ∠=︒,再以2OA 为直角边作Rt △23OA A ,并使2360A OA ∠=︒,再以3OA 为直角边作Rt △34OA A ,并使3460A OA ∠=︒⋯按此规律进行下去,则点2019A 的坐标为__________.【答案】2017(2-,2.【解析】由题意得,1A 的坐标为(1,0),2A 的坐标为,3A 的坐标为(2-,,4A 的坐标为(8,0)-,5A 的坐标为(8,--,6A 的坐标为(16,-,7A 的坐标为(64,0),⋯由上可知,A 点的方位是每6个循环,与第一点方位相同的点在x 正半轴上,其横坐标为12n -,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为22n -,纵坐标为2n -,与第三点方位相同的点在第二象限内,其横坐标为22n --,纵坐标为2n -, 与第四点方位相同的点在x 负半轴上,其横坐标为12n --,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为22n --,纵坐标为2n --与第六点方位相同的点在第四象限内,其横坐标为22n -,纵坐标为2n --201963363÷=⋯,∴点2019A 的方位与点23A 的方位相同,在第二象限内,其横坐标为2201722n --=-,纵坐标为2故答案为:2017(2-,2.4. (2019·东营)如图,在平面直角坐标系中,函数x y 33=和x y 3-=的图象分别为直线1l ,2l ,过1l 上的点A 1(1,33)作x 轴的垂线交2l 于点A 2,过点A 2作y 轴的垂线交1l 于点A 3,过点A 3作x 轴的垂线交2l 于点A 4…,一次进行下去,则点2019A 的横坐标为 .【答案】:-31009【解析】:本题考查坐标里的点规律探究题,观察发现规律: A 1(1,33),A 2(1,3-), A 3(-3,3-),A 4(-3,33), A 5(9,33),A 6(9,39-), A 7(-27,39-),……A 2n+1[(-3)n ,3×(-3)n ](n 为自然数),2019=1009×2+1,所以A 2019的横坐标为:(-3)1009=-31009. 5. (2019·本溪)如图,点B 1在直线l :12y x =上,点B 1的横坐标为2,过点B 1作B 1A 1⊥l ,交x 轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;按照这个规律进行下去,点C n的横坐标为【答案】1 7322n-⎛⎫⨯ ⎪⎝⎭.【解题过程】如图,过B1、C1点分别作x轴的垂线,垂足分别为M,N,∵点B1在直线l:12y x=上,且点B1的横坐标为2,∴B1(2,1),∴B1M=1,OM=2,∴A1M=12.∵四边形A1C1B2B1是正方形,∴△A1B1M≌△C1A1N,∴A1N=1,∴C1的横坐标为2+1+12=2+32,在Rt△A1MB1中A1B12=,∴OB2=2,∴B2的坐标为(3,32)同理可得C2的横坐标为3+32×32,B3(92,94),C3的横坐标为92+94×32,…B n(2×132n-⎛⎫⎪⎝⎭,132n-⎛⎫⎪⎝⎭),C n的横坐标为2×132n-⎛⎫⎪⎝⎭+132n-⎛⎫⎪⎝⎭×32=17322n-⎛⎫⨯ ⎪⎝⎭,故答案为17322n -⎛⎫⨯ ⎪⎝⎭.6. (2019·齐齐哈尔) 如图,直线l :y=133+x 分别交x 轴、y 轴于点A 和点A 1,过点A 1作A 1B 1⊥l ,交x 轴于点B 1,过点B 1作B 1A 2⊥x 轴,交直线L 于点A 2;过点A 2作A 2B 2⊥l ,交x 轴于点B 2,过点B 2作B 2A 3⊥x 轴,交直线L 于点A 3;依此规律...若图中阴影△A 1OB 1的面积为S 1,阴影△A 2B 1B 2的面积S 2,阴影△A 3B 2B 3的面积S 3...,则Sn=__________.【答案】191663-n )( 【解析】由题意知OA=1,则OB 1=33,∴S 1=63; ∴A 2(33,34),∴A 2B 1=34,B 1B 2=394,∴S 2=63916⨯; ∴A 3(937,916),∴A 2B 1=916,B 1B 2=32716,∴S 2=632916)(⨯;...∴Sn=191663-n )(。