高中数学 等差数列及其前n项和(习题)

合集下载

高考数学一轮复习专题:等差数列及其前n项和(教案及同步练习)

高考数学一轮复习专题:等差数列及其前n项和(教案及同步练习)

1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列.(2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列.(3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × )(4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( )A .-1B .0C .1D .6答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,故选B.2.(教材改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A .31B .32C .33D .34 答案 B解析 由已知可得⎩⎪⎨⎪⎧ a 1+5d =2,5a 1+10d =30,解得⎩⎨⎧ a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 3.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( )A .100B .99C .98D .97答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1, ∴a 100=a 10+90d =98,故选C.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( )A .14B .21C .28D .35答案 C∴a 1+a 2+…+a 7=7a 4=28.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案 (1)C (2)6解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52. (2)∵a 3+a 5=2a 4=0,∴a 4=0.又a 1=6,∴a 4=a 1+3d =0,∴d =-2.∴S 6=6×6+6×(6-1)2×(-2)=6. 思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .63(2)(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 (1)C (2)20∴S 7=7(a 1+a 7)2=49. (2)设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *), b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)解 由(1)知b n =n -72, 则a n =1+1b n =1+22n -7. 设f (x )=1+22x -7, 则f (x )在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.引申探究本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n+1,即a n +1n +1-a n n=1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列, ∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析 由已知式2a n +1=1a n +1a n +2可得 1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n . (2)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.①设b n =a n +1-a n ,证明{b n }是等差数列;②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2,得a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2.又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列.②解 由①得b n =1+2(n -1)=2n -1,即a n +1-a n =2n -1.于是∑n k =1 (a k +1-a k )=∑nk =1(2k -1), 所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.题型三 等差数列性质的应用命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21.命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________.(2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值等于( ) A .-2 018B .-2 016C .-2 019D .-2 017 答案 (1)114 (2)A解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3.又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114.(2)由题意知,数列{S n n}为等差数列,其公差为1, ∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1.∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a n m -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( )A .58B .88C .143D .176(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.3828C.3929D.4030答案 (1)B (2)A解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13 =3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现.题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( )A .45B .60C .75D .90 (2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的首项为a 1,公差为d ,则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110. 方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110. 答案 (1)A (2)-110典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.规范解答解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53. 方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0.∴当n =12或n =13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53 =130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.1.(2016·重庆一诊)在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( )A .9B .22C .24D .32 答案 C解析 由a n +1-a n =2,知{a n }为等差数列且公差d =2,∴由a 2=5,得a 1=3,a 3=7,a 4=9,∴前4项和为3+5+7+9=24,故选C.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱D.43钱 答案 D解析 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ 2a 1+d =3a 1+9d ,2a 1+d =52,⎩⎨⎧ a 1=43,d =-16,故选D.3.(2017·佛山调研)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( )A .8B .9C .10D .11答案 C解析 由S n -S n -3=51,得a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10. 4.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于( ) A .24B .48C .66D .132 答案 D解析 方法一 由a 1+8d =12(a 1+11d )+6,得a 1+5d =12,∴a 1=12-5d .又S 11=11a 1+11×102d =11a 1+55d =11(12-5d )+55d =132.方法二 由a 9=12a 12+6,得2a 9-a 12=12. 由等差数列的性质得,a 6+a 12-a 12=12,a 6=12,S 11=11(a 1+a 11)2=11×2a 62=132,故选D. 5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( )A .7B .8C .7或8D .8或9答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或n =8,故选C.*6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212C .180D .121 答案 D解析 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d , 化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2, 所以S n +10a 2n =(n +10)2(2n -1)2=(n +102n -1)2 =⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12 =14⎝⎛⎭⎫1+212n -12≤121, 故选D.7.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.答案 27解析 由题意知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.8.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4,故a 10=14.9.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.10.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941解析 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 9b 5+b 7+a 3b 8+b 4=1941. 11.在等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.12.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.*13.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0, 解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a2n-2a n+1=a2n-1,也即(a n-1)2=a2n-1,因此a n-1=a n-1或a n-1=-a n-1.若a n-1=-a n-1,则a n+a n-1=1.而a1=3,所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,因此数列{a n}是首项为3,公差为1的等差数列.(2)解由(1)知a1=3,d=1,所以数列{a n}的通项公式a n=3+(n-1)×1=n+2,即a n=n+2.第2讲 等差数列及其前n 项和一、选择题1. {a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .24解析 由S 10=S 11得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20. 答案 B2.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ).A .6B .7C .8D .9解析 由a 4+a 6=a 1+a 9=-11+a 9=-6,得a 9=5,从而d =2,所以S n =-11n +n (n -1)=n 2-12n =(n -6)2-36,因此当S n 取得最小值时,n =6. 答案 A3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ). A .-1B .1C .3D .7解析 两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1. 答案 B4.在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为( ). A .6B .7C .8D .9解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C. 答案 C5.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ).A .8B .7C .6D .5解析 由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5. 答案 D6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数的个数是( ). A .2B .3C .4D .5解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a n b n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D 二、填空题7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -12×2=k 2=9.又k ∈N *,故k =3.答案 38.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案 69.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________.解析 (直接法)设公差为d ,则11(-3+4d )=5(-3+7d )-13, 所以d =59,所以数列{a n }为递增数列.令a n ≤0,所以-3+(n -1)·59≤0,所以n ≤325,又n ∈N *,前6项均为负值, 所以S n 的最小值为-293. 答案 -29310.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析 设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7 三、解答题11.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围. 解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0,故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.12.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;(2)令b n =S n n +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列. 13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2.∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45) =n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.14.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.。

专题26 等差数列及其前n项和(押题专练)(解析版)

专题26 等差数列及其前n项和(押题专练)(解析版)

1.数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 5=1,则a 10= ( ) A .5 B .-1 C .0 D .1解析:设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d 2=a 1a 1+2da 1+4d =1,解得⎩⎪⎨⎪⎧a 1=1d =0,所以a 10=a 1+9d =1,故选D 。

答案:D2.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( ) A .13 B .26 C .52 D .156解析:∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10, ∴6a 4+6a 10=24,即a 4+a 10=4。

∴S 13=13a 1+a 132=13a 4+a 102=26。

答案:B3.在等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( ) A .297 B .144 C .99 D .66解析:∵a 1+a 4+a 7=39,a 3+a 6+a 9=27,∴a 1+a 4+a 7=3a 4=39,a 3+a 6+a 9=3a 6=27,即a 4=13,a 6=9.∴d =-2,a 1=19.∴S 9=19×9+9×82×(-2)=99。

答案:C4.已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64解析:2a 8=a 7+a 9=16⇒a 8=8,S 11=11a 1+a 112=11·2a 62=11a 6=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A 。

答案:A5.在等差数列{a n }中,a 1=-2 012,其前n 项和为S n ,若S 2 0122 012-S 1010=2 002,则S 2 014的值等于( )A .2 011B .-2 012C .2 014D .-2 013 解析:等差数列中,S n =na 1+nn -12d ,S n n =a 1+(n -1)d 2,即数列{S nn}是首项为a 1=-2 012,公差为d 2的等差数列。

等差数列及其前n项和经典习题

等差数列及其前n项和经典习题

第28讲 等差数列及其前n 项和一、基本概念1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.2.等差数列的通项公式若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .3.等差中项如果A =a +b2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).例1:等差数列147369{},39,27,{}9n n a a a a a a a a ++=++=中则数列前项的和9S 等于?(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4).如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 5B .解析:由a 1+a 8=a 4+a 5,∴排除C . 又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.(5).已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43 C .21 D .83 4.C 解析: 解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4, ∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n , ∴|m -n |=21,故选C . 解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n . 由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615, ∴|m -n |=21. 5.等差数列的前n 项和公式若已知首项a 1和末项a n ,则S n =n (a 1+a n )2;若已知首项a 1和公差d ,则其前n 项和公式为S n =na 1+n (n -1)2d .例2:(2011·福建)在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.例3:在等差数列{}n a 中,若481,4S S ==,则17181920a a a a +++的值为?性质(2)S 2n -1=(2n -1)a n .例4:两个等差数列{}{},,n n a b 1212...72,...3n n a a a n b b b n ++++=++++则55ab =_ __。

高考数学(人教a版,理科)题库:等差数列及其前n项和(含答案)

高考数学(人教a版,理科)题库:等差数列及其前n项和(含答案)

第2讲等差数列及其前n项和一、选择题1. {a n}为等差数列,公差d=-2,S n为其前n项和.若S10=S11,则a1=( ) A.18 B.20C.22 D.24解析由S10=S11得a11=S11-S10=0,a1=a11+(1-11)d=0+(-10)×(-2)=20.答案 B2.设等差数列{a n}的前n项和为S n.若a1=-11,a4+a6=-6,则当S n取最小值时,n等于( ).A.6 B.7 C.8 D.9解析由a4+a6=a1+a9=-11+a9=-6,得a9=5,从而d=2,所以S n=-11n+n(n-1)=n2-12n=(n-6)2-36,因此当S n取得最小值时,n=6.答案 A3.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于().A.-1 B.1 C.3 D.7解析两式相减,可得3d=-6,d=-2.由已知可得3a3=105,a3=35,所以a20=a3+17d=35+17×(-2)=1.答案 B4.在等差数列{a n}中,S15>0,S16<0,则使a n>0成立的n的最大值为().A.6 B.7 C.8 D.9解析依题意得S15=15(a1+a15)2=15a8>0,即a8>0;S16=16(a1+a16)2=8(a1+a16)=8(a8+a9)<0,即a8+a9<0,a9<-a8<0.因此使a n>0成立的n的最大值是8,选C.答案 C5.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k =( ).A .8B .7C .6D .5解析 由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5. 答案 D6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n=7n +45n +3,则使得a nb n为整数的正整数的个数是( ). A .2 B .3 C .4D .5解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a nb n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D 二、填空题7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -2×2=k 2=9.又k ∈N *,故k =3.答案 38.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________. 解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d 9=1,由此解得d =6,即公差为6.答案 69.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________.解析 (直接法)设公差为d ,则11(-3+4d )=5(-3+7d )-13, 所以d =59,所以数列{a n }为递增数列.令a n ≤0,所以-3+(n -1)·59≤0,所以n ≤325,又n ∈N *,前6项均为负值, 所以S n 的最小值为-293. 答案 -29310.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________. 解析 设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7 三、解答题11.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围. 解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d2+1=0,故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.12.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;(2)令b n =S nn +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由. 解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列. 13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2. ∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5)=-(-n 2+9n )+2×(-52+45) =n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.14.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. 综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2-2.(2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为7(b1+b7)2=7(1+1-3lg 2)2=7-212lg 2.T7=。

2022高三总复习数学 等差数列及其前n项和(含解析)

2022高三总复习数学 等差数列及其前n项和(含解析)

等差数列及其前n项和A级——基础达标1.(2021·陕西教学质量检测)在公差不为0的等差数列{a n}中,a1=1,a23=a4a6,则a2=()A.711B.511C.311D.111解析:选A设数列{a n}的公差为d(d≠0),则a n=1+(n-1)d,∴a2=1+d,a3=1+2d,a4=1+3d,a6=1+5d,∵a23=a4a6,∴(1+2d)2=(1+3d)(1+5d),解得d=-411(d=0舍去),∴a2=1+d=711,故选A.2.(2021·武汉市学习质量检测)已知数列{a n}满足a1=1,(a n+a n+1-1)2=4a n a n+1,且a n+1>a n(n∈N*),则数列{a n}的通项公式a n=()A.2n B.n2C.n+2 D.3n-2解析:选B因为a1=1,a n+1>a n,所以a n+1>a n.由(a n+a n+1-1)2=4a n a n+1得a n +1+a n-1=2a n a n+1,所以( a n+1-a n)2=1,所以a n+1-a n=1,所以数列{a n}是首项为1,公差为1的等差数列,所以a n=n,即a n=n2,故选B.3.(2021·北京市适应性测试)设{a n}是等差数列,且公差不为零,其前n项和为S n.则“∀n∈N*,S n+1>S n”是“{a n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A由∀n∈N*,S n+1>S n得a n+1=S n+1-S n>0,又数列{a n}是公差不为零的等差数列,因此公差d>0(若d<0,等差数列{a n}中从某项起以后各项均为负,这与a n+1>0矛盾),数列{a n}是递增数列,所以“∀n∈N*,S n+1>S n”是“{a n}为递增数列”的充分条件;反过来,由“{a n}为递增数列”不能得知“∀n∈N*,S n+1>S n”,如取a n=n-3,此时数列{a n}为递增数列,但a2=-1<0,即有S2<S1,因此“∀n∈N*,S n+1>S n”不是“{a n}为递增数列”的必要条件.综上所述,“∀n∈N*,S n+1>S n”是“{a n}为递增数列”的充分而不必要条件,故选A.4.在等差数列{a n}中,若a10a9<-1,且它的前n项和S n有最大值,则使S n>0成立的正整数n的最大值是()A.15 B.16C.17 D.18解析:选C∵等差数列{a n}的前n项和有最大值,∴等差数列{a n}为递减数列,又a10a9<-1,∴a9>0,a10<0,∴a9+a10<0,又S18=18(a1+a18)2=9(a9+a10)<0,S17=17(a1+a17)2=17a9>0,∴S n>0成立的正整数n的最大值是17.故选C.5.(多选)(2021·长沙市长郡中学高三模拟)已知数列{a n}的前n项和为S n,a1=1,a2=2,且对于任意n>1,n∈N*,满足S n+1+S n-1=2(S n+1),则()A.a9=17 B.a10=18C.S9=81 D.S10=91解析:选BD∵对于任意n>1,n∈N*,满足S n+1+S n-1=2(S n+1),∴S n+1-S n=S n-S n-1+2,∴a n+1-a n=2.∴数列{a n}在n≥2时是等差数列,公差为2.又a1=1,a2=2,则a9=2+7×2=16,a10=2+8×2=18,S9=1+8×2+8×72×2=73,S10=1+9×2+9×82×2=91.故选B 、D.6.(多选)(2021·石家庄二中高三一模)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则( )A .a n =-12n -1B .a n =⎩⎪⎨⎪⎧-1,n =1,1n -1-1n,n ≥2,n ∈N *C .数列⎩⎨⎧⎭⎬⎫1S n 为等差数列D.1S 1+1S 2+…+1S 100=-5 050 解析:选BCD S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1, 则S n +1-S n =S n S n +1, 整理得1S n +1-1S n =-1(常数),所以数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列.故C 正确;所以1S n =-1-(n -1)=-n ,故S n =-1n .所以当n ≥2时, a n =S n -S n -1=1n -1-1n (首项不符合通项), 故a n=⎩⎨⎧-1,n =1,1n -1-1n ,n ≥2,n ∈N *,故B 正确,A 错误;所以1S 1+1S 2+…+1S 100=-(1+2+3+…+100)=-5 050,故D 正确.7.若数列{a n }满足a 1=3,a n +1=a n +3(n ∈N *),则a 3= ,通项公式a n = . 解析:因为数列{a n }满足a 1=3,a n +1=a n +3(n ∈N *), 所以数列{a n }是首项a 1=3,公差d =a n +1-a n =3的等差数列, 所以a 3=a 1+2d =3+6=9, a n =a 1+(n -1)d =3+3(n -1)=3n .答案:9 3n8.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2n n 均为等差数列(n ∈N *),且a 1=2,则a 20= .解析:设a n =2+(n -1)d , 则a 2nn =[2+(n -1)d ]2n=d 2n 2+(4d -2d 2)n +(d -2)2n, 由于⎩⎨⎧⎭⎬⎫a 2n n 为等差数列,所以其通项是一个关于n 的一次函数, 所以(d -2)2=0,∴d =2. 所以a 20=2+(20-1)×2=40. 答案:409.若数列{a n }为等差数列,a n >0,前n 项和为S n ,且S 2n -1=2n -12n +1a 2n,则a 9的值是 .解析:因为S 2n -1=2n -12n +1a 2n ,所以(a 1+a 2n -1)×(2n -1)2=2n -12n +1a 2n ,即2a n ×(2n -1)2=2n -12n +1a 2n ,所以a n =12n +1a 2n ,又a n >0,所以a n =2n +1,所以a 9=19. 答案:1910.(2021·武汉市高三测试)等差数列{a n }中,已知S n 是其前n 项和,a 1=-9,S 99-S 77=2,则a n = ,S 10= .解析:设等差数列{a n }的公差为d , ∵S 99-S 77=2,∴9-12d -7-12d =2, ∴d =2,∵a 1=-9,∴a n =-9+2(n -1)=2n -11, S 10=10×(-9)+10×92×2=0.答案:2n -11 011.(2021·合肥第一次教学检测)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 4=4S 2.(1)求数列{a n }的通项公式;(2)若a m +a m +1+a m +2+…+a m +9=180(m ∈N *),求m 的值. 解:(1)设等差数列{a n }的公差为d ,由S 4=4S 2得,4a 1+6d =8a 1+4d ,整理得d =2a 1. 又a 1=1,∴d =2,∴a n =a 1+(n -1)d =2n -1(n ∈N *). (2)a m +a m +1+a m +2+…+a m +9=180可化为 10a m +45d =20m +80=180, 解得m =5.12.已知数列{a n }是等差数列,且a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根. (1)求数列{a n }的前n 项和S n ; (2)在(1)中,设b n =S n n +c,求证:当c =-12时,数列{b n }是等差数列.解:(1)∵a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根, ∴a 1=1,a 2=5,∴等差数列{a n }的公差为4, ∴S n =n ·1+n (n -1)2·4=2n 2-n .(2)证明:当c =-12时,b n =S nn +c =2n 2-n n -12=2n ,∴b n +1-b n =2(n +1)-2n =2,b 1=2.∴数列{b n }是以2为首项,2为公差的等差数列.B 级——综合应用13.(2021·湖北襄阳四中联考)已知数列{a n }为等差数列,a 1+a 2+a 3=165,a 2+a 3+a 4=156,{a n }的前n 项和为S n ,则使S n 达到最大值时n 的值是( )A .19B .20C .21D .22解析:选B 设等差数列{a n }的公差为d ,则(a 2+a 3+a 4)-(a 1+a 2+a 3)=3d =156-165=-9,所以d =-3.因为a 1+a 2+a 3=3a 1+3d =3a 1-9=165,所以a 1=58.所以a n =a 1+(n-1)d =58+(n -1)·(-3)=61-3n .令a n =61-3n >0,得n <613.因为n ∈N *,所以当n =20时,S n 达到最大值.故选B.14.(多选)(2021·商洛市高考模拟)我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则下列选项正确的有( )A .相邻两个节气晷长减少或增加的量为一尺B .春分和秋分两个节气的晷长相同C .立冬的晷长为一丈五寸D .立春的晷长比立秋的晷长短解析:选ABC 由题意可知夏至到冬至的晷长构成等差数列{a n },其中a 1=15寸,a 13=135寸,公差为d 寸,则135=15+12d ,解得d =10寸,同理可知由冬至到夏至的晷长构成等差数列{b n },首项b 1=135,末项b 13=15,公差d =-10(单位都为寸).故A 正确;∵春分的晷长为b 7,∴b 7=b 1+6d =135-60=75∵秋分的晷长为a 7,∴a 7=a 1+6d =15+60=75,故B 正确;∵立冬的晷长为a 10,∴a 10=a 1+9d =15+90=105,即立冬的晷长为一丈五寸,故C 正确;∵立春的晷长,立秋的晷长分别为b 4,a 4,∴a 4=a 1+3d =15+30=45,b 4=b 1+3d =135-30=105,∴b 4>a 4,故D 错误.故选A 、B 、C.15.记m =d 1a 1+d 2a 2+…+d n a n n ,若{d n }是等差数列,则称m 为数列{a n }的“d n 等差均值”;若{d n }是等比数列,则称m 为数列{a n }的“d n 等比均值”.已知数列{a n }的“2n -1等差均值”为2,数列{b n }的“3n-1等比均值”为3.记c n =2a n+k log 3b n ,数列{c n }的前n 项和为S n ,若对任意的正整数n 都有S n ≤S 6,求实数k 的取值范围.解:由题意得2=a 1+3a 2+…+(2n -1)a nn , 所以a 1+3a 2+…+(2n -1)a n =2n , 所以a 1+3a 2+…+(2n -3)a n -1 =2n -2(n ≥2,n ∈N *), 两式相减得a n =22n -1(n ≥2,n ∈N *). 当n =1时,a 1=2,符合上式, 所以a n =22n -1(n ∈N *). 又由题意得3=b 1+3b 2+…+3n -1b nn , 所以b 1+3b 2+…+3n -1b n =3n ,所以b 1+3b 2+…+3n -2b n -1=3n -3(n ≥2,n ∈N *), 两式相减得b n =32-n (n ≥2,n ∈N *). 当n =1时,b 1=3,符合上式, 所以b n =32-n (n ∈N *).因为c n =2a n+k log 3b n ,所以c n =(2-k )n +2k -1.因为对任意的正整数n 都有S n ≤S 6,所以⎩⎪⎨⎪⎧c 6≥0,c 7≤0,解得135≤k ≤114.C 级——迁移创新16.若函数f (x )=log 2(x -1)+2,数列{a n }是首项为2,公差为3的等差数列,则f (a n )+f (a n +1)2与f ⎝⎛⎭⎫a n +a n +12的大小关系是( )A .f (a n )+f (a n +1)2>f⎝⎛⎭⎫a n +a n +12B .f (a n )+f (a n +1)2<f⎝⎛⎭⎫a n +a n +12 C .f (a n )+f (a n +1)2=f ⎝⎛⎭⎫a n +a n +12D .不确定解析:选B 易知a n =2+3(n -1)=3n -1.作出函数f (x )=log 2(x -1)+2的图象,如图.由图象并结合函数的性质可知f (a n )+f (a n +1)2<f ⎝ ⎛⎭⎪⎫a n +a n +12.故选B.。

等差数列及其前n项和知识点讲解+例题讲解(含解析)

等差数列及其前n项和知识点讲解+例题讲解(含解析)

等差数列及其前n 项和一、知识梳理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 小结:1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)× (4)×2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A.31B.32C.33D.34解析 由已知可得⎩⎨⎧a 1+5d =2,5a 1+10d =30, 解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 答案 B3.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( )A.-3B.-52C.-2D.-4 解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4.答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中,∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0, ∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5.答案 S 5考点一 等差数列基本量的运算【例1】 (1)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8 (2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A.9B.10C.11D.15 解析 (1)法一 设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4.法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎨⎧a1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.答案 (1)C (2)B【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于()A.3B.4C.log 318D.log 324(2)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318,∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎨⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎨⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎨⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎨⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30. 答案 (1)A (2)30考点二 等差数列的判定与证明【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23. =2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.考点三 等差数列的性质及应用角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A.6B.12C.24D.48 解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A.63B.45C.36D.27 解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.1914C.3929D.43 解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质,∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8.∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0,因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2).所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2n λ.(2)当a 1>0,λ=100时,由(1)知,a n =2n 100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n =2-n lg 2, 所以数列{b n }是单调递减的等差数列,公差为-lg 2,所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( ) A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎨⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S n n =na 1+n (n -1)2d n =-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4. (2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110三、课后练习1.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269.答案 B2.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( )A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1), 所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0, ∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 1304.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81, ∴⎩⎨⎧2a 7=26,9a 5=81,解得⎩⎨⎧a 7=13,a 5=9,∴d =a 7-a 57-5=13-92=2, ∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.。

高中数学专题突破练习《等差数列前n项和及其性质》含详细答案解析

高中数学专题突破练习《等差数列前n项和及其性质》含详细答案解析

4.2.2等差数列的前n项和公式第1课时等差数列前n项和及其性质基础过关练题组一求等差数列的前n项和1.已知等差数列{a n}满足a1=1,a m=99,d=2,则其前m项和S m等于()A.2300B.2400C.2600D.25002.在-20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为()A.200B.100C.90D.703.设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.634.(2020安徽合肥高三第一次教学质量检测)已知等差数列{a n}的前n 项和为S n,a1=-3,2a4+3a7=9,则S7等于()A.21B.1C.-42D.05.若数列{a n}为等差数列,S n为其前n项和,且a1=2a5-1,则S17等于()A.-17B.-172C.172D.176.(2019湖南师大附中高二上期中)在等差数列{a n}中,若a5,a7是方程x2-2x-6=0的两个根,则数列{a n}的前11项的和为()A.22B.-33C.-11D.117.已知等差数列{a n}.(1)若a6=10,a8=16,求S5;(2)若a2+a4=48,求S5.5题组二等差数列前n项和的性质8.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9等于()A.63B.45C.36D.279.在等差数列{a n}中,S n是其前n项和,且S2011=S2018,S k=S2008,则正整数k为()A.2019B.2020C.2021D.202210.含2n+1项的等差数列,其奇数项的和与偶数项的和之比为()A.2n+1n B.n+1nC.n-1n D.n+12n11.已知等差数列{a n},{b n}的前n项和分别为S n,T n,若S nT n =3n2n+5,则a8b8=()A.87B.4837C.97D.1213题组三等差数列前n项和的应用12.数列{a n}为等差数列,它的前n项和为S n,若S n=(n+1)2+λ,则λ的值是()A.-2B.-1C.0D.113.(2020山东济南一中高二上期中)已知等差数列{a n}的前9项和为27,a10=8,则a100=()A.100B.99C.98D.9714.(2020山东青岛高二上期末)已知数列{a n}的前n项和为S n,若a n+1=a n+2,S5=25,n∈N*,则a5=()A.7B.5C.9D.315.(2020天津一中高二上期中)已知等差数列前3项的和为34,后3项的和为146,所有项的和为390,则这个数列的项数为()A.13B.12C.11D.1016.若数列{a n}的前n项和S n=2n2-3n(n∈N*),则a1+a7等于()A.11B.15C.17D.2217.(2019湖南怀化三中高二上期中)已知{a n}是首项为a1,公差为d的等差数列,S n是其前n项和,且S5=5,S6=-3.求数列{a n}的通项公式及S n.能力提升练题组一求等差数列的前n项和1.(2020湖南郴州高二上期中,)已知数列{a n}是等差数列且a n>0,设其前n项和为S n.若a1+a9=a52,则S9=()A.36B.18C.27D.92.(2020江西九江一中高二上期中,)等差数列{a n}的前n项和为S n,若a2+a7+a12=30,则S13等于()A.130B.65C.70D.753.(2019湖北黄冈高一下期末,)如图,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n≥2,n∈N*)个点,相应的图案中点的总数记为a n,则a2+a3+a4+…+a n等于()A.3n 22B.n(n+1)2C.3n(n-1)2D.n(n-1)24.(2020安徽阜阳高二上期末,)已知数列{a n}中,a1=1,a2=2,对任意正整数n,a n+2-a n=2+cos nπ,S n为{a n}的前n项和,则S100=.题组二等差数列前n项和的性质5.()已知数列{a n},{b n}均为等差数列,其前n项和分别记为A n,B n,满足A nB n =4n+12n+3,则a5b7的值为(深度解析)A.2117B.3729C.5329D.41316.()设等差数列{a n}的前n项和为S n,且S m=-2,S m+1=0,S m+2=3,则m=.7.(2019河北沧州一中高二期中,)在等差数列{a n}中,前m(m为奇数)项的和为135,其中偶数项之和为63,且a m-a1=14,则a100=.题组三等差数列前n项和的应用8.(2020河北正定中学高二期末,)设S n是等差数列{a n}的前n项和,若a5a3=59,则S9S5等于()A.1B.-1C.2D.129.(2019陕西西安一中高二上月考,)设S n(S n≠0,n∈N*)是数列{a n}的前n项和,且a1=-1,a n+1=S n·S n+1,则S n等于()A.nB.-nC.1n D.-1n10.()若数列{a n}的前n项和S n=n2-4n+2(n∈N*),则|a1|+|a2|+…+|a10|等于()A.15B.35C.66D.10011.(2020天津耀华中学高二上期中,)数列{a n}满足a n=1+2+3+…+nn (n∈N*),则数列{1a n a n+1}的前n项和为()A.nn+2B.2nn+2C.nn+1D.2nn+112.()已知数列{a n}的前n项和S n=n2+2n-1(n∈N*),则a1+a3+a5+…+a25=.13.()已知等差数列的前三项依次为a,3,5a,前n项和为S n,且S k=121.(1)求a及k的值;(2)设数列{b n}的通项公式为b n=S nn,求{b n}的前n项和T n.14.()在数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设T n=|a1|+|a2|+…+|a n|,求T n.深度解析答案全解全析 基础过关练1.D 解法一:由a m =a 1+(m-1)d,得99=1+(m-1)×2,解得m=50, 所以S m =S 50=50×1+50×492×2=2 500.解法二:同解法一,得m=50, 所以S m =S 50=50(a 1+a 50)2=50×(1+99)2=2 500.故选D.2.B 设该等差数列为{a n },其前n 项和为S n ,则由题意可知,a 1=-20,a 10=40,所以S 10=10×(-20+40)2=100.3.C 由题意得,S 7=7(a 1+a 7)2=7(a 2+a 6)2=7×(3+11)2=49. 4.D 设等差数列{a n }的公差为d,则2a 4+3a 7=2(-3+3d)+3(-3+6d)=9,解得d=1,∴S 7=7a 1+7×62×d=7×(-3)+7×3×1=0,故选D.5.D 设等差数列{a n }的公差为d,∵a 1=2a 5-1,∴a 1=2(a 1+4d)-1,∴a 1+8d=1,即a 9=1,∴S 17=17×(a 1+a 17)2=17a 9=17.故选D.6.D 在等差数列{a n }中,若a 5,a 7是方程x 2-2x-6=0的两个根,则a 5+a 7=2, ∴a 6=12(a 5+a 7)=1,∴数列{a n }的前11项的和为11×(a 1+a 11)2=11a 6=11×1=11.故选D.7.解析 设等差数列{a n }的首项为a 1,公差为d. (1)∵a 6=10,a 8=16,∴{a 1+5d =10,a 1+7d =16,解得{a 1=-5,d =3. ∴S 5=5a 1+5×42d=5.(2)解法一:∵a 2+a 4=a 1+d+a 1+3d=485,∴a 1+2d=245.∴S 5=5a 1+5×42d=5a 1+10d=5(a 1+2d)=5×245=24.解法二:∵a 2+a 4=a 1+a 5,∴a 1+a 5=485, ∴S 5=5(a 1+a 5)2=52×485=24.8.B 由等差数列前n 项和的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即S 9=3S 6-3S 3,又S 3=9,S 6=36,所以S 9=3×36-3×9=81,所以a 7+a 8+a 9=S 9-S 6=81-36=45.9.C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数图象的对称性及S 2 011=S 2 018,S k =S 2 008,可得2 011+2 0182=2 008+k2,解得k=2 021,故选C.10.B 设该等差数列为{a n },其首项为a 1,前n 项和为S n ,则S 奇=(n+1)(a 1+a 2n+1)2,S 偶=n(a 2+a 2n )2,∵a 1+a 2n+1=a 2+a 2n ,∴S 奇S 偶=n+1n.11.C 由等差数列的性质知a 8b 8=15(a 1+a 15)215(b 1+b 15)2=S 15T 15=3×152×15+5=4535=97.故选C.12.B ∵等差数列前n 项和S n 的形式为S n =An 2+Bn(A,B 为常数),且S n =(n+1)2+λ=n 2+2n+1+λ,∴λ=-1.13.C 设等差数列{a n }的首项为a 1,公差为d,由等差数列{a n }的前9项和为27,a 10=8,得{9a 1+9×82d =9a 1+36d =27,a 1+(10-1)d =a 1+9d =8,解得{a 1=-1,d =1.故a 100=a 1+99d=98.故选C.14.C ∵a n+1=a n +2,即a n+1-a n =2,∴{a n }是公差为2的等差数列,设其首项为a 1, 则S 5=5a 1+5×42×2=25,解得a 1=1,∴a 5=1+(5-1)×2=9.15.A 设该等差数列为{a n },其前n 项和为S n .由题意得,a 1+a 2+a 3=34,a n-2+a n-1+a n =146,∴(a 1+a 2+a 3)+(a n-2+a n-1+a n )=(a 1+a n )+(a 2+a n-1)+(a 3+a n-2)=3(a 1+a n )=34+146,∴a 1+a n =60. 又S n =n(a 1+a n )2,∴390=n×602,解得n=13,故选A.16.D 由S n =2n 2-3n(n ∈N *)可知,数列{a n }为等差数列,所以S 7=7×(a 1+a 7)2=2×72-3×7,解得a 1+a 7=22,故选D.17.解析 由S 5=5,S 6=-3,得{5a 1+5×42d =5,6a 1+6×52d =-3,解得{a 1=7,d =-3, ∴a n =7+(n-1)×(-3)=-3n+10(n ∈N *),S n =n[7+(-3n+10)]2=-32n 2+172n(n ∈N *).能力提升练1.B 由a 1+a 9=a 52得,2a 5=a 52,又a n >0,∴a 5=2,∴S 9=9(a 1+a 9)2=9×2a 52=18,故选B.2.A 解法一:设等差数列{a n }的首项为a 1,公差为d,则a 2+a 7+a 12=(a 1+d)+(a 1+6d)+(a 1+11d)=3a 1+18d=30,∴a 1+6d=10. ∴S 13=13a 1+13×122d=13(a 1+6d)=13×10=130,故选A.解法二:设等差数列{a n }的首项为a 1,∵a 2+a 7+a 12=30,∴3a 7 =30,即a 7 =10,∴S 13=13(a 1+a 13)2=13×2a 72=13a 7=130.故选A.3.C 由题图可知,a 2=3,a 3=6,a 4=9,a 5=12,依此类推,n 每增加1,图案中的点数增加3,所以相应图案中的点数构成首项为a 2=3,公差为3的等差数列,所以a n =3+(n-2)×3=3n-3,n ≥2,n ∈N *, 所以a 2+a 3+a 4+…+a n =(n -1)(3+3n -3)2=3n(n -1)2.故选C.4.答案 5 050解析 当n 为奇数时,a n+2-a n =1,即数列{a n }的奇数项是以1为首项,1为公差的等差数列;当n 为偶数时,a n+2-a n =3,即数列{a n }的偶数项是以2为首项,3为公差的等差数列,所以S 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=(50×1+50×492)+50×2+50×492×3=5 050.5.B 由等差数列前n 项和的特征及An B n =4n+12n+3,可设A n =kn(4n+1),B n =kn(2n+3). ∴a 5=A 5-A 4=5×(4×5+1)k-4×(4×4+1)k=37k,b 7=B 7-B 6=7×(2×7+3)k-6×(2×6+3)k=29k. ∴a5b 7=37k 29k =3729.故选B.解题模板易错警示 等差数列{a n }的前n 项和的表示形式为S n =an 2+bn(a,b 为常数),解题时可采用这种形式简化运算.本题要注意A n B n中有比例系数k,防止遗漏导致错误. 6.答案 4解析 因为S n 是等差数列{a n }的前n 项和,所以数列{Sn n }是等差数列,所以Sm m +S m+2m+2=2S m+1m+1,即-2m +3m+2=0,解得m=4.7.答案 101解析 设等差数列{a n }的公差为d,前n 项和为S n ,由题意可知,S m =135,前m 项中偶数项之和S 偶=63,∴S 奇=135-63=72,∴S 奇-S 偶=a 1+(m -1)d 2=2a 1+(m -1)d 2=a 1+a m2=72-63=9.∵S m =m(a 1+a m )2=135,∴m=15,又∵a m -a 1=14,a m =a 1+(m-1)d, ∴a 1=2,d=a m -a 1m -1=14m -1=1,∴a 100=a 1+99d=101. 8.AS 9S 5=92(a 1+a 9)52(a 1+a 5)=92×2a 552×2a 3=9a 55a 3=95·a 5a 3=1.故选A.9.D ∵a n+1=S n+1-S n ,∴S n+1-S n =S n+1·S n , 又∵S n ≠0,∴1S n+1-1S n=-1.又S 1=a 1=-1,∴1S 1=-1,∴数列{1Sn}是以-1为首项,-1为公差的等差数列,∴1S n=-1+(n-1)×(-1)=-n,∴S n =-1n.故选D.10.C 由S n =n 2-4n+2①得,当n=1时,a 1=S 1=1-4+2=-1,当n ≥2时,S n-1=(n-1)2-4(n-1)+2②,①-②得,a n =2n-5(n ≥2,n ∈N *),经检验,当n=1时,不符合a n =2n-5,∴a n ={-1,n =1,2n -5,n ≥2,n ∈N *.∴|a 1|=1,|a 2|=1,a 3=1,令a n >0,则2n-5>0, ∴n ≥3.∴|a 1|+|a 2|+…+|a 10|=1+1+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.故选C. 11.B 依题意得,a n =n(1+n)2n=n+12, ∴1a n a n+1=4(n+1)(n+2)=4(1n+1-1n+2).∴1a 1a 2+1a 2a 3+…+1a n a n+1=4(12-13)+(13-14)+…+1n+1-1n+2=4(12-1n+2)=2nn+2,故选B. 12.答案 350解析 当n=1时,a 1=S 1=12+2×1-1=2; 当n ≥2时,a n =S n -S n-1=2n+1, 经检验,当n=1时,不符合上式, ∴a n ={2,n =1,2n +1,n ≥2,n ∈N *,因此{a n }除第1项外,其余项构成以a 2=5为首项,2为公差的等差数列,从而a 3,a 5,…,a 25是以a 3=7为首项,4为公差的等差数列, ∴a 1+a 3+a 5+…+a 25 =a 1+(12a 3+12×112×4)=350.13.解析 (1)设该等差数列为{a n },首项为a 1,公差为d,则a 1=a,a 2=3,a 3=5a. 由已知得a+5a=6,得a=1, ∴a 1=1,a 2=3,a 3=5, ∴d=2,∴S k=ka1+k(k-1)2·d=k+k(k-1)2×2=k2.由S k=k2=121,得k=11(负值舍去).∴a=1,k=11.(2)由(1)得S n=n2,则b n=S nn=n,∴b n+1-b n=1,又b1=S11=1,∴数列{b n}是首项为1,公差为1的等差数列,∴T n=n 2+n 2.14.解析(1)∵a n+2-2a n+1+a n=0,∴a n+2-a n+1=a n+1-a n,∴数列{a n}是等差数列,设其公差为d,∵a1=8,a4=2,∴d=a4-a14-1=-2,∴a n=a1+(n-1)d=10-2n,n∈N*.(2)设数列{a n}的前n项和为S n,则由(1)可得,S n=8n+n(n-1)2×(-2)=9n-n2,n∈N*.由(1)知a n=10-2n,令a n=0,得n=5.∴当n>5时,a n<0,则T n=|a1|+|a2|+…+|a n|=a1+a2+…+a5-(a6+a7+…+a n)=S5-(S n-S5)=2S5-S n=2×(9×5-25)-(9n-n2)=n2-9n+40;当n ≤5时,a n ≥0, 则T n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =9n-n 2.∴T n ={9n -n 2,n ≤5,n ∈N *,n 2-9n +40,n ≥6,n ∈N *.解题反思 求数列{|a n |}的前n 项和,关键在于分清哪些项为非负的,哪些项为负的,最终应化为去掉绝对值符号后的数列进行求和. 如果数列{a n }为等差数列,S n 为其前n 项和,T n =|a 1|+|a 2|+…+|a n |,那么有: (1)若a 1>0,d<0,则存在k ∈N *,使得a k ≥0,a k+1<0, 从而有T n ={S n (n ≤k),2S k -S n (n >k);(2)若a 1<0,d>0,则存在k ∈N *,使得a k ≤0,a k+1>0, 从而有T n ={-S n (n ≤k),S n -2S k (n >k).。

等差数列及其前n项和 测试题 练习题

等差数列及其前n项和 测试题 练习题

等差数列及其前n 项和 测试题A 级 基础题1.在等差数列{a n }中,a 2=2,a 3=4,则a 10=________.2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为________.3.在等差数列{a n }中,a 1>0,S 4=S 9,则S n 取最大值时,n =________.4.在等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则S 9=________.5.设等差数列{a n }的前n 项和为S n ,若1≤a 5≤4,2≤a 6≤3,则S 6的取值范围是________.6.设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________.7.已知数列{a n }的前n 项和为S n =2n 2+pn ,a 7=11.若a k +a k +1>12,则正整数k 的最小值为________.8.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.9.已知S n 是数列{a n }的前n 项和,S n 满足关系式2S n =S n -1-⎝ ⎛⎭⎪⎫12n -1+2(n ≥2,n为正整数),a 1=12.(1)令b n =2n a n ,求证:数列{b n }是等差数列,并求数列{a n }的通项公式; (2)在(1)的条件下,求S n 的取值范围.10.已知数列{a n }满足a n =2a n -1+2n +1(n ∈N *,n ≥2),且a 3=27. (1)求a 1,a 2的值;(2)记b n =12n (a n +t )(n ∈N *),问是否存在一个实数t ,使数列{b n }是等差数列?若存在,求出实数t ;若不存在,请说明理由.B 级 创新题1.已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为________.2.数列{a n }是等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n取得最小正值时,n =________.3.已知数列{a n },{b n }都是等差数列,S n ,T n 分别是它们的前n 项和,且S n T n =7n +1n +3,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=________.4.已知数列{a n }满足递推关系式a n +1=2a n +2n-1(n ∈N *),且⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +λ2n 为等差数列,则λ的值是________.5.已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时,都有a i +b j =a k +b l ,则12 010∑i =12 010(a i +b i )的值是________.6.已知f(x)是定义在R 上不恒为零的函数,对于任意的x ,y ∈R ,都有f (x ·y )=xf (y )+yf (x )成立.数列{a n }满足a n =f (2n )(n ∈N *),且a 1=2.则数列的通项公式a n =________.7.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式; (2)令b n =S nn +c(n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.8.在数列{a n }中,a 1=1,a n +1=1-14a n ,b n =22a n -1,其中n ∈N *.(1)求证:数列{b n }是等差数列;(2)设c n =(2)b n ,试问数列{c n }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,说明理由.参考答案 A 组1. 解析 设公差为d .则d =a 3-a 2=2. ∴a 1=0,a n =2n -2∴a 10=2×10-2=18. 答案 182. 解析 S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22.答案 223. 解析 因为a 1>0,S 4=S 9,所以a 5+a 6+a 7+a 8+a 9=0,所以a 7=0,所以⎩⎨⎧a 6>0,a 8<0,从而当n =6或7时S n 取最大值. 答案 6或74. 解析 ∵a 1+a 4+a 7=39,a 3+a 6+a 9=27, ∴3a 4=39,3a 6=27, ∴a 4=13,a 6=9.∴a 6-a 4=2d =9-13=-4, ∴d =-2,∴a 5=a 4+d =13-2=11, ∴S 9=9(a 1+a 9)2=9a 5=99.答案 995. 解析 设a n =a 1+(n -1)d ,则由⎩⎨⎧ 1≤a 5≤4,2≤a 6≤3,解⎩⎨⎧1≤a 1+4d ≤4,2≤a 1+5d ≤3,所以S 6=6a 1+15d =15(a 1+4d )-9(a 1+5d )∈[-12,42]. 答案 [-12,42]6. 解析 由15=a 1+a 2+a 3=3a 2,得a 2=5.所以⎩⎨⎧a 1+a 3=10,a 1a 3=16.又公差d >0,所以⎩⎨⎧a 1=2,a 3=8.所以d =3.所以a 11+a 12+a 13=3a 12=3(a 1+11d )=3(2+33)=3×35=105. 答案 1057. 解析 因为a 7=S 7-S 6=2×72+7p -2×62-6p =26+p =11,所以p =-15,S n =2n 2-15n ,a n =S n -S n -1=4n -17(n ≥2),当n =1时也满足.于是由a k +a k +1=8k -30>12,得k >214>5.又k ∈N *,所以k ≥6,即k min =6.答案 68. 思路分析 第(1)问建立首项a 1与公差d 的方程组求解;第(2)问建立首项a 1与公差d 的方程,利用完全平方公式求范围. 解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8, 所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0,故(4a 1+9d )2=d 2-8,所以d 2≥8.故d 的取值范围为d ≤-22或d ≥2 2.9. (1)证明 由2S n =S n -1-⎝ ⎛⎪⎫12n -1+2,得2S n +1=S n -⎝ ⎛⎭⎪⎫12n +2,两式相减,得2a n +1=a n +⎝ ⎛⎭⎪⎫12n ,即2n +1a n +1=2n a n +1,即b n +1-b n =1,所以{b n }是公差为1的等差数列.又b 1=2a 1=1,所以b n =n,2n a n =n ,从而a n =n ·⎝ ⎛⎭⎪⎫12n . (2)解 由条件得S n +a n =2-⎝ ⎛⎭⎪⎫12n -1,所以S n =2-(n +2)· ⎝ ⎛⎭⎪⎫12n ,又S n +1-S n =n +12n +1>0,所以数列{S n }在n ∈N *单调递增,所以S n ≥S 1=12,又S n <2.故S n ∈⎣⎢⎡⎭⎪⎫12,2. 10. 解 (1)由a 3=27,得2a 2+23+1=27,所以a 2=9. 又由2a 1+22+1=9,得a 1=2.(2)假设存在实数t ,使得数列{b n }是等差数列,则2b n =b n -1+b n +1,即2×12n (a n +t )=12n -1a n -1+t )+12n +1(a n +1+t ),即4a n =4a n -1+a n +1+t ,所以4a n =4×a n -2n -12+2a n +2n +1+t +1,所以t =1.故存在t =1,使得数列{b n }是等差数列. B 组1. 解析 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.答案942. 解析 由题意,可知数列{a n }的前n 项和S n 有最大值,所以公差小于零,故a 11<a 10,又因为a 11a 10<-1,所以a 10>0,a 11<-a 10,由等差数列的性质有a 11+a 10=a 1+a 20<0,a 10+a 10=a 1+a 19>0,所以S n 取得最小正值时n =19. 答案 193. 解析 a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=2(a 11+a 12)2(b 11+b 12)=a 1+a 22b 1+b 22=S 22T 22=7×22+122+3=315.答案3154. 解析 由a n +1=2a n +2n -1,可得a n +12n +1=a n 2n +12-12n +1,则a n +1+λ2n +1-a n +λ2n =a n +12n +1-a n 2-λ2+=12-12+-λ2+=12-λ+12+,当λ的值是-1时,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -12是公差为12的等差数列. 答案 -15. 解析 由题意得a 1+b 2 010=a 2+b 2 009=a 3+b 2 008=…=a 2 009+b 2=a 2 010+b 1. 所以∑i =12 010(a i +b i )=2 010(a 1+b 2 010)故12 010∑i =12 010(a i +b i )=12 010×2 010(a 1+b 2 010) =a 1+b 2 010. 下面求b 2 010.令i =1,j =n ,k =2,l =n -1,即a 1+b n =a 2+b n -1,则b n -b n -1=a 2-a 1=1,所以{a n }是以b 1=2为首项,以d =1为公差的等差数列, 所以b 2 010=2+(2 010-1)=2 011. 所以a 1+b 2 010=1+2 011=2 012. 答案 2 0126. 解析 由a n +1=f (2n +1)=2f (2n )+2n f (2)=2a n +2n +1,得a n +12n +1=a n2n +1,所以⎩⎨⎧⎭⎬⎫a n 2n 是首项为1,公差为1的等差数列,所以a n2n =n ,a n =n ·2n .答案 n ·2n7. 解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S n n +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.8. (1)证明 因为b n +1-b n =22a n +1-1-22a n -1=22⎝ ⎛⎭⎪⎫1-14a n -1-22a n -1=4a n2a n -1-22a n -1=2(n ∈N *),且b 1=22×1-1=2 所以,数列{b n }以2为首项,2为公差的是等差数列.(2)解 由(1)得c n =(2)b n =2n ,假设{c n }中存在三项c m ,c n ,c p (其中m <n <p ,m ,n ,p ∈N *)成等差数列,则2·2n =2m +2p ,所以2n +1=2m +2p,2n -m +1=1+2p -m.因为m <n <p ,m ,n ,p ∈N *,所以n -m +1,p -m ∈N *,从而2n-m +1为偶数,1+2p -m 为奇数,所以2n -m +1与1+2p -m 不可能相等, 所以数列{c n }中不存在可以构成等差数列的三项.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲等差数列及其前n项和
考点1等差数列
1.在等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()
A.1
B.2
C.3
D.4
2.设等差数列{a n}满足a2=7,a4=3,S n是数列{a n}的前n项和,则使得S n>0成立的最大的自然数n是()
A.9
B.10
C.11
D.12
3.[2017张掖市高三一诊]等差数列{a n}中,是一个与n无关的常数,则该常数的可能值的集合为() A.{1} B.{1,} C.{} D.{0,,1}
考点2等差数列的前n项和
4.[2018贵阳市高三摸底考试]设等差数列{a n}的前n项和为S n,若a6=2a3,则=()
A. B. C. D.
5.[2018长郡中学高三实验班选拔考试]已知等差数列{a n}的前n项和为S n,若a4+a12-a8=8,
a10-a6=4,则S23=()
A.23
B.96
C.224
D.276
6.[2017河南省郑州市高三一测][数学文化题]《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有女子善织布,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一个月(按30天计)共织390尺布.则该女最后一天织多少尺布? () A.18 B.20 C.21 D.25
考点3等差数列的性质
7.在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()
A.22
B.23
C.24
D.25
8.已知数列{a n}为等差数列,a1+a2+a3=3,a5+a6+a7=9,则a4=.
9.一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d=.
答案
1.B∵a1+a5=2a3=10,∴a3=5,则公差d=a4-a3=2,故选B.
2.A由题意可得{a n}的公差d=-
-
=-2,a1=9,所以a n=-2n+11,故{a n}是递减数列,且a5>0>a6,a5+a6=0,于是S9=·9>0, S10=·10=0,S11=·11<0,故选A.
3.B因为数列{a n}是等差数列,所以设数列{a n}的通项公式为a n=a1+(n-1)d,则
a2n=a1+(2n-1)d,所以=-
-=-
-
.因为是一个与n无关的常数,所以a1-d=0或
d=0.若a1=d≠0,则=;若a1≠0,d=0,则=1.所以该常数的可能值的集合为{1,}.故选B.
4.D===.故选D.
5.D设等差数列{a n}的公差为d,依题意得a4+a12-a8=2a8-a8=a8=8,a10-a6=4d=4,解得d=1,所以a8=a1+7d=a1+7=8,解得a1=1,所以S23=23×1+×1=276,选D.
6.C依题意得,织女每天所织的布的尺数依次排列形成一个等差数列,设为{a n},其中a1=5,前30项和为390,于是有=390,解得a30=21,即该织女最后一天织21尺布,选C.
7.A因为a k=a1+(k-1)d=(k-1)d,a1+a2+a3+…+a7=7a4=7a1+21d=21d,所以k-1=21,得k=22.故选A.
8.2解法一因为数列{a n}为等差数列且a1+a2+a3=3,a5+a6+a7=9,所以
(a1+a7)+(a2+a6)+(a3+a5)=12,即6a4=12,得a4=2.
解法二设数列{a n}的公差为d,因为a1+a2+a3=3,a5+a6+a7=9,所以(a5-a1)+(a6-a2)+(a7-a3)=6,即12d=6,所以d=,代入a1+a2+a3=3,即a4-3d+a4-2d+a4-d=3中,得3a4-6d=3a4-3=3,所以a4=2.
9.5设等差数列的前12项中奇数项的和为S奇,偶数项的和为S偶,等差数列的公差为d.由已
知条件,得奇偶
,
偶奇,解得

,

又S偶-S奇=6d,所以d=-=5.。

相关文档
最新文档