(完整版)柯西不等式

合集下载

柯西 施瓦茨不等式

柯西 施瓦茨不等式

柯西施瓦茨不等式【原创版】目录1.柯西 - 施瓦茨不等式的定义2.柯西 - 施瓦茨不等式的证明3.柯西 - 施瓦茨不等式的应用4.柯西 - 施瓦茨不等式的意义正文柯西 - 施瓦茨不等式(Cauchy-Schwarz Inequality)是一种在向量空间中的内积不等式,广泛应用于数学分析、线性代数等领域。

本文将从定义、证明、应用和意义四个方面介绍柯西 - 施瓦茨不等式。

1.柯西 - 施瓦茨不等式的定义柯西 - 施瓦茨不等式是指,对于任意两个实数向量 x 和 y,都有如下不等式成立:(x1 * y1 + x2 * y2 +...+ xn * yn)^2 <= (x1^2 + x2^2 +...+ xn^2) * (y1^2 + y2^2 +...+ yn^2)其中,x1、x2、...、xn 和 y1、y2、...、yn 分别是向量 x 和 y 在各个坐标轴上的分量。

2.柯西 - 施瓦茨不等式的证明柯西 - 施瓦茨不等式可以通过向量的内积公式进行证明。

假设向量x 和 y 的内积为 A,向量 x 和 y 的模分别为 B 和 C,那么根据内积公式,有:A = x1 * y1 + x2 * y2 +...+ xn * ynB = sqrt(x1^2 + x2^2 +...+ xn^2)C = sqrt(y1^2 + y2^2 +...+ yn^2)将 A、B、C 代入柯西 - 施瓦茨不等式,得到:A^2 <= B * C由于 B 和 C 都是非负数,所以柯西 - 施瓦茨不等式成立。

3.柯西 - 施瓦茨不等式的应用柯西 - 施瓦茨不等式在数学中有广泛的应用,例如在证明其他不等式、求解最优化问题等。

其中最著名的应用之一是证明线性无关的向量组中最大的内积值等于向量模的乘积,即:max(x1 * y1 + x2 * y2 +...+ xn * yn) <= B * C其中,x1、x2、...、xn 和 y1、y2、...、yn 分别是两个线性无关向量组的分量。

柯西不等式的证明_柯西不等式

柯西不等式的证明_柯西不等式

柯西不等式的证明_柯西不等式二维形式(a^2+b^2+c^2)*(1+1+1)>=(a+b+c)^2=1(柯西不等式)所以(a^2+b^2+c^2)>=1/3(1式)又a^3+b^3+c^3=(a^3+b^3+c^...(平方的和的乘积不小于乘积的和的平方)证明|a|*|b|≥|a*b|,a=(x1,y1),b=(x2,y2)(x1x2+y1y2)^2≤(x1^2+y1^2)(x2^2+y2^2)[1]推广(a1·b1+a2·b2+a3·b3+...+an·bn)^2≤(a1^2)+(a2^2)+(a3^2)+.. .+(an^2))((b1^2)+(b2^2)+(b3^2)+...(bn^2))三角形式√(a^2+b^2)+√(c^2+d^2)≥√[(a+c)^2+(b+d)^2]等号成立条件:ad=bc注:“√”表示根向量形式|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,...,bn)(n∈N,n≥2)等号成立条件:β为零向量,或α=λβ(λ∈R)。

一般形式(∑(ai^2))(∑(bi^2))≥(∑ai·bi)^2等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。

上述不等式等同于图片中的不等式。

推广形式(x1+y1+…)(x2+y2+…)…(xn+yn…)≥[(Πx)^(1/n)+(Πy)^(1/n)+…]^n注:“Πx”表示x1,x2,…,xn的乘积,其余同理。

此推广形式又称卡尔松不等式,其表述是:在m*n矩阵中,各行元素之和的几何平均不小于各列元素之和的几何平均之积。

(应为之积的几何平均之和)概率论形式√E(X)√E(Y)≥∣E(XY)∣二维形式的证明(a²+b²)(c²+d²)(a,b,c,d∈R)=a²·c²+b²·d²+a²·d²+b²·c²=a²·c²+2abcd+b²·d²+a²·d²-2abcd+b²·c²=(ac+bd)²+(ad-bc)²≥(ac+bd)²,等号在且仅在ad-bc=0即ad=bc时成立。

(完整版)高中历史-公式-柯西不等式

(完整版)高中历史-公式-柯西不等式

(完整版)高中历史-公式-柯西不等式介绍柯西不等式(Cauchy-Schwarz Inequality)是代数学和数学分析中的一项基本不等式。

它是由法国数学家奥古斯特·柯西(Augustin-Louis Cauchy)发现的,是描述内积空间性质的重要定理之一。

在高中数学中,柯西不等式经常被用于解决一元二次方程组、线性方程组、向量的运算和证明等问题。

公式表达柯西不等式可以用以下数学公式来表达:对于实数a1, a2, ..., an和b1, b2, ..., bn,有|∑(ai×bi)| ≤ √(∑(ai^2) × ∑(bi^2))其中,∑代表对所有i从1到n的求和。

这个公式的意义在于,两个向量的内积的绝对值小于等于它们的模的乘积。

证明思路证明柯西不等式的思路可以简化为以下几步:1. 将公式化简为一个关于t的一元二次方程。

2. 判断该方程的判别式是否小于等于0,如果是,则该方程无解,柯西不等式成立。

3. 如果判别式大于0,根据求解一元二次方程的公式可以得到两个解t1和t2。

4. 对求得的两个解进行讨论:- 如果t1和t2均在0到1之间,则柯西不等式成立。

- 如果t1和t2不全在0到1之间,则柯西不等式不成立。

应用示例柯西不等式可以在以下应用中发挥重要作用:1. 解决线性方程组:通过将线性方程组中的系数视为向量,使用柯西不等式可以对方程组求解。

2. 证明不等式:柯西不等式的证明思路可以应用于其他数学不等式的证明过程中,例如均值不等式、三角不等式等。

3. 向量运算:柯西不等式可以用于向量的模、向量夹角及向量的投影等问题的计算中。

小结柯西不等式是高中数学中常用的重要不等式之一,可以用于解决线性方程组、证明不等式和进行向量运算。

它的公式表达简洁清晰,证明思路相对简单。

熟练掌握柯西不等式的应用可以提高数学解题的能力,同时也有助于深入理解代数学和数学分析的相关知识。

(完整版)高中物理-公式-柯西不等式

(完整版)高中物理-公式-柯西不等式

(完整版)高中物理-公式-柯西不等式一、柯西不等式的定义柯西不等式是线性代数中的一种重要不等式,其用于描述向量内积的性质。

柯西不等式的一般形式如下:对于任意两个n维实向量x和y,有不等式:x·y ≤ ||x|| ||y||其中,x·y表示x和y的内积,||x||和||y||分别表示x和y的模长。

二、柯西不等式的证明要证明柯西不等式,可以采用以下方法之一:方法一:使用向量投影通过向量投影的定义,可以得出:x·y = ||x|| ||y|| cosθ其中,θ为x和y之间的夹角。

由于cosθ的取值范围为[-1,1],所以有:x·y ≤ ||x|| ||y||方法二:使用Cauchy-Schwarz不等式柯西不等式也可以通过Cauchy-Schwarz不等式(柯西-施瓦茨不等式)来证明。

Cauchy-Schwarz不等式的一般形式如下:(x1y1 + x2y2 + ... + xnyn)^2 ≤ (x1^2 + x2^2 + ... + xn^2)(y1^2 + y2^2 + ... + yn^2)将Cauchy-Schwarz不等式应用于内积的情况下,可以得到柯西不等式。

三、柯西不等式的应用柯西不等式在物理学中有广泛的应用,特别是在向量分析和线性代数中。

在向量分析中,柯西不等式可用于证明向量的正交性,以及判断向量是否共线等问题。

在线性代数中,柯西不等式可用于证明向量的线性无关性,以及求解线性方程组等问题。

总结:柯西不等式作为一种重要的不等式,在高中物理研究中具有重要的意义。

掌握柯西不等式的定义、证明和应用,对于深入理解向量内积的性质以及推导相关定理都具有重要的帮助。

(完整版)柯西不等式

(完整版)柯西不等式

柯西不等式1☆学习目标: 1. 认识二维柯西不等式的几种形式,理解它们的几何意义; 2. 会证明二维柯西不等式及向量形式 ☻知识情景:1. 定理1 如果,a b R ∈, 那么222a b ab +≥. 当且仅当a b =时, 等号成立.当0,0a b >>时,由222a b ab +≥⇒基本不等式:2. 如果,,,a b c d R ∈, 那么222a b ab +≥,222c d cd +≥⇒2222()()a b c d ++≥ 另一方面,有22222()2ac bd a c b d abcd +=++≥问题:2222()()a b c d ++2()ac bd + ???☻新知建构:1. 柯西不等式:若,,,a b c d R ∈,则22222()()()a b c d ac bd +++.当且仅当 时, 等号成立.此即二维形式的柯西不等式.证法10.(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd =++当且仅当 时, 等号成立. 证法20.(构造法) 分析:22222()()()ac bd a b c d +++⇐22222[2()]4()()0ac bd a b c d +-++而22222[2()]4()()ac bd a b c d +-++的结构特征 那么, 证:设22222()()2()f x a b x ac bd x c d =+-+++,∵ 22()()()f x ax c bx d =-+- 0 恒成立.∴ . 得证.证法30.(向量法)设向量(,)m a b =,(,)n c d =, 则||m =,||n =.∵ m n ⋅=,且><⋅⋅=⋅n m n m n m ,cos ||||,有||||||n m n m ⋅⋅.∴ . 得证. 2. 二维柯西不等式的变式:变式10.若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+ 或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,;变式30. 若1122,,,x y x y R ∈,几何意义:3. 二维柯西不等式的应用: 4422332 ,()()()1a b a b a b a b ++≥+已知为实数,证明例*11,,b 1,42a b R a a b∈+=+≥设求证例3y =求函数例例4 22231,49,x y x y +=+若求的最小值并求最小值点.{222222222:(49)(11)(23)1,149.22131,23.12341231611149,(,)246x y x y x y x y x y x x y x y y x y ++≥+=∴+≥⋅=⋅=⎧=⎪=⎨+==⎪⎩∴+解由柯西不等式当且仅当即时取等号由得的最小值为最小值点为选修4-5练习221.,,10,( )a b R a b a b ∈+=-若且则的取值范围是A.⎡⎣.B ⎡-⎣.C ⎡⎣.D ⎡⎣.222.1,23( )x y x y +=+已知那么的最小值是 562536A. . . .63625B C D3.______y =函数224,,326,2______x y x y P x y +≤=+设实数满足则的最大值是22115.1,()()______a b a b a b+=+++若则的最小值是1.A 2、B 3.3 4. 5.2526、 求函数y =7、已知321x y +=,求22x y +的最小值.8、若,x y R +∈,2x y +=,求证:112x y+≥. 9、已知,,,x y a b R +∈,且1a bx y+=,则x y +的最小值. 10、若>b >,求证:ca cb b a -≥-+-411.11、 已知点()000,x y P 及直线:l 0x y C A +B += ()220A +B ≠ 用柯西不等式推导点到直线的距离公式12、已知,11122=-+-a b b a 求证:122=+b a 。

《柯西不等式》课件

《柯西不等式》课件

感谢您的观看
THANKS
应用场景
幂和不等式在数学分析和最优化理论等领域有应用,例如在求解约束优化问题、估计函数 的极值以及分析函数的收敛性等方面。
05
习题与解答
习题一:证明柯西不等式
总结词
通过数学推导证明柯西不等式
详细描述
这道习题要求学生掌握柯西不等式的证明方法,通过数学推导和证明,理解柯西不等式的原理和性质 。
习题二:应用柯西不等式解决问题
总结词
运用柯西不等式解决实际问题
详细描述
这道习题要求学生能够运用柯西不等式解决实际问题,如最大值、最小值问题等,培养学生的数学应用能力。
习题三:探索柯西不等式的变体
总结词
研究柯西不等式的变体形式
详细描述
这道习题要求学生探索柯西不等式的变体形式,理解不同形式的不等式及其应用,培养学生的数学探究能力。
详细描述
平方和不等式是指对于任意非负实数序列a_1, a_2, ..., a_n,有(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2) >= (a_1b_1 + a_2b_2 + ... + a_nb_n)^2。
应用场景
平方和不等式在数学、物理和工程领域有广泛的应用,例如在求解最优 化问题、估计数值稳定性以及分析信号处理中的频率响应等方面。
时。
数学期望
柯西不等式在大数定律的研究中也有应用, 如在研究强大数定律和弱大数定律时。
大数定律
利用柯西不等式,可以推导出一些数学期望 的性质和计算方法。
概率不等式
柯西不等式在概率不等式的证明中也有应用 ,如Chebyshev不等式等。

(完整版)柯西不等式各种形式的证明及其应用

(完整版)柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。

但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。

柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。

柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。

一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k nk k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。

(完整版)高中化学-公式-柯西不等式

(完整版)高中化学-公式-柯西不等式

(完整版)高中化学-公式-柯西不等式高中化学-公式-柯西不等式1. 柯西不等式的基本概念柯西不等式,又称柯西-施瓦茨不等式,是数学中的一种重要不等式,用于描述向量空间中两个向量之间内积(或点乘)的上界。

2. 柯西不等式的表达式柯西不等式的表达式为:a·b ≤ ||a|| × ||b||其中,a和b为向量,||a||表示向量a的长度(模),||b||表示向量b的长度(模),a·b表示向量a和b的内积。

3. 柯西不等式的含义柯西不等式通过比较向量的长度和内积的关系,给出了向量之间的关系限制。

当向量a和b夹角为锐角时,a·b的值越大,则向量a和向量b的夹角越小;当向量a和b夹角为钝角时,a·b的值越大,则向量a和向量b的夹角越大。

4. 柯西不等式的推导为了推导柯西不等式,我们可以从向量的内积的定义入手,即:a·b = ||a|| × ||b|| × cosθ其中,θ表示向量a和向量b的夹角。

根据三角函数的性质,cosθ的值介于-1和1之间,所以:-||a|| × ||b|| ≤ a·b ≤ ||a|| × ||b||这就得到了柯西不等式的推导过程。

5. 柯西不等式的应用柯西不等式在数学和物理等领域都有广泛的应用。

在向量空间中,柯西不等式可用于推导其他重要不等式,如三角不等式、内积的性质等。

在物理学中,柯西不等式可用于推导能量不等式、功不等式等重要关系。

6. 总结柯西不等式作为数学中的重要不等式,可以帮助我们理解向量之间的关系限制。

通过比较向量的长度和内积的关系,柯西不等式给出了向量夹角大小的限制。

在实际应用中,柯西不等式有助于推导其他重要不等式和建立重要物理关系。

以上是对柯西不等式的介绍和应用的完整版文档。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柯西不等式1☆学习目标: 1. 认识二维柯西不等式的几种形式,理解它们的几何意义; 2. 会证明二维柯西不等式及向量形式 ☻知识情景:1. 定理1 如果,a b R ∈, 那么222a b ab +≥. 当且仅当a b =时, 等号成立.当0,0a b >>时,由222a b ab +≥⇒基本不等式:2. 如果,,,a b c d R ∈, 那么222a b ab +≥,222c d cd +≥⇒2222()()a b c d ++≥ 另一方面,有22222()2ac bd a c b d abcd +=++≥问题:2222()()a b c d ++2()ac bd + ???☻新知建构:1. 柯西不等式:若,,,a b c d R ∈,则22222()()()a b c d ac bd +++.当且仅当 时, 等号成立.此即二维形式的柯西不等式.证法10.(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd =++当且仅当 时, 等号成立. 证法20.(构造法) 分析:22222()()()ac bd a b c d +++⇐22222[2()]4()()0ac bd a b c d +-++而22222[2()]4()()ac bd a b c d +-++的结构特征 那么, 证:设22222()()2()f x a b x ac bd x c d =+-+++,∵ 22()()()f x ax c bx d =-+- 0 恒成立.∴ . 得证.证法30.(向量法)设向量(,)m a b =,(,)n c d =, 则||m =,||n =.∵ m n ⋅=,且><⋅⋅=⋅n m n m n m ,cos ||||,有||||||n m n m ⋅⋅.∴ . 得证. 2. 二维柯西不等式的变式:变式10.若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+ 或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,;变式30. 若1122,,,x y x y R ∈,几何意义:3. 二维柯西不等式的应用: 4422332 ,()()()1a b a b a b a b ++≥+已知为实数,证明例*11,,b 1,42a b R a a b∈+=+≥设求证例3y =求函数例例4 22231,49,x y x y +=+若求的最小值并求最小值点.{222222222:(49)(11)(23)1,149.22131,23.12341231611149,(,)246x y x y x y x y x y x x y x y y x y ++≥+=∴+≥⋅=⋅=⎧=⎪=⎨+==⎪⎩∴+解由柯西不等式当且仅当即时取等号由得的最小值为最小值点为选修4-5练习221.,,10,( )a b R a b a b ∈+=-若且则的取值范围是A.⎡⎣.B ⎡-⎣.C ⎡⎣.D ⎡⎣.222.1,23( )x y x y +=+已知那么的最小值是 562536A. . . .63625B C D3.______y =函数224,,326,2______x y x y P x y +≤=+设实数满足则的最大值是22115.1,()()______a b a b a b+=+++若则的最小值是1.A 2、B 3.3 4. 5.2526、 求函数y =7、已知321x y +=,求22x y +的最小值.8、若,x y R +∈,2x y +=,求证:112x y+≥. 9、已知,,,x y a b R +∈,且1a bx y+=,则x y +的最小值. 10、若>b >,求证:ca cb b a -≥-+-411.11、 已知点()000,x y P 及直线:l 0x y C A +B += ()220A +B ≠ 用柯西不等式推导点到直线的距离公式12、已知,11122=-+-a b b a 求证:122=+b a 。

13()121x x =++练习6.分析:如何变形? → 构造柯西不等式的形式 → 板演→ 变式:y =→ 推广:,,,,,)y a b c d e f R +=∈7.(凑配法)2222222111()(32)(32)131313x y x y x y +=++≥+=. 8.分析:如何变形后利用柯西不等式? (注意对比 → 构造)要点:2222111111()()]22x y x y x y +=++=++≥… 9.要点:()()a bx y x y x y+=++=…. → 其它证法10、要点:21111()()[()()]()(11)4a c a b b c a b b c a b b c-+=-+-+≥+=---- 11、设点()111,x y P 是直线l 上的任意一点, 则110x x C A +B += (1)点01,P P 两点间的距离: 01p p =(2)01p p 的最小值就是点0p 到直线l 的距离,∵()()0101x x y y A -+B -()0011x y C x y C =A +B +-A +B + 由(1)(2)得:21200p p x y C ≥A +B + 即12p p ≥(3)当且仅当 ()()0101:y y x x B--=A12p p l ⊥ (3)式取等号 即点到直线的距离公式即12p p =12. 证明:由柯西不等式,得()[]()[]11111222222=-+-+≤-+-b b a a a b b a当且仅当a b ab2211-=-时,上式取等号, ,1122b a ab -•-=∴ ()(),112222b ab a --= 于是 122=+b a。

13.解: ()()22221111+++•+x x xx = ()()22221111+++•+x x xx由柯西不等式知()()xx x x x x x x 1111112222+++≥+++•+即,)1(12)1()1(112222++≥+++⋅+x x x x x x)1(12)1(1)1(12222++≥+++⋅+∴x x x x x x当上式取等号时有)1(1)1(+=+x x x x 成立,即012=++x x (无实根) 或012=-+x x ,即 251±-=x ,经检验,原方程的根为251±-=x柯西不等式2☆学习目标: 1. 熟悉一般形式的柯西不等式,理解柯西不等式的证明; 2. 会应用柯西不等式解决函数最值、方程、不等式,等一些问题 ☻知识情景:1. 柯西主要贡献简介:柯西(Cauchy ),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等. 2.二维形式的柯西不等式: 若,,,a b c d R ∈,则 . 当且仅当 时, 等号成立. 变式10. 若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,;变式30.(三角形不等式)设,,,,,y x y x y x 为任意实数,则:3. 一般形式的柯西不等式:设为大于1的自然数,,i ia b R ∈(=i 1,2,…,),则: . 当且仅当 时, 等号成立. (若0=i a 时,约定0=i b ,=i 1,2,…,). 变式10. 设,0(1,2,,),i i a R b i n ∈>= 则:∑∑∑≥=i i ni iib a b a 212)( . 当且仅当 时, 等号成立. 变式20. 设0(1,2,,),i i a b i n ⋅>= 则:∑∑∑≥=ii i ni i i b a a b a 21)(.当且仅当n b b b === 21时,等号成立. 变式30. (积分形式)设)(x f 与)(x g 都在],[b a 可积,则dx x g dx x f dx x g x f ba b a b a )()()()(222⎰⎰⎰⋅≤⎥⎦⎤⎢⎣⎡,当且仅当)()(x g t x f ⋅=时,等号成立.如果一个定理与很多学科或者一个学科的很多分支有着密切联系,那么这个定理肯定很重 要. 而柯西不等式与我们中学数学中的代数恒等式、复数、向量、几何、三角、函数等各方面都有联系. 所以, 它的重要性是不容置疑的! ☆ 柯西不等式的应用:例1. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=. 试求的最值例2 在实数集内 解方程22294862439x y z x y y ⎧++=⎪⎨⎪-+-=⎩例3 设是三角形ABC 内的一点,,,x y z 是到三边,,a b c 的距离,是ABC 外接圆 的半径,例4 (证明恒等式) 已知,11122=-+-a b b a 求证:122=+b a 。

例5 (证明不等式)设,121+>>>>n n a a a a 求证:011111113221>-+-++-+-++a a a a a a a a n n n选修4-5练习 1、已知12,,,n a a a R +∈,求证:222212121()n n a a a a a a n+++≤+++2、已知,,,a b c d 是不全相等的正数,求证:2222a b c d ab bc cd da +++>+++3、已知222231,x y z x y z ++=++求的最小值.4、设12n ,x ,x R ,x +∈12n x x 1,x +++=且 求证:2221212x 11x 111n n x x x x n +++≥++++5、已知实数,,,,a b c d e 满足8a b c d e ++++=, 2222216,a b c d e ++++= 求的取值范围.6、已知,,,x y z R +∈ 且1,x y z ++= 求证:14936x y z++≥7、已知正数,,a b c 满足1a b c ++= 证明 2223333a b c a b c ++++≥8、解方程组 ⎧⎨⎩4222222296()()486x y z x w x x y z w w y z ++=+=+++++=9、若n 是不小于2的正整数,试证:411111172342122n n <-+-++-<-。

相关文档
最新文档