二次函数解析式的求法
求二次函数解析式的常用方法

求二次函数解析式的常用方法四川省仪陇县实验学校 李洪泉求二次函数解析式是初中数学的重点和难点,同时也是初中、高中数学知识的一个衔接点。
它所涉及的知识面广,解题技巧高,因此要求学生必须熟练掌握以下几种求二次函数解析式的常用方法。
1、根据二次函数的一般式求解析式当直接或间接知道二次函数图象上任意三点坐标时,通常可设函数解析式为一般式y=ax 2+bx+c 求解。
例1、(2008年广东梅州市)如图,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB ,AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于AB 的直线为y 轴建立平面直角坐标系.(1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L .(3)若P 是抛物线的对称轴L 上的点,那么使∆PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)分析:根据等腰梯形和直角三角形的性质不难求出60,(1,0),DAB A D C ∠=︒-,A 、D 、C 为抛物线上的任意三点,因此可令抛物线的解析式为一般式:2y ax bx c =++,则042a b c c a bc -+=⎧⎪=⎨⎪++=⎩,解得:3ab c ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩故:过A 、D 、C 三点的抛物线的解析式为:2y x x =;对称轴为直线x=1.(第三问解略) 点评:根据二次函数的一般式求解析式,必须知道抛物线上三点的坐标,目的是列一个三元一次方程组求解出解析式的待定系数的值。
2、根据二次函数的顶点式求解析式已知二次函数顶点坐标(h ,k)或对称轴x=h 时,通常可设函数解析式为y=a(x-h)2+k 求解。
例2、(四川省南充高中2011邀请赛题)如图,已知点(2,0),(4,0)B C --,过点,B C 的M 与直线1x =-相切于点A (A 在第二象限),点A 关于x 轴的对称点是1A ,直线1AA 与x 轴相交点P 。
二次函数的几种解析式及求法解读

的图像如图所示,
评析:
刚才采用一般式、顶点式和交点式求解, 通过对比可发现用顶点式和交点式求解比用 一般式求解简便。同时也培养学生一题多思、 一题多解的能力,从不同角度进行思维开放、 解题方法开放的培养。注重解题技巧的养成 训练,可事半功倍。
2、将抛物线 向左平移4个单位, 再向下平移3个单位,求平移后所得抛物线的解析式。 解法:将二次函数的解析式 转化为顶点式得: (1)、由 向左平移4个单位得: (左加右减)
2、已知二次函数与x 轴的交点坐标为(-1,0), (1,0),点(0,1)在图像上,求其解析式。
解:设所求的解析式为
∵抛物线与x轴的交点坐标为(-1,0)、(1,0) ∴ ∴ 又∵点(0,1)在图像上, ∴ ∴ a = -1 ∴ 即:
四、尝试练习
4、将二次函数 的图像向右平移1个单位, 再向上平移4个单位,求其解析式。 解:∵ 二次函数解析式为
1 2 所求的解析式为: y ( x 2) 1 3
(3)图象与X轴交于(2,0) (-1,0)且过点(0,-2)
解法(一)可设一般式 解法(二)可设交点式
解:∵抛物线与X轴交于点(2,0)(-1,0) ∴设解析式为:y=a(x-2)(x+1) 把点(0,-2)代入 a(0-2)(0+1)=-2 解得 a=1 ∴y=(x-2)(x+1) 即:y=x2-x-2
二次函数的几种解 析式及求法
二次函数解析(常见的三种表示形式)
(1)一般式
2 y ax bx c(a 0)
2 n(a 0)顶点坐标( y a ( x m ) m, n) (2)顶点式
(3)交点式 y a( x x 1 )( x x 2 )( a 0)
十种二次函数解析式求解方法

十种二次函数解析式求解方法〈一〉三点式。
1, 已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点,求抛物线的解析式。
2, 已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。
〈二〉顶点式。
1, 已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。
2, 已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。
〈三〉交点式。
1, 已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。
2, 已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21a(x-2a)(x-b)的解析式。
〈四〉定点式。
1, 在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q ,直线2)2(+-=x a y 经过点Q,求抛物线的解析式。
2, 抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。
3, 抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。
〈五〉平移式。
1, 把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。
2, 抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式.〈六〉距离式。
1, 抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。
2, 已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物线的解析式。
〈七〉对称轴式。
1、 抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2倍,求抛物线的解析式。
二次函数解析式三种方法

二次函数解析式三种方法嘿,大家知道吗,求二次函数解析式有三种超棒的方法呢!先来说说一般式吧。
一般式是y=ax²+bx+c,当我们知道函数图像上的三个点时,就可以用这个方法啦。
步骤就是把这三个点的坐标代入一般式中,得到一个三元一次方程组,然后解这个方程组就能求出 a、b、c 的值啦。
哎呀呀,这多简单呀,不过可得仔细点,别把坐标代错了哟!这种方法的稳定性那可是杠杠的,只要我们认真计算,就很少会出错呢。
它适用于各种情况,尤其是那些能轻松找到三个点的题目,优势明显呀。
就好比说,我们要建一座房子,这一般式就是那坚固的地基,能让我们的函数稳稳地立起来。
再讲讲顶点式。
顶点式是 y=a(x-h)²+k,要是我们知道了顶点坐标和另外一个点,那就用这个方法最合适啦。
先把顶点坐标代进去确定 h 和 k,然后再把另一个点代进去求出 a 的值。
哇塞,是不是感觉很神奇呀!这个过程就像搭积木一样,一块一块稳稳地堆起来。
它的安全性很高哦,只要我们抓住了顶点这个关键,就不容易出错啦。
它常常在那些强调顶点重要性的题目中大展身手,就像一个武林高手,在关键时刻使出绝招。
还有交点式呢。
交点式是 y=a(x-x₁)(x-x₂),当我们知道函数与 x 轴的交点坐标时,就选它啦。
把交点坐标代进去求出 a 的值就行啦。
这就像是找到了宝藏的钥匙,一下子就打开了函数的大门。
它的过程也很稳定呀,只要我们确定了交点,就像有了方向标。
在处理与 x 轴交点相关的问题时,那简直就是如鱼得水。
来看看实际案例吧。
比如有个二次函数图像经过点(1,2)、(3,4)、(5,6),那我们就可以用一般式来求解呀,把这三个点代进去,认真计算,就能求出解析式啦。
再比如知道顶点坐标是(2,3)和另一个点(4,5),那用顶点式就能快速搞定。
所以呀,这三种方法各有各的好,我们要根据具体情况灵活选择,那就能轻松求出二次函数解析式啦!它们就像我们的得力助手,帮助我们在数学的海洋中畅游无阻!。
求二次函数解析式的基本方法及练习题

求二次函数解析式的基本方法及练习题二次函数是初中数学的重要内容,也是高中数学的基础。
熟练求出二次函数的解析式是解决二次函数问题的重要保证。
二次函数的解析式有三种基本形式:一般式、顶点式和交点式。
其中,一般式为y=ax2+bx+c (a≠0),顶点式为y=a(x-h)2+k(a≠0),其中点(h,k)为顶点,对称轴为x=h,交点式为y=a(x-x1)(x-x2) (a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。
求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式。
例如,若给出抛物线上任意三点,通常可设一般式;若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式;若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。
下面以几个例子来说明如何求二次函数的解析式。
例1,已知二次函数的图象经过点(-1,-5),(-4,4)和(1,1),求这个二次函数的解析式。
由于题目给出的是抛物线上任意三点,可设一般式y=ax2+bx+c (a≠0)。
设这个二次函数的解析式为y=ax2+bx+c (a≠0),根据题意列方程解得a=2,b=3,c=-4,因此这个二次函数的解析式为y=2x2+3x-4.例2,已知抛物线y=ax2+bx+c的顶点坐标为(4,-1),与y轴交于点(0,3),求这条抛物线的解析式。
由于给出的是抛物线的顶点坐标和交点,最好抛开题目给出的y=ax2+bx+c,重新设顶点式y=a(x-h)2+k (a≠0),其中点(h,k)为顶点。
设这个二次函数的解析式为y=a(x-4)2-1 (a≠0),又抛物线与y轴交于点(0,3),解方程得a=1,因此这个二次函数的解析式为y=(x-4)2-1,即y=x2-2x+3.例3,如图,已知两点A(-8,0),B(2,0),以AB为直径的半圆与y轴正半轴交于点C,求经过A、B、C三点的抛物线的解析式。
由于A、B两点实际上是抛物线与x轴的交点,所以可设交点式y=a(x-x1)(x-x2) (a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。
二次函数解析式求法与例题

二次函数解析式求法与例题
小编整理了关于二次函数解析式求法与例题,希望对于同学们的二次函数解析式的求法有所了解,包括相关例题以供同学们呢练习和实践!二次函数一般形式:y=ax2+bx+c(任意三点)
顶点式:y=a(x+d)2+h(顶点和任意除顶点以外的点)有的版本教材也注原理相同
例:某二次函数图像顶点(-2,1)且经过(1,0),求二次函数解析式
解:设y=a(x+2)2+l注意:y=a(x-d)2+h中d是顶点横坐标,h是顶点纵坐标
由于二次函数图像过点(1,0)
因此a*3的平方的二0解得a=T∕9
所以所求作二次函数解析式为y=-l∕9(x+2)2÷l
(此题是样题,所以就不进一步化简成一般形式)
两根式:函数图像与X轴两交点与另外一点首先必须有交点(b2-4ac0)y=a(χ-χl)(χ-χ2)其中xl,x2是图像与X轴两交点并且是ax2+bx+c=0的两根
如果二次函数一般形式和与X轴的一个交点,那么可以求出另一个交点利用根与系数的关系
例:y=x2+4x+3与X轴的一个交点是(T,0),求其与X轴的另一交点坐标解:由根与系数的关系得:
xl+x2=-b∕a--4那么x2=-4-XI=-4-(T)=-3
所以与X轴的另一交点坐标为(-3,0)
另外将y=ax2+bx+c向右平移2个单位可得
y=a(x-2)2÷b(χ-2)+c
再向下平移2个单位得:y=a(x-2)2+b(x-2)+c-2
二次函数解析式求法与例题,仅供同学们参考,希望同学们的二次函数解析式学习有所帮助!。
谈谈二次函数解析式的几种求法

谈谈二次函数解析式的几种求法二次函数是初中数学非常重要的知识点,也是中考的必考内容。
本人在多年的教学中体会较多,现就二次函数的解析式的几种求法,谈谈几点看法。
二次函数的解析式的求法有很多种,但常见的也就以下几种。
(一)三点式即已知抛物线的三点坐标,求其解析式例如:一抛物线经过点(-1,-1)(0,2)(1,1)求这个函数的解析式。
解法如下:我们知道,二次函数的一般形式为y=ax²+bx+c,只需把上述三点代入y=ax²+bx+c即可解:设所求的二次函数的解析式为y=ax²+bx+c,把点(-1,-1)(0,2)(1,1)代入得 a-b+c=-1 a=2c=-2 b=1a+b+c=1 ,解得 c=-2即所求的二次函数的解析式为y=2x²+x-2(二)顶点式我们知道二次函数经过配方可得y=a(x-h)²+k的形式。
例:已知二次函数的顶点为(-1,-2)且经过点(1,10),求这个函数的表达式?解法如下:解:设所求抛物线为y=a (x+1)²-2, 再把(1,10)代入上式求得c=3.所以所求二次函数的解析式为y=3(x+1)²-2 即 y=3x ²+6x+1(三)交点式我们知道二次函数y=ax ²+bx+c 与x 轴的两交点的横坐标亦即是方程ax ²+bx+c=0的两个根,利用这种关系,也能够求出一些二次函数的解析式。
例如:某二次函数与x 轴的两交点为(3,0)(1,0)且经过点(0,3)求这个二次函数的解析式。
解:设所求的二次函数的表达式为y=a (x-3)(x-1),把(0,3) 代人上式得a=1, ∴所求函数的解析式为y=(x-3)(x-1), 即y=x ²-4x+3(四)平移法例:平移二次函数y=2x ²的图像是它经过点(-1,1)(2,3)两点,求这时函数对应的二次函数的解析式?我们知道,平移二次函数的图像时,a 的值是不变的,所以,只要确定b 、c 的值就能够了。
待定系数法求二次函数的解析式—知识讲解

待定系数法求二次函数的解析式—知识讲解一般来说,二次函数的一般形式为:y = ax^2 + bx + c (其中a、b、c为常数,且a≠0)。
我们可以使用待定系数法来求解二次函数的解析式,具体步骤如下:1.设定待定系数:我们设定系数a、b、c的值为待定系数。
即假设a、b、c的值为未知数。
2.建立方程:根据二次函数的一般形式y = ax^2 + bx + c,我们可以将二次函数转化为一元二次方程。
在方程中,将x、y的值用待定系数a、b、c表示。
3.解方程:根据设定的待定系数,将二次方程化简为标准形式,并利用解一元二次方程的方法求解出待定系数的值。
4.得出结果:通过求解出的待定系数,我们可以得出二次函数的解析式。
下面我们通过一个具体的例子来说明待定系数法的应用。
例:已知二次函数图像经过点(1,3),(-2,2)和(3,4),求解此二次函数的解析式。
解:根据已知条件,我们可以列出三个方程:(1,3):a+b+c=3(-2,2):4a-2b+c=2(3,4):9a+3b+c=4根据设定的待定系数a、b、c,化简以上方程可以得到:a+b+c=3----(1)4a-2b+c=2----(2)9a+3b+c=4----(3)我们可以使用消元法或代入法来求解此方程组。
首先,将方程(2)的2倍加到方程(1)中,可以得到:6a-2b+2c=6然后,将方程(3)的3倍减去方程(1)中,可以得到:24a+6b-3c=6现在我们得到了两个新的方程:6a-2b+2c=6----(4)24a+6b-3c=6----(5)再将方程(5)的3倍加到方程(4)中,可以得到:6a+4c=24我们可以解得:a=3-2c将上式代入方程(1)中,可以得到:(3-2c)+b+c=3整理可得:b-c=0b=c所以,我们可以令b=c。
现在我们得到了a=3-2c和b=c。
将a、b、c的值代入方程(1)中,可以得到:(3-2c)+c+c=3化简可得:-2c+3=3-2c=0c=0将c=0代入a=3-2c和b=c中,可以得到:a=3b=0所以,二次函数的解析式为:y=3x^2通过以上步骤,我们成功使用待定系数法求解了二次函数的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数解析式的求法
二次函数是一种形如y=ax+bx+c的函数,其中a、b、c是常数,且a≠0。
要求二次函数的解析式,需要掌握以下几个步骤:
1. 求出a、b、c的值,这可以通过函数的已知点、导数或根的信息来确定。
2. 根据一般式y=ax+bx+c或顶点式y=a(x-h)+k,选择其中一种形式。
3. 将a、b、c的值代入选择的形式中,得到最终的解析式。
具体求法如下:
1. 已知点求解析式
如果已知二次函数通过两个点(x1,y1)和(x2,y2),可以利用这两个点的坐标和函数的一般式来求解析式。
我们可以将两个点的坐标带入一般式中,得到以下两个方程:
y1=ax1+bx1+c
y2=ax2+bx2+c
将两个方程联立,消去c,得到:
a=(y2-y1)/(x2-x1)
b=(y1x2-y2x1)/(x2-x1)
将a、b的值带入一般式y=ax+bx+c中,得到最终的解析式。
2. 已知导数求解析式
二次函数的导数为y'=2ax+b,如果已知导数,可以通过求导数反推出a和b的值,然后代入一般式或顶点式中求解析式。
例如,当已知函数f(x)=2x+4x+1的导数为f'(x)=4x+4时,可以根据导数的定义得到a=2,b=4,然后代入一般式y=2x+4x+c中,用已知点的坐标求解c,得到最终的解析式。
3. 已知根求解析式
如果已知二次函数的两个根x1和x2,可以根据根的定义得到(x-x1)(x-x2)=0,将它展开得到x-(x1+x2)x+x1x2=0,然后用已知点的坐标求解a、b、c,最后代入一般式或顶点式中求解析式。
例如,当已知函数f(x)=x+2x-3的两个根为-3和1时,可以利用(x+3)(x-1)=0得到x+2x-3=0,根据二次函数的一般式得到a=1,b=2,c=-3,然后代入一般式y=x+2x-3中即可得到最终的解析式。
总之,求二次函数解析式需要根据不同的已知信息选择合适的求解方法,掌握这些方法可以更加轻松地解决二次函数的相关问题。