高一数学必修一必修四知识点

合集下载

高一数学学哪些内容 高一数学重要知识点总结

高一数学学哪些内容 高一数学重要知识点总结

高一数学学哪些内容高一数学重要知识点总结高一数学主要学什么课程内容高一上学期有的地方是学习必修一和必修四,必修一的主要内容是《集合》、《函数》,必修四的主要内容是《三角函数》、《向量》。

但是有些地方是学习必修一和必修二,必修二的主要内容是《立体几何》,简单的《解析几何》。

如初中所学习的直线方程,园的方程以及他们的一些性质关系等。

在高一上学期,必修一是一定要学的,函数这一章一定要学好,它包括函数的概念,图像,性质以及一些基本函数,如二次函数,指数函数,对数函数,幂函数等必修三中的内容要简单一些,包括《统计初步》、《算法》、《概率》。

除了算法外,其他内容我们在初中都已经接触过。

到了高二要学习必修五,主要内容是《数列》,《不等式》等,对于我们在高一学习的解析几何,到了高二还要学《圆锥曲线》等。

当然,函数与导数,参数方程与极坐标也应该是高二学习的内容。

地方不同,还有些选学的内容也不同。

高一数学重要知识点总结直线系方程(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点; (ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

当时,。

当时,;当时,不存在。

②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度侧视反映了物体的上下和前后位置关系,即反映了物体的高度和宽度。

高一必修数学第四章知识点

高一必修数学第四章知识点

高一必修数学第四章知识点第一节直线与坐标系一、点和坐标在平面直角坐标系中,一个点可以用有序数对 (x, y) 表示,其中 x 表示横坐标,y 表示纵坐标。

二、直线的斜率1. 斜率的定义设两点 A(x₁, y₁) 和 B(x₂, y₂),其斜率 k 定义为 k = (y₂ - y₁) / (x₂ - x₁)。

2. 与坐标轴平行的直线的斜率与 x 轴平行的直线的斜率为 0;与 y 轴平行的直线没有斜率,记为∞。

三、直线的方程及性质1. 一般形式的直线方程直线的一般形式方程为 Ax + By + C = 0,其中 A、B、C 为常数且 A、B 不同时为 0。

2. 点斜式的直线方程已知直线上一点 P(x₁, y₁) 和斜率 k,则直线的点斜式方程为 y - y₁ = k(x - x₁)。

3. 斜截式的直线方程已知直线与 y 轴的交点为 (0, b) 和斜率 k,则直线的斜截式方程为 y = kx + b。

第二节二次函数的图像与性质一、二次函数的定义与图像二次函数的一般形式为 f(x) = ax² + bx + c,其中 a、b、c 为常数且a ≠ 0。

二、抛物线的开口方向1. a > 0 时,抛物线向上开口;2. a < 0 时,抛物线向下开口。

三、顶点坐标和对称轴1. 顶点坐标抛物线的顶点坐标为 V(-b/2a, f(-b/2a))。

2. 对称轴抛物线的对称轴为直线 x = -b/2a。

四、二次函数的性质1. 单调性a > 0 时,二次函数单调递增;a < 0 时,二次函数单调递减。

2. 零点二次函数与 x 轴交点的横坐标为零点,可通过解方程 ax² + bx + c = 0 求得。

3. 最值a > 0 时,二次函数的最小值为 f(-b/2a);a < 0 时,二次函数的最大值为 f(-b/2a)。

第三节平面向量与数量积一、平面向量的定义平面向量是具有大小和方向的有向线段。

人教版高一数学必修一和必修四公式

人教版高一数学必修一和必修四公式

人教版高中数学必修一至必修四公式(必会)初高中连接:和平方: a 2 b 2 (ab)(ab) 和、差平方: (a b)2 a 2 2ab b 2立方和、立方差: a 3 b 3(a b)(a 2 ab b 2 ) 和、差立方: (a b)3 a 3 b 3 3a 2b 3ab 2(a b c)2 a 2 b 2 c 2 2ab 2bc 2ac ; (a b c) 2 a 2 b 2 c 2 2ab 2bc 2ac (a bc) 2 a 2 b 2 c 22ab 2bc 2ac ; (ab c) 2 a 2 b 2c 2 2ab 2bc 2acx 1 x 2bx 1和x 2为ax 2bx c 0的两根,那么 a韦达定理:设cx 1 x 2a恒建立问题:ax 2 bx c 0( a 0)在 R 上恒建立的条件 a0且△ 0; ax 2bx c 0( a 0)在 R 上建立的条件为 a 0且△ 0指数函数:na , a 0 a m m an当 n 为奇数时:na na ;当 n 为偶数时:na n a; n 1 ( a 0, m 、 n N *,且 m 1)a , a 0 a mna mra sa r s(a, 、s ; r ) s a rs( a , 、 s ; ra rr( a,b ; Q)a 0 r Q ) (a0 r Q) ( ab)b 0 0 r对勾函数单一区间公式:对勾函数基本形式: yxp ,在 ( ,0)(0, 单一递加:( ,p ) ( p,)x) 上单一递减: ,)(,( p 0 0 p ) 对数函数 :log a a1,log a b ? log b a 1 ,log a 1, alog a N N ( N 、 a 0且 a 1),log a b1(a 、 b且 a 、 bddlog bclog ac log b 1) , log blog addaacbcablog a ( M ? N ) log a M log a Nlog a M log a M log a N (a 、 M 、 N>0, 且a ≠ 1)ln x log e x( x 0), ln e log e e 1Nlog a m nn log a m ( a 、 b 、 m 0, n R,且 a 1) , log a b log c b (a 、 b 、 c0,且 a 、 c 1) (换底公式 )nnlog a m blog a b log c am函数图像(一定熟)表1指数函数y a xa 0,a 1对数数函数ylog a x a0, a 11定义域值域图象人教版高中数学必修一至必修四公式(必会)x R x0,y 0,y R过定点 (0,1) 过定点 (1,0)减函数增函数减函数增函数x ( ,0)时, y (1, ) x ( ,0)时, y (0,1) 时,y (0, ) 时,x (0,1)x y ( ,0) x (0,时,(0,1)x (0, ) 时,y (1, ) (0,1)时,时,)yx (1, ( ,0)x (1, y (0, ))y )性质a b a b a ba b表 2 幂函数 y x ( R)p0 1 1 1qp为奇数奇函数q为奇数p为奇数q为偶数p为偶数偶函数q为奇数第一象限性增函数(01,)减函数质过定点2人教版高中数学必修一至必修四公式(必会)判断奇偶函数:若 f ( x) f ( x) 则为偶函数,若 f ( x)f ( x) 则为奇函数(奇函数 f (0) 0 )1x1 x2,化简 f (x1 ) f ( x2 ) ,若 f ( x1 ) f ( x2 ) 0即 f ( x1 ) f (x2 ) 则以为该函数在其判断单一函数:○ 在定义域内设定义域内单一递减,若 f ( x1 ) f ( x2 ) 0即f (x1 ) f (x2 ) 则以为该函数在其定义域内单一递加。

人教版高一数学必修一至必修四公式

人教版高一数学必修一至必修四公式

初高中衔接:和平方:))((22b a b a b a -+=- 和、差平方: 2222)(b ab a b a +±=±立方和、立方差:))((2233b ab a b a b a +±=± 和、差立方:2233333)(ab b a b a b a +±±=±ac bc ab c b a c b a 222)(2222+++++=++;ac bc ab c b a c b a 222)(2222-+-++=--韦达定理:设⎪⎩⎪⎨⎧=-=+=++a c x x a b x x c bx x x 21212210ax 的两根,那么为和 必修一:恒成立问题:00)0(0ax ;00)0(0ax 22<<≠<++<>≠>++且△上成立的条件为在且△上恒成立的条件在a R a c bx a R a c bx指数函数:)00()()0()()0(Q r b a b a ab Q s r a a a Q s r a a a a r r r rs s r s r s r ∈>>=∈>=∈>=+;,;、,;、,对数函数:1log =a a ,1log log =∙a b b a ,1log =a ,)10(log ≠>=a a N N a N a 且、,)10(log 1log ≠>=b a b a a b b a 、且、,dcd c c d c d ba ab b a a b log log log log =-=-= ⎪⎭⎪⎬⎫-=+=∙N M N M N M N M a a a a a a log log log log log )(log (a 、M 、N>0,且a ≠1)1log ln ),0(log ln ==∴>=e e x x x e e ⎪⎭⎪⎬⎫==b m n b m n m a n a a n a m log log log log )1,0(≠∈>a R n m b a 且,、、, )1,0(log log log ≠>=c a c b a ab bc c a、且、、(换底公式)判断奇偶函数:若)()(x f x f -=则为偶函数,若)()(x f x f -=-则为奇函数(奇函数0)0(=f )必修二:(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

高一年级数学必修四知识点归纳

高一年级数学必修四知识点归纳

高一年级数学必修四知识点归纳【导语】高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考核的知识和思维触点广的特点,找寻一套行之有效的学习方法。

作者为各位同学整理了《高一年级数学必修四知识点归纳》,期望对您的学习有所帮助!1.高一年级数学必修四知识点归纳直角三角形的面积求法直角三角形面积常用公式S=1/2ab(公式中a,b分别为直角三角形的两直角边长)。

直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。

其符合勾股定理,具有一些特别性质和判定方法。

三角形面积公式是指使用算式运算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。

它除了具有一样三角形的性质外,具有一些特别的性质:1、直角三角形两直角边的平方和等于斜边的平方。

∠BAC=90°,则AB2+AC2=BC2(勾股定理)2、在直角三角形中,两个锐角互余。

若∠BAC=90°,则∠B+∠C=90°3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。

该性质称为直角三角形斜边中线定理。

4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。

5、Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理以下:(1)(AD)2=BD·DC。

(2)(AB)2=BD·BC。

(3)(AC)2=CD·BC。

2.高一年级数学必修四知识点归纳空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)3.高一年级数学必修四知识点归纳【公式一:】设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)【公式二:】设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα【公式三:】任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα【公式四:】利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα【公式五:】利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα【公式六:】π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)4.高一年级数学必修四知识点归纳1.多面体的结构特点(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

高一数学必修四必背知识点

高一数学必修四必背知识点

高一数学必修四必背知识点第一章二次函数与图像变换1. 顶点式和一般式的相互转换:二次函数的顶点式为:y = a(x - h)² + k二次函数的一般式为:y = ax² + bx + c2. 二次函数的图像变换:a) 向上、向下平移:顶点的纵坐标加减常数k,若k > 0向上平移,若k < 0向下平移。

b) 左右平移:顶点的横坐标加减常数h,若h > 0向左平移,若h < 0向右平移。

c) 上下翻折:纵坐标乘以-1。

d) 左右翻折:横坐标乘以-1。

3. 二次函数的最值与零点:a) 最值:当a > 0时,二次函数的最小值为k,无最大值;当a < 0时,二次函数的最大值为k,无最小值。

b) 零点:二次函数与x轴交点的横坐标。

第二章数列与数列的运算1. 等差数列的通项公式:a) 通项公式:an = a₁ + (n - 1)d,其中an为第n个数,a₁为首项,d为公差,n为项数。

b) 前n项和公式:Sn = (a₁ + an)n/2,其中Sn为前n项和。

2. 等比数列的通项公式:a) 通项公式:an = a₁q^(n - 1),其中an为第n个数,a₁为首项,q为公比,n为项数。

b) 前n项和公式:Sn = a₁(1 - q^n)/(1 - q),其中Sn为前n项和。

3. 递推数列的通项公式:a) 递推公式:an = f(an₋₁, an₋₂, ...),其中f为递推函数,an 为第n个数。

b) 已知初始项求通项公式:根据已知的前几项,通过观察求得递推函数。

第三章三角函数1. 基本三角函数:a) 正弦函数:y = sin(x)b) 余弦函数:y = cos(x)c) 正切函数:y = tan(x)d) 余切函数:y = cot(x)2. 三角函数的性质:a) 周期性:正弦函数和余弦函数的周期都为2π;正切函数和余切函数的周期为π。

b) 奇偶性:正弦函数和正切函数为奇函数,余弦函数和余切函数为偶函数。

高一年级数学必修四知识点(最新)

高一年级数学必修四知识点(最新)

1.高一年级数学必修四知识点⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。

⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。

⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a。

a。

a。

…=a。

a。

a。

…。

⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}。

⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列。

⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0。

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。

⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列。

2.高一年级数学必修四知识点初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算及有限次函数复合所产生,并且能用一个解析式表示的函数。

非初等函数是指凡不是初等函数的函数。

初等函数是最常用的一类函数,包括常函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是基本初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。

即基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的'函数,称为初等函数。

非初等函数的研究与发展是近现代数学的重大成就之一,极大拓展了数学在各个领域的应用,在概率论、物理学科各个分支中等有十分广泛的应用。

是函数的一个重要的分支。

人教版高中数学必修1--第四章指数函数、对数函数有关的复合函数问题 4

人教版高中数学必修1--第四章指数函数、对数函数有关的复合函数问题 4

高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
知识点三 对数函数在实际问题中的应用 某公司制订了一个激励销售人员的奖励方案:当销售利润不 超过 10 万元时,按销售利润的 15%进行奖励;当销售利润超过 10 万 元时,若超出 A 万元,则超出部分按 2log5(A+1)进行奖励.记奖金为 y(单位:万元),销售利润为 x(单元:万元). (1)写出奖金 y 关于销售利润 x 的解析式; (2)如果业务员老江获得 5.5 万元的奖金,那么他的销售利润是多 少万元?
强弱等级 L/dB
10
m
பைடு நூலகம்
求 a 和 m 的值.
很嘈杂 的马路 1×10-3
90
高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
解:将 I0=1×10-12 W/m2,I=1×10-11 W/m2 代入 L=a lg
I I0

得 10=alg
1×10-11 1×10-12
=a lg 10=a,即 a=10,m=10lg
解:由题意知(x-3)(x+3)>0, 解得 x<-3 或 x>3, ∴函数 y=loga(x-3)(x+3)的定义域为(-∞,-3)∪(3,+∞).
高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
求含对数式的函数定义域的关键是真数大于 0,底数大于 0 且不 为 1.如需对函数式变形,须注意真数底数的取值范围是否改变.
高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
角度 2
求对数函数的解析式
3
已知函数
f(x)是对数函数,且
f
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19、向量数乘运算:
⑴实数 与向量 的积是一个向量的运算叫做向量的数乘,记作 .
⑶坐标运算:设 ,则 .
20、向量共线定理:向量 与 共线,当且仅当有唯一一个实数 ,使 .
设 , ,其中 ,则当且仅当___________时,向量 .
22、平面向量的数量积:
⑴ .零向量与任一向量的数量积为 .
⑷坐标运算:设两个非零向量 , ,则 .
3、 在【a,b】上 图像 则在(a,b)内必有零点。
三角知识
6、半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是 .
7、弧度制与角度制的换算公式:π=.1=. 1°=。
8、若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则
弧长公式周长公式面积公式。
9、设 是一个任意角, 的终边上点 的坐标是 ,它与原点的距离是 ,则 , , .
(3)利用定义判断函数奇偶性的步骤:(三步)
首先确定函数的,并判断其是否关于原点对称;确定与的关系;
作结论:若f(-x) = f(x),则f(x)是;若,则f(x)是奇函数.
3.函数最大(小)值
利用二次函数的性质求函数的最大(小)值,看对称轴
利用图象求函数的最大(小)值
利用函数单调性的判断函数的最大(小)值:
10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.
11、三角函数线: , , .
12、同角三角函数的基本关系:
(1)平方关系:_____________________;:
(2)商数关系:_______________;
13、三角函数的诱导公式:
口诀:正弦与余弦互换,符号看象限.
③奇函数在对称区间上单调性_____,偶函数在对称区间上单调性_____;(“相同”“相反”)
④如果奇函数f(x)在x= 0处有定义,则f( 0 ) = ________;
⑤如果函数f(x)的定义域不关于原点对称,那么f(x)一定是______________________;
⑥如果函数f(x)既是奇函数又是偶函数,那么f(x)的表达式是f(x) = ________。
在R上单调递
函数图象都过定点
二、对数函数
1.对数的概念:
两个重要对数:常用对数:以自然对数:以为底的对数.
(二)对数的运算性质:(注意使用条件)
·
注意:换底公式
利用换底公式推导下面的结论
(1) ;(2) .
(三)对数函数
1、对数函数概念:函数叫做对数函数,函数的定义域是(0,+∞).
2、对数函数的性质:
指数函数
1.当 是奇数时, ,当 是偶数时,
2.根式与分数指数幂互化
0的正分数指数幂等于0,0的负分数指数幂没有意义
3.实数指数幂的运算性质
(1)(2)(3)
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数.(注意底数的范围)
2、指数函数的图象和性质
a>1
0<a<1
定义域
值域
在R上单调递
14.函数 的性质:①振幅:______;②周期:_______;
③频率:__________;④相位:_______;⑤初相:_______.
15、正弦函数、余弦函数和正切函数的图象与性质:




图象
定义域
值域
最值
当 时, ;当
时, .
当 时,

当 时, .
既无最大值也无最小值
周期性
奇偶性
偶函数
(B)图象法(从图象上看升降)
(C)复合函数的单调性:
复合函数f[g(x)]单调性与构成它的函数u=g(x),y=f(u)的单调性相关,规律:“同增异减”
2.函数的奇偶性(整体性质)
(1).奇偶函数的定义:
(2).奇偶函数的性质:
①奇偶函数的定义域关于_________对称;
②奇函数的图像关于________对称,偶函数的图像关于_______对称;
单调性
在_________________
上是增函数;
在________________
上是减函数.
在 上是________________;在
上是__________.
在_____________
上是增函数.
对称性
对称中心___________
对称轴___________
对称中心_________
若 ,则 . , ,则 .
设 、 都是非零向量, , ,则
三角恒等变换
24、两角和与差的正弦、余弦和正切公式:
25、二倍角的正弦、余弦和正切公式:
a>1
0<a<1
定义域
值域为
在R上递
在R上递
函数图象都过定点
三、幂函数
1、幂函数定义:形如 的函数称为幂函数,其中 为常数.2、幂函数性质
四、与互为反函数,图像关于对称
第三章函数的应用
1.方程的根与函数的零点
方程 的 函数 图象与 轴交点的 函数的实数根;(几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.二分法(思想及使用条件)
对称轴_________
对称中心________
无对称轴
平面向量
16.向量:既有大小,又有方向的量.零向量:单位向量:.
平行向量(共线向量):方向的非零向量.零向量与任一向量平行.
相等向量:的向量.
17、向量加减法运算:
⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.
设 , ,则 .
设 、 两点的坐标分别为 , ,则AB=
函数的性质
1.函数的单调性(局部性质)
(1)增函数、减函数注意:函数的单调性是函数的局部性质,必须指明区间;
(2).函数单调区间与单调性的判定方法
(A)定义法(注意写完整步骤):
1.任取x1,x2∈D,且x1<x2;2.作差f(x1)-f(x2);3.变形(变成几个因式相乘除的形式);4.定号(判断f(x1)-f(x2)的正负);5.下结论(指出函f(x)在给定的区间D上的单调性).
相关文档
最新文档