热电阻温度测量原理
实验四 热电阻测温特性实验

实验四热电阻测温特性实验(请先仔细阅读温控仪操作说明)一、实验目的:了解热电阻的测温原理与特性。
二、基本原理:热电阻用于测温时利用了导体电阻率随温度变化这一特性,对于热电阻要求其材料电阻温度系数大,稳定性好、电阻率高,电阻与温度之间最好有线性关系。
常用的有铂电阻和铜电阻,热电阻Rt与温度t的关系为:R t=R0(1+A t+B t2)本实验采用的是Pt100铂电阻,它的R0=100Ω,A t=3.9684×10-2/℃,B t=5.847×10-7/℃2,铂电阻采用三线连接法,其中一端接二根引线主要为了消除引线电阻对测量的影响。
三、仪器设备:K型热电偶、Pt100铂热电阻、温度控制仪、温度传感器实验模板。
四、实验步骤:图4-1 Pt100热电阻测温接线图1、按图4-1接线,将Pt100铂电阻的三根线分别接入温度实验模板上“Rt”输入端的a、b 点,用万用表欧姆档测量Pt100三根线,其中短接的二根线接b点,另一端接a点。
这样Pt100与R3、R1、Rw1、R4组成一直流电桥,它是一种单臂电桥。
Rw1滑动端与R6相接,Pt100的b点接R5。
2、按下模块上的电源按钮,将R5、R6端同时接地,接上电压表(2V档),调节Rw3,使V02=0V。
3、恢复图4-1连接,调节Rw1再次使V02=0V(此时电桥平衡,即桥路输出端b和RW1滑动端之间在室温下输出电压为零)。
4、将热电偶插到温控仪两个传感器插孔中任意一个插孔中,(K型、E型已装在一个护套内),K型热电偶的自由端接到温控仪面板上的EK端,用它作为标准传感器,配合温控仪用于设定温度,注意识别K型、E型引线标记及正极、负极不要接错。
5、将Pt100插入温度控制器的另一传感器插孔中,设定温控仪温度值为50℃,当温度稳定50℃时,记录下电压表读数,重新设定温度值为50℃+n·Δt,建议Δt=5℃,n=1……10,每隔1n读出数显表指示的电压值与温度表指示的温度值,并将结果填入下表4-1。
热电阻计算公式

热电阻计算公式
热电阻是一种用于测量温度的传感器,其原理是利用材料的电阻随温度的变化而变化。
1.PT100热电阻计算公式:
PT100热电阻的计算公式为:
Rt=R0(1+At+Bt^2+Ct^3)
其中,Rt为热电阻的电阻值,单位为欧姆;R0为0℃时的电阻值,单位为欧姆;t为当前温度与0℃之间的差值,单位为摄氏度;A、B、C 为常数。
这个计算公式是一个三次方程,可以通过测量热电阻的电阻值和已知的温度来确定常数A、B、C的值。
2.PT1000热电阻计算公式:
PT1000热电阻的计算公式与PT100类似,只是常数的值不同,计算公式为:
Rt=R0(1+At+Bt^2+Ct^3)
其中,Rt为热电阻的电阻值,单位为欧姆;R0为0℃时的电阻值,单位为欧姆;t为当前温度与0℃之间的差值,单位为摄氏度;A、B、C 为常数。
与PT100相比,PT1000的计算公式中的R0值为1000欧姆。
总结:
热电阻计算公式是用来计算热电阻的温度的,常用的热电阻计算公式有PT100和PT1000两种。
这些计算公式是根据热电阻的电阻随温度变化的特性推导出来的,可以通过测量热电阻的电阻值来计算温度值。
公式中的常数值可以通过测量热电阻的电阻值和已知的温度值来确定。
rtd热电阻三线工作原理

rtd热电阻三线工作原理热电阻是一种常用的温度传感器,用于测量温度变化。
其中,rtd热电阻是一种基于电阻值与温度之间关系的传感器。
在电气工程和自动化领域,rtd热电阻广泛应用于温度控制、监测和调节等方面。
rtd热电阻的工作原理是基于金属导线的电阻随温度的变化而发生变化。
当电流通过金属导线时,由于电阻的存在会产生热量,而这种热量会随着电阻的变化而变化。
而rtd热电阻的电阻值与温度之间的关系是已知的,因此可以通过测量电阻值来确定温度的变化。
rtd热电阻通常由铂金等金属制成,因为铂金具有较高的电阻温度系数和较低的温度漂移。
在rtd热电阻的工作过程中,一般会采用三线接法。
三线接法能够有效地抵消导线电阻对温度测量的影响,并提高测量的精度。
三线接法的原理是在rtd热电阻的两端分别接入两条导线,而第三条导线则连接到rtd热电阻的中间点。
通过这种方式,可以消除由导线电阻引起的误差。
具体来说,当电流通过rtd热电阻时,中间点的电压会随着温度的变化而变化。
通过测量中间点的电压值,就可以确定温度的变化。
三线接法能够在一定程度上消除导线电阻的影响,提高温度测量的准确性。
在实际应用中,还可以采用四线接法或更多的线路连接方式,以进一步提高测量的精度。
总结起来,rtd热电阻三线工作原理是基于电阻随温度的变化而变化。
通过测量电阻值或电压值,可以确定温度的变化。
三线接法可以消除导线电阻对温度测量的影响,提高测量的准确性。
在实际应用中,需要根据具体情况选择合适的接线方式,并进行相应的校准和调整,以确保温度测量的精确度和可靠性。
rtd热电阻的三线工作原理在工业领域和科学研究中具有重要的应用价值。
它能够提供准确可靠的温度测量数据,为温控系统的运行和调节提供支持。
同时,在工程设计中,也可以根据rtd热电阻的特性进行合理选择和布置,以满足特定应用的要求。
rtd热电阻三线工作原理是一种基于电阻与温度之间关系的温度传感器工作原理。
通过合理的接线方式和测量方法,可以获得准确可靠的温度测量数据,为工业和科学研究提供重要支持。
热电阻温度计

第三节 热电阻温度计
一、测温原理
利用热电阻的电阻值随温度变化而变化的特性来进 行温度测量的。
对于线性变化的热电阻来说,其电阻值与温度关系 如下式
Rt R01 t t0
Rt Rt0 t
热电阻温度计适用于测量-200~+500℃范围内液体、 气体、蒸汽及固体表面的温度。
外再套一个外径为5mm
6
7
的石英管。铂电阻体用银 丝作为引出线。
(a)
(b)
图5.19 铂电阻体的结构
1-引出银线;2-铂丝;3-锯齿形云母骨架;4-保护用云母片;
5-银绑带;6-铂电阻横截面;7-保护套管;8-石英骨架
1
2
3
4
L
图5.20 铜电阻体的结构 1-线圈骨架;2-1铜-线热图圈电骨 5-架阻4;丝22-;铜铜电热 3-电 阻补阻体偿丝的;组结3-;构补4偿-铜组;引出线;
铜电阻体结构如图5.204所-铜示引出。线 它采用直径约0.1mm的绝缘铜 线(它包括锰铜或镍铜部分)采用双线绕法分层绕在圆柱形塑 料支架上。用直径1mm的铜丝或镀银铜丝做引出线。
为改善热传导,在电阻体与保护管之间常置有金属夹持件或 内套管。
(2)铠装热电阻
铠装热电阻是将电阻体与引出线焊接好后,装入金属小套 管,再充填以绝缘材料粉末,最后密封,经冷拔、旋锻加工 而成的组合体。
31
常用电桥测量电阻Rt的变化,并转化为电压输出
当温度处于测量下限时,Rt=Rtmin
设计桥路电阻,满足R3×Rtmin=R2×R4
此时电桥平衡, △U=0
C
当温度上升时,桥路失去平衡
设某一时刻Rt=Rtmin+ΔRt
PT100铂热电阻测温实验

PT100铂热电阻测温实验PT100铂热电阻测温实验一、实验目的1.了解PT100铂热电阻的测温原理;2.掌握PT100铂热电阻的测温方法;3.学会使用数据采集仪进行温度测量。
二、实验原理PT100铂热电阻是一种利用铂金电阻随温度变化的特性来测量温度的传感器。
其基本原理是:在0℃时,PT100铂热电阻的阻值为100Ω,随着温度的升高,其阻值按一定规律增加。
通过测量PT100铂热电阻的阻值,可以推算出相应的温度值。
PT100铂热电阻的阻值与温度之间的关系可以用斯特曼方程表示:R(T) = R0(1 + AT + BT^2 + CT^3(1 - T0))其中,R(T)为温度T时的阻值,R0为0℃时的阻值,A、B、C为斯特曼系数,T0为参考温度(通常为0℃)。
在本实验中,我们只需要知道R0和A的值即可进行温度测量。
根据国际电工委员会(IEC)标准,PT100铂热电阻的R0为100Ω,A 为3.9083×10^-3℃。
三、实验步骤1.将PT100铂热电阻接入数据采集仪的输入通道;2.打开数据采集仪软件,设置采样率和采样时间;3.将数据采集仪与计算机连接,启动数据采集软件;4.将PT100铂热电阻放入恒温槽中,设置恒温槽的温度;5.等待恒温槽温度稳定后,记录数据采集仪显示的温度值;6.重复步骤4和5,改变恒温槽的温度,记录多个温度值;7.将实验数据整理成表格,进行分析和处理。
四、实验结果与分析实验数据如下表所示:根据实验数据,我们可以得出以下结论:1.PT100铂热电阻的测温精度较高,相对误差在±0.5%以内;2.随着温度的升高,PT100铂热电阻的阻值逐渐增大,与斯特曼方程的描述相符;3.数据采集仪能够准确地采集PT100铂热电阻的温度信号,并将其转换为数字量输出。
五、实验总结与体会通过本次实验,我们了解了PT100铂热电阻的测温原理和方法,并掌握了使用数据采集仪进行温度测量的技能。
热电阻ppt课件

铂电阻的纯度 通常用R100/R0表示。 铂电阻的分度号: Pt 10、Pt 100、Pt 50 Pt10—表示铂电阻在0℃时的电阻值为R0=10Ω
13
学习查“铂热电阻分度表” 铂热电阻分度表
14
图5.19(a)为云母片做骨架,把云母片两边做成锯齿状,将铂丝绕 在云母骨架上,然后用两片无锯齿云母夹住,再用银带扎紧。铂丝采
§3-3 热电阻温度计
Resistance Thermometer
热电阻测温原理 常用热电阻种类 热电阻的结构
1
一、热电阻测温原理及特点
用热电偶测量500℃以下温度时, 热电势小,测量精度低;且使用 中经常需要进行冷端温度补偿。
故工业上在测低温时通常采用热 电阻温度计,其测温范围为 -200~500℃。
2
取一只 100W/220V 灯泡,用万用表测量其电阻值, 可以发现其冷态阻值只有几十欧姆,而计算得到的额定热 态电阻值应为484 。
温度升高,金属内部原子晶格的振动加剧,
从而使金属内部的自由电子通过金属导体时的
阻碍增大,宏观上表现出电阻率变大,电阻值
3
增加。
1、热电阻测温特点
优点:
1)输出信号大、测温精度高; 2)电阻信号便于远传; 3)无需冷端补偿; 4)可以实现多点切换测量。
11
(1)铂热电阻 (Pt)
特点:稳定性好、精确度高、性能可靠。 ITS-90规定以铂电阻温度计作为13.8033K~
961.78℃温域的标准内插仪器
12
铂的电阻值与温度的关系 • 在-200~0℃范围内:
Rt R0 1 At Bt2 Ct3(t 100)
任务12-热电阻、热敏电阻与温度测量

Rt 300 t0C
C1 100μ
R3 1K
R4 5.1K
Tr2 9012
Tr1 9014
R5 2K
R6 5.1K
Tr3 9014
R7 1K
R8
R8
300
Rp
300
470
Tr4 3BT31 SCR
C2 0.1μ R8
120
电热器负载
科学出版社
上图中,R1、R2、Rp和热敏电阻Rt构成温度测量电 桥。电路的测温元件为Rt。Tr1、Tr3管组成差分放大器。 电桥平衡时,差分电路中Tr1、Tr3两管集电极电位相等, Tr2管处于截止状态,由Tr4单结晶体管组成的振荡器无信 号输出,晶闸管 SCR截止,负载(电热器)上不加电压,设 备工作在恒温区。当恒温设备的温度低于控制点温度时, Rt阻值变大,电桥失去平衡,Tr1管集电极电位高于Tr3管 集电极电位,Tr2管导通,Tr4单结晶体管振荡器工作,输 出触发信号触发晶闸管 SCR,使SCR按一定的角度导通, 负载加上相应的电压,温度开始上升。随着温度的升高, 热敏电阻Rt的阻值逐渐减小,当温度升至设定值时,电桥 又处于平衡状态,Tr4单结晶体管组成的振荡器停振,SCR 截止, 切断负载电源,使设备恢复至恒温状态。
科学出版社
(3)端面热电阻。端面热电阻感温元件由特殊处理 的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热 电阻相比,能更正确和快速地反映被测端面的实际温度, 适用于测量轴瓦和其他机件的端面温度。
(4)隔爆型热电阻。隔爆型热电阻通过特殊结构的 接线盒,把其外壳内部爆炸性混合气体因受到火花或电 弧等影响而发生的爆炸局限在接线盒内,生产现场不会 引超爆炸。
制器整机工作原理,分析热敏电阻在控制器中的作用。也 可自己设计实训电路,经过指导教师的审查同意后实施。
热电阻的接线方式及原理 热电阻工作原理

热电阻的接线方式及原理热电阻工作原理热电阻的接线方式及原理热电阻(thermal resistor)是中低温区常用的一种温度检测器。
热电阻测温是基于金属导体的电阻值随温度的加添而加添这一特性来进行温度测量的。
它的紧要特点是测量精度高,性能稳定。
其中铂热电阻的测量度是高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。
热电阻大都由纯金属材料制成,目前应用多的是铂和铜,此外,现在已开始接受镍、锰和铑等材料制造热电阻。
金属热电阻常用的感温材料种类较多,常用的是铂丝。
工业测量用金属热电阻材料除铂丝外,还有铜、镍、铁、铁镍等。
热电阻的接线方式热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机掌控装置或者其它一次仪表上。
工业用热电阻安装在生产现场,与掌控室之间存在确定的距离,因此热电阻的引线对测量结果会有较大的影响。
热电阻的测温原理是基于导体或半导体的电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。
热电阻大都由纯金属材料制成,目前应用多的是铂和铜,现在已开始接受镍、锰和铑等材料制造热电阻。
热电阻通常需要把电阻信号通过引线传递到计算机掌控装置或者其它二次仪表上。
安装热电阻需要注意的问题有哪些?对热电阻的安装,应注意有利于测温精准,安全牢靠及维护和修理便利,而且不影响设备运行和生产操作。
要充分以上要求,在选择对热电阻的安装部位和插入深度时要注意以下几点:1、为了使热电阻的测量端与被测介质之间有充分的热交换,应合理选择测点位置,尽量避开在阀门,弯头及管道和设备的死角相近装设热电阻。
2、带有保护套管的热电阻有传热和散热损失,为了削减测量误差,热电偶和热电阻应当有充分的插入深度:1)对于测量管道中心流体温度的热电阻,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装)。
如被测流体的管道直径是200毫米,那热电阻插入深度应选择100毫米;2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流体的阻力和防止保护套在流体作用下发生断裂,可实行保护管浅插方式或接受热套式热电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热电阻温度测量原理
文章摘要:测温原理热电阻(如PtlOO)是利用其电阻值随温度的变化而变化这一原理制成的将温度量转换成电阻量的温度传感器。
温度变送器通过给热电阻施加一已知激励电流测量其两端电压的方法得到电阻值(电压/电流),再将电阻值转换成温度值,从而实现温度测量。
热电阻和温度变送器之间有三种接线方式:二线制、三线制、四线制。
二线制如图1。
变送器通过导线Ll、L2给热电阻施加激励电流I,测得电势VI、V2......
测温原理
热电阻(如PtlOO)是利用其电阻值随温度的变化而变化这一原理制成的将温度量转换成电阻量的温度传感器。
温度变送器通过给热电阻施加一已知激励电流测量其两端电压的方法得到电阻值(电压/电流),再将电阻值转换成温度值,从而实现温度测量。
热电阻和温度变送器之间有三种接线方式:二线制、三线制、四线制。
二线制
如图1。
变送器通过导线Ll、L2给热电阻施加激励电流I,测得电势VI、V2。
1—OW1
*%—热电阻
兀——导线的專覧电隔
L
2L E
I备——导嵯匚的等效电阻
■(
1
+
计算得Rt:
%丄乎-%如)
由于连接导线的电阻RLl、RL2无法测得而被计入到热电阻的电阻值中,使测量结果产生附加误差。
如在lOO°C时PtlOO热电阻的热电阻率为0.379Q/°C,这时若导线的电阻值为2Q,则会引起的测量误差为5.3C。
三线制
是实际应用中最常见的接法。
如图2,增加一根导线用以补偿连接导线的电阻引起的测量误差。
三线制要求三根导线的材质、线径、长度一致且工作温度相同,使三根导线的电阻值相同,即辽
l=RL2=RL3。
通过导线Ll、L2给热电阻施加激励电流I,测得电势Vl、V2、V3。
导线L3接入高输入阻抗电路,IL3=0。
凡——聽电皑
殆——导线"的等效电阻
心——导线L2的等敗电阻
九——导址L2的等炒电阴
由此可得三线制接法可补偿连接导线的电阻引起的测量误差。
四线制
是热电阻测温理想的接线方式。
如图3,通过导线LI 、L2给热电阻施加激励电流I ,测得电势V3、V4。
导线L3、L4接入高输入阻抗电路,IL3=0,IL4=0,因此V4-V3等于热电阻两端电压。
1 1
[1 ]11—^7
—D VI —aV4 口叫 —热电砸 1 L
4 L - ——誓讎L1的等效电阻 /i #
1/ 1
\3 ——导线L2的等效电1
I 4
-L3 R..——导蛭口的等效电1
1
r 且 ■"V¥S L5 斤」——导au 的尊效电阻 1 L 3J
■1
热电阻的电阻值:
39H®-GKM
由此可得,四线制测量方式不受连接导线的电阻的影响。
热电阻的阻值
:
jp L li I。