波的叠加之振动与波-Read
波的叠加原理-全文可读

率和波数分别为
波速
群速度
两个频率相近 、等振幅的简谐波叠加的结果是一
个振幅缓慢变化的波,它的角频率为 ,波数为 ,波
速为
。它的振幅的变化也像一个传播的波,
它的角频率为 , 波数为 ,波速为
。
上述讨论的合成波称为波包。
3. 驻波
驻波是两列振幅相同的相干波在同一条直 线上沿相反方向传播时叠加而成的。
驻 波 的 形 成
P
S1和S2单独存在时,在P点引起的振动的方程为 :
波的干涉
P点的合方程为 :
振幅A和相位
f0
对于P点
为恒量,
因此A也是恒量 ,并与P点空间位置
A=A A(合振幅最大)
.当
时,得
(合振幅最小)
当 为其他值时 ,合振幅介于
和
之间
若f 10=f 20,上述条件简化为:
(合振幅最大) (合振幅最小)
波的干涉
干涉现象的强度分布
波的干涉
例题16- 10 试计算并分析两个频率相近 、振幅相等 、 同方向振 动的简谐波的叠加。
解 波动方式: 叠加后得到
y
x
波的干涉
y
令
或。
或
变化缓慢(对应包络曲线)
x
波的干涉
把
看成是一个角频率为 、波数为
的波 ,这个波的速度为:
相速度
Am (x,t)具有沿x方向传播的简谐波的形式,它的角频
波的干涉
波程差 两列相干波源为同相位时 ,在两列波的叠加的区 域内 ,在波程差于零或等于波长的整数倍的各点 ,振 幅最大;在波程差等于半波长的奇数倍的各点 ,振幅 最小。 因
若I 1=I2,叠加后波的强度:
波的叠加原理.

返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
波节
返回
驻波
波腹
x l
cos
2π
t T
振幅
A´ =
2Acos2π
x l
结束 返回
振幅:
A´ =
2Acos2π
x l
波腹位置:
2π
x l
=
2k
π
2
波节位置:
2π
x l
=( 2k+1)π2
x
=2k
l 4
x =(2k+1)l4
相邻两波节(或波腹)的距离:
x k+1
x
k
=
l
2
结束 返回
驻波
波腹
波节
结束 返回
驻波
波腹
波节
结束 返回
二、波的干涉
相干波源:若有两个波源,它们的振动
方向相同、频率相同、周相差恒定,称这两
光波的叠加

合振动的大小和方向都是随时间变化的。消去参数t 合振动的大小和方向都是随时间变化的。消去参数t,得 合振动矢量末端运动轨迹方程为: 合振动矢量末端运动轨迹方程为:
Ex E y E + 2 −2 cos(α 2 − α1 ) = sin 2 (α 2 − α1 ) a a2 a1a2
其中
2 x 2 1
§11-5 11-
光波的叠加
一、波的叠加原理(振动的合成) 波的叠加原理(振动的合成) 两个或多个光波在空间某一区域相遇时,发生光波的叠加。 两个或多个光波在空间某一区域相遇时,发生光波的叠加。 频率、振幅、位相都不相同的光波叠加较复杂, 频率、振幅、位相都不相同的光波叠加较复杂,本章只讨 频率相同或频率相差很小的单色光波的叠加 的单色光波的叠加。 论频率相同或频率相差很小的单色光波的叠加。 实际光源发出的光波不能认为是余弦或正弦函数表示的单 色光波, 色光波,但可以将任何复杂的波动分解为一组由余弦函数 和正弦函数表示的单色波之和。 和正弦函数表示的单色波之和。因此讨论单色光波有实际 意义。 意义。 波的叠加原理: 波的叠加原理:几个波在相遇点产生的合振动是各个波单 独产生的振动的矢量和。 独产生的振动的矢量和。 叠加原理是波动光学的基本原理。 叠加原理是波动光学的基本原理。
2 Ex E y E x2 E y + 2 −2 cos δ = sin 2 δ a12 a2 a1a2 (1) δ = 0, ± 2π 整数倍时 E = a2 E y x a1
表示合矢量末端的运动沿着一条经过坐标原点其斜率 的直线进行,其合成光波是线偏振光。 为 a2 a1 的直线进行,其合成光波是线偏振光。 在垂直于传播方向的平面内, 在垂直于传播方向的平面内,光矢量只沿某一个固定方向 振动,则称为线偏振光,又称为平面偏振光或线偏振光。 振动,则称为线偏振光,又称为平面偏振光或线偏振光。 13
波的叠加

k 0,1,2,3,... 干涉相长
k 0,1,2,3,... 干涉相消
初位相相同的两个相干波源,在两列波叠加的 区域内,当波程差为零或波长的整数倍时,合振动 的振幅最大,干涉相长;当波程差为半波长的奇数 倍时合振幅最小,干涉相消。
r1 r2 (2k 1) , 2
相对于介质,波源不动,观察者在运动。 u vR u vR ' vs 0, vR 0 u vS u u vR ' 观察者背着波源运动, vR 0 u u vR ' 观察者向着波源运动, vR 0 u
Vs 表示波源相对于介质的运动速度。
u 声波的速度—只与介质性质有关,与波 源、观 察者运动无关。
(1)考虑波源(声源)的运动 声源以速度VS运动,在一个 周期T内由S点运动到S’点。
S
v sT
S'
uT
A
x
因为声速和声源的运动无关,S’和A两个振动状 态相同(同相)。 这相当于把声源静止时的波长,由于声源的运动 而被压缩在S’A之间了,
二、波的干涉
1.波的干涉现象 频率相同、振动方向相同、有恒定位相差的两 列波(或多列波)相遇时,在介质中某些位置的点 振幅始终最大,另一些位置振幅始终最小,而其它 位置,振动的强弱介乎二者之间,保持不变。称这 种稳定的叠加图样为干涉现象。
源满 2.相干条件 称足 为相 1.两列波振动方向相同; 相干 干条 波件 2.两列波频率相同; 源的 3.两列波有稳定的相位差。 。 波
u vs vs T v v u vs v
波长变为:
uT
S
Vs VsT
振动和波详述

第二节 波动学基础
惠更斯原理:在波的传播过程中,波阵面上的每一 点都可以看作发射次级子波的波源,在其后的任一 时刻,这些子波的包迹就成为新的波阵面.
ut
平 面 波
球 面 波
R1
O
R2
第二节 波动学基础
二、 波动方程(平面简谐波的波函数)
介质中任一质点(坐标为 x)相对其平衡位置的
位移(坐标为 y)随时间的变化关系,即 y(x,t) 称
G 切变模量
E 弹性模量
K体积模量
横波 纵波
343 m s 空气,常温
如声音的传播速度
4000 m s 左右,混凝土
第二节 波动学基础
例1 在室温下,已知空气中的声速 u1为340 m/s, 水中的声速 u2 为1450 m/s ,求频率为200 Hz和2000 Hz
的声波在空气中和水中的波长各为多少?
x/m
-1.0
t 1.0 s 时刻波形图
第二节 波动学基础
3) x 0.5m 处质点的振动规律并做图 . y (1.0m) cos[2 π( t - x ) - π] 2.0s 2.0m 2
x 0.5m 处质点的振动方程
y (1.0m) cos[(πs-1)t - π]
y
y/m
3
1.0
3*
Tλ
y(x,t) Acos(t - kx )
➢ 质点的振动速度,加速度
角波数 k 2π
v y -Asin[(t - x) ]
t
u
a
2 y t 2
-
2
A cos[ (t
-
x) u
]
第二节 波动学基础
例1 已知波动方程如下,求波长、周期和波速.
光波的叠加

π
2
的奇数倍时, 的奇数倍时, E +
a
2 x 2 1
2 Ey
a
2 2
=1
这是一个正椭圆方程,其长、短轴分量分别在X 这是一个正椭圆方程,其长、短轴分量分别在X、Y坐标 轴上,表示合成光波是椭圆偏振光。 轴上,表示合成光波是椭圆偏振光。 若
a1 = a2 = a
则
E +E =a
2 x 2 y
2Hale Waihona Puke 合矢量末端运动轨迹是一个圆, 合矢量末端运动轨迹是一个圆,此时合成光波是圆偏振 光。
I 0 = a 2 表示单个光波在P点的强度 表示单个光波在P δ = α 2 − α1 表示两光波在P点的相位差 表示两光波在P
2 I = A2 = a12 + a2 + 2a1a2 cos(α 2 − α1 )
P点合振动的光强得
I = 4 I 0 cos
2
δ
2
在P点叠加的合振动的光强I取决于两光波在叠加点的相位差。 点叠加的合振动的光强I取决于两光波在叠加点的相位差。 4
A = 2a cos(kz + ) 2
不同的Z值处有不同的振幅, 不同的Z值处有不同的振幅,但极大值和极小值的位置不 随时间而变。 随时间而变。 振幅最大值的位置称为波腹, 振幅最大值的位置称为波腹,其振幅等于两叠加光波的 波腹 振幅之和,而振幅为零的位置称为波节 波节。 振幅之和,而振幅为零的位置称为波节。 波腹的位置由下式决定 波节的位置由下式决定
11
把合矢量以角频率周期旋转, 把合矢量以角频率周期旋转,其矢量末端运动轨迹 为椭圆的光称为椭圆偏振光。 为椭圆的光称为椭圆偏振光。 椭圆偏振光 两个频率相同, 两个频率相同,振动方向互相垂直且具有一定位相差的 光波的叠加,一般可得到椭圆偏振光。 光波的叠加,一般可得到椭圆偏振光。 椭圆的形状取决于两叠加光波的振幅比 a2 a1 和相位差 光矢量在垂直于光的传播方向的平面内, 光矢量在垂直于光的传播方向的平面内,按一定频率旋 转(左旋或右旋)。如果光矢量的端点轨迹是一个椭圆, 左旋或右旋) 如果光矢量的端点轨迹是一个椭圆, 这种光叫做椭圆偏振光。 这种光叫做椭圆偏振光。
波的叠加——精选推荐

波的叠加学习目标:(1)知道波的叠加原理①知道两列机械波在传播过程中相遇,会按照各自的方向传播而互不干扰。
②知道两列机械波在相遇的区域内的介质质点同时参与两列波所引起的振动,质点的位移等于两列波所引起的位移的矢量和。
(2)知道波的干涉现象①知道什么是波的干涉现象。
②知道要得到稳定的干涉现象,叠加的两列波的波长必须相等。
③会用波的叠加原理解释干涉现象,知道到两振源的距离之差等于波长的整数倍的点是振动加强点;到两振源的距离之差等于半波长的奇数倍的点是振动减弱点。
(3)知道波的衍射现象①知道什么是波的衍射现象。
②知道能观察到明显衍射现象的条件是:障碍物或孔的大小可以与波长相比拟。
(4)知道波的干涉现象和衍射现象都是波的特有现象。
重点难点:重点:重点理论是波的叠加原理,重点知识是波的干涉和衍射,这是波的标志现象。
难点:对波的干涉和衍射的理解。
知识讲解:一、波的反射和折射波遇到障碍物返回来继续传播的现象叫做波的反射现象。
波的反射现象是很普遍的现象,如回声是声波的反射现象。
对水来说深水区与浅水区是不同的两种介质,由于水波在这两种介质中传播速度不同,当波由一种介质进入另一种介质时,在两种介质的界面上传播方向发生改变,这种现象叫做波的折射现象。
二、波的叠加原理几列波相遇时,能够保持各自原来的运动状态而互相不干扰,只是在它们重叠的区域里,介质中每个质点同时参与这几列波引起的振动,质点的位移等于这几列波分别引起的振动位移的矢量和,这就是波的叠加原理。
三、波的干涉波长相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域互相间隔并处于稳定状态,这种现象叫做波的干涉(interference),形成的图样叫干涉图样。
干涉条件:要得到稳定的干涉现象,叠加的两列波的波长必须相同(也就是频率相同)。
机械波的叠加规律适用于一切波。
所以,一切波都能发生干涉,干涉是波的特有现象之一。
关于波的干涉应注意理解以下几点:①任何两列波相遇时都可以叠加,而两列波要发生干涉必须具备一定的条件(两列波的波长必须相同),通常把符合干涉条纹的两列波的波源叫相干波源。
一波的叠加原理(superpositionprinciple).

15m
A 20m B
10 m 0.10 m 100
设 A 的相位较 B 超 前,则 A B π .
u
B A 2π
点P 合振幅
青岛科技大学
BP AP
25 15 π 2π 201 π 0.1 A A1 A2 0
1)振幅 2 A cos 2π
x
随 x 而异, 与时间无关.
cos 2 π
x
1
2π
x
0
x
k 0,1, Amax 2 A 2 1 (k ) k 0,1, Amin 0 2 2 相邻波腹(节)间距 2 相邻波腹和波节间距 4
青岛科技大学
k
1 2 π (k ) π 2
驻波的能量在相邻的波腹和波节间往复变化, 在相邻的波节间发生动能和势能间的转换,动能 主要集中在波腹,势能主要集中在波节,但无长 距离的能量传播.
青岛科技大学 大学物理讲义
七
振动的简正模式(normal mode)
最低频率 1 称为 基频
频率 n为 1的n倍, 称为n次谐频
两端固定的弦线形成驻波时,波长n 和弦线长 l 应满足 u 这些频率称为弦 n n 1 , 2 , n n 振动的本征频率 2l
2
o
2
x
x cos 2 π 0 , x , y 2 A cos 2 π x cos 2π t 4 4 x 3 x cos 2 π 0 , x , y 2 A cos 2 π cos(2 π t π ) 4 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波的叠加之振动与波
背景: 波的叠加在生活中并不罕见,例如:水波的叠加;军事上用的电磁干扰,还有高
中所学的光的双缝干涉。
因此波的叠加也就不是一个陌生的概念。
波的叠加有其独特性:在相遇点,几列波互不影响,各自给出一份贡献,使该点做合成运动,且几列谐波合成仍为谐振动;相遇点外,各点振动由波源和距离共同确定。
下面具体分析波的叠加中的两种特殊模型——干涉和驻波,并在a 盘中给出波的干涉图象的源程序。
模型1:波的干涉.条件:(1)几列波的振动方向相同;(2)频率相同;(3)波源相位差恒定。
设同一平面上o ,p 两波源为干涉波,振幅分别为a1,a2,设t 时刻o 点相位1ϕ+wt ,p 点相位 2ϕ+wt ,同一t 时刻,对此平面任一H 点,引起的振动相位为:11kr wt -+ϕ
第二列波在p 引起振动相位为: 22kr wt -+ϕ
有 ϕ∆++=cos 2212221a a a a a p
)(1221r r k ---=∆ϕϕϕ
当
πϕn 21±= , n=0,1,2,……时, 21m a x a a a a +== 干涉加强 πϕ)12(1+±=n , n=0,1,2,……时, 21min a a a a -== 干涉减弱
21a a =时, a=0 因干涉而静止。
其它点 max min a a a <<
模型2: 驻波。
两相干波在同一直线上沿相向传播,且 21a a =
设驻波中两波方程分别为: )c o s (1ky wt a x -=
)cos(2ky wt a x +=
设021==ϕϕ,则驻波方程为:wt ky a x x x cos cos 2221==
+=λπ 从中可知,振幅极大为2a ,
此时 πn ky ky =±=,1cos
腹点坐标: λ2
n y =
向邻腹点间距: λ2
n y =∆ 节点坐标: 4)12(λ
+=n y
当然,波的干涉和叠加还有许多应用,此处不在细述。