数据链路层协议及技术资料

合集下载

《计算机网络技术及应用(第二版)》第4章__数据链路层

《计算机网络技术及应用(第二版)》第4章__数据链路层

码多项式的运算: 二进制码多项式的加减运算:

二进制码多项式的加减运算实际上是逻辑上的 异或运算。 循环码的性质:在循环码中,n-k次码多项式 有一个而且仅有一个,称这个多项式为生成多 项式G(X)。在循环码中,所有的码多项式能 被生成多项式G(X)整除。
(1)编码方法

由信息码元和监督码元一起构成循环码,首先 把信息序列分为等长的k位序列段,每一个信 息段附加r位监督码元,构成长度为n=k+r的循 环码。循环码用(n,k)表示。它可以用一个n1次多项式来表示。n位循环码的格式如图4-2 所示:
(2)举例分析



例4.2 如信息码元为1101,生成多项式 G(X)= X+ X+1,编一个(7,4)循 环码。 A(X)=1101 向左移3位的1101000 除 1011的余数为1,则余数多项式R(X) =001。 在做除法过程中,被除数减除数是做逻 辑运算。


例4.3 某一个数据通信系统采用CRC校验方式, 其中:生成多项式G(X)= X4+X+1, 发送端要 发送的信息序列为10110,求:(1)校验码及 校验码多项式;(2)发送端经过循环冗余编 码后要发送的比特序列; 解:生成多项式为G(X)= X4+X+1,生成多项 式的比特序列是:10011,为4阶,所以将发送 端要发送的信息序列10110左移四位,得到 XRD(X)为:101100000
4.2.3差错控制方式




差错控制编码一类是检错码(如奇偶校验)、另一类 是纠错码。根据检错码和纠错码的结构的不同形成了 不同的差错控制方式 (1)利用检错码 (2)利用纠错码 在数据通信过程中,利用差错控制编码进行系统传输的 差错控制的基本工作方式分成四类:自动请求重发 (ARQ ,Automatic Repeat Request),前向纠错 (FEC,Forword ErrorCorrection),混合纠错(HEC, Hybrid Error correction),信息反馈(IRQ, Information Repeat Request)

PPP,PPPOE,PPTP,L2TP-各种VPN协议简介

PPP,PPPOE,PPTP,L2TP-各种VPN协议简介

PPP,PPPOE,PPTP,L2TP-VPN简介(之一)PPP协议概览2010-03-1715:54PPPPPP是一种数据链路层协议,遵循HDLC(高级数据链路控制协议)族的一般报文格式。

PPP是为了在点对点物理链路(例如RS232串口链路、电话ISDN线路等)上传输OSI模型中的网络层报文而设计的,它改进了之前的一个点对点协议–SLIP协议–只能同时运行一个网络协议、无容错控制、无授权等许多缺陷,PPP是现在最流行的点对点链路控制协议。

上图中PPP的flag字段恒为0×7f,地址(adress)字段恒为0xff,控制(control)字段恒为0×03.协议(protocol)字段表示PPP报文中封装的payload(data字段)的类型,如果为0×0021,则表示PPP封装的IP报文,0×002B表示IPX报文,0×0029表示AppleTalk报文,这几种都属于PPP的数据报文;如果为0×8021则表示PPP的LCP报文(用来协商连接),如果为0xC021则属于PPP的NCP报文(用来协商封装的三层协议),这些属于PPP的控制报文。

PPP协议状态机如下图所示:在上图的链接建立阶段(建立),PPP使用LCP报文来协商连接(一种发送配置请求,然后接收响应的简单“握手”过程,不做过多介绍,感兴趣可以去细读RFC1661),协商中双方获得当前点对点连接的状态配置等,之后的“鉴别”阶段使用哪种鉴别方式也在这个协商中确定下来。

鉴别阶段是可选的,如果链接协商阶段并没有设置鉴别方式,则将忽略本阶段直接进入“网络”阶段。

鉴别阶段使用链接协商阶段确定下来的鉴别方式来为连接授权,以起到保证点对点连接安全,防止非法终端接入点对点链路的功能。

常用的鉴别认证方式有CHAP和PAP方式。

CHAP方式的原理是由一端定期发起挑战“challenge”,收到“challenge”的一端将收到的“challenge”报文中的密钥使用之前双发协商好的一种算法加密后再把结果发回发起端,这种算法应该是结果唯一(不同输入必得到不同输出)且不可逆(由输出无法得到输入)的,发起端也使用该算法计算后验证结果是否正确来为对端授权认证。

HDLC协议

HDLC协议

什么是HDLC?HDLC是什么意思?HDLC英文全称High level Data Link Control,高级数据链路控制,HDLC是一个在同步网上传输数据、面向位的数据链路层协议,它是个由1970年代IBM所提出的对称式资料连结控制(Synchronous Data Link Control,SDLC)所研发出来的ISO标准。

高级数据链路控制(HDLC)协议是基于的一种数据链路层协议,促进传送到下一层的数据在传输过程中能够准确地被接收(也就是差错释放中没有任何损失并且序列正确)。

HDLC 的另一个重要功能是流量控制,换句话说,一旦接收端收到数据,便能立即进行传输。

H DLC 具有两种不同的实现方式:高级数据链路控制正常响应模式即HDLC NRM(又称为SDLC)和 HDLC 链路访问过程平衡(LAPB)。

其中第二种使用更为普遍。

HDLC 是 X.25 栈的一部分。

HDLC 是面向比特的同步通信协议,主要为全双工点对点操作提供完整的数据透明度。

它支持对等链路,表现在每个链路终端都不具有永久性管理站的功能。

另一方面,HDLC NRM 具有一个永久基站以及一个或多个次站。

HDLC LAPB 是一种高效协议,为确保流量控制、差错监测和恢复它要求额外开销最小。

如果数据在两个方向上(全双工)相互传输,数据帧本身就会传送所需的信息从而确保数据完整性。

帧窗口是用于在接收第一个帧已经正确收到的确认之前发送复帧。

这就意味着在具有长“turn-around”时间滞后的情况下数据能够继续传送,而不需要停下来等待响应。

例如在卫星通信中会发生这种情形。

通常,帧分为三种类型:信息帧:在链路上传送数据,并封装OSI体系的高层;管理帧:用于实现流量控制和差错恢复功能;无编号帧:提供链路的初始化和终止操作。

协议结构Flag ― 该字段值恒为 0x7E。

Address Field ― 定义发送帧的次站地址,或基站发送帧的目的地。

《计算机网络教学资料》第4章数据链路层

《计算机网络教学资料》第4章数据链路层
24
❖ 循环冗余码 CRC码又称为多项式码。 任何一个由二进制数位串组成的代码都可由 一个只含有0和1两个系数的多项式建立一一 对应的关系。
110001,表示成多项式 x5 + x4 + 1
25
循环冗余码 (CRC)
❖ 循环冗余码(CRC码,多项式编码) ➢ 110001,表示成多项式 x5 + x4 + 1
110101 111011 110101 111010 110101 111110 110101 101100 110101 110010 110101 01110 ← R 余数
30
发送方 接收方
举例: 1 0 0 0 0Q(1x) G(x) 1 1 0 0111 0 0 1 1 0 f0(x0.)xk0
01011010010 信 源 01011010010 信 源
➢ 随机性错误 前后出错位没有一定的关系
➢ 突发性错误 前后出错位有一定的相关性
(a) 理想状态
噪音干扰
(b) 实际环境
信 宿 01011010010 信 宿 01010010110
出错
14
2.差错控制的方式
❖ 反馈纠错 ❖ 前向纠错 ❖ 混合纠错 ❖ 反馈检验
在数据通信和计算机网络中,几乎都采用ARQ差错控制 技术。在采用无线电信道的通信系统中,由于信道误 码率较高,大多采用HEC方式的差错控制技术。
18
4.反馈检验 反馈校验方式又称回程校验。
接收端把收到的数据序列原封不动地转发回发送端,发端 将原发送的数据序列与返送回的数据序列比较。如果发现错 误,则发送端进行重发,直到发端没有发现错误为止。
11001 10000 11001
1 0 0 1R(x)

数据链路层技术的发展历程

数据链路层技术的发展历程

数据链路层技术的发展历程1.早期数据传输技术:2.HDLC协议:20世纪70年代,高级数据链路控制(HDLC)协议成为了数据链路层的主要技术。

HDLC是一种面向比特的数据链路层协议,它通过控制帧的发送和接收来保证可靠的数据传输。

HDLC的出现极大地提高了数据传输的可靠性和效率,成为后来许多数据链路层协议的基础。

3.PPP协议:20世纪80年代,点对点协议(PPP)开始被广泛应用于数据链路层。

PPP是一种用于串行链路的通信协议,它取代了早期的序列线路协议(SLIP)。

PPP通过提供多功能的链路层协议,如认证、压缩、错误检测等功能,使得数据链路层的传输更加强大和可靠。

4.以太网:20世纪80年代末到90年代初,以太网在局域网中得到了广泛应用,成为数据链路层的主流技术。

以太网利用CSMA/CD技术实现了多节点共享同一网络介质的并行传输,以及高速传输速率(如10Mbps、100Mbps、1Gbps等)。

此外,以太网还支持广播和组播通信,并逐步发展出交换机和虚拟局域网等技术。

5.WLAN技术:21世纪初,无线局域网(WLAN)技术开始快速发展,并逐渐应用于数据链路层。

WLAN技术采用了一系列协议标准,如802.11b、802.11g、802.11n等,实现了无线数据传输。

WLAN技术的发展使得移动设备可以方便地接入网络,为移动计算和无线通信提供了更多的便利性。

总结起来,数据链路层技术的发展经历了从早期的基于电报信号的串行传输到后来的HDLC协议、PPP协议、以太网和WLAN技术的演进过程。

这些技术的发展不仅提高了数据链路层的可靠性和效率,还推动了计算机网络的发展和进步。

随着新的技术的不断涌现和发展,相信数据链路层技术将继续朝着更高速、更可靠、更安全的方向发展。

OSI七层模型的每一层都有哪些协议、PPPOE机制

OSI七层模型的每一层都有哪些协议、PPPOE机制

OSI七层模型协议谈到网络不能不谈OSI参考模型,OSI参考模型(OSI/RM)的全称是开放系统互连参考模型(Open System Interconnection Reference Model,OSI/RM),它是由国际标准化组织ISO 提出的一个网络系统互连模型。

虽然OSI参考模型的实际应用意义不是很大,但其的确对于理解网络协议内部的运作很有帮助,也为我们学习网络协议提供了一个很好的参考......第一层:物理层:物理层规定了激活、维持、关闭通信端点之间的机械特性、电气特性、功能特性以及过程特性。

该层为上层协议提供了一个传输数据的物理媒体。

只是说明标准在这一层,数据的单位称为比特(bit)。

属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45、fddi 令牌环网等。

第二层:数据链路层802.2、802.3ATM、HDLC、FRAME RELAY数据链路层在不可靠的物理介质上提供可靠的传输。

该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。

在这一层,数据的单位称为帧(frame)。

数据链路层协议的代表包括:ARP、RARP、SDLC、HDLC、PPP、STP、帧中继等。

第三层:网络层IP、IPX、APPLETALK、ICMP网络层负责对子网间的数据包进行路由选择。

网络层还可以实现拥塞控制、网际互连等功能。

在这一层,数据的单位称为数据包(packet)。

加密解密是在网络层完成的.网络层协议的代表包括:IP、IPX、RIP、OSPF等。

第四层:传输层TCP、UDP、SPX传输层是第一个端到端,即主机到主机的层次。

传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输。

此外,传输层还要处理端到端的差错控制和流量控制问题。

在这一层,数据的单位称为数据段(segment)。

传输层协议的代表包括:TCP、UDP、SPX等。

IEEE IPv4 ICMPv4 ARP协议

IEEE IPv4 ICMPv4 ARP协议

IEEE 802.3、IpV4、ICMPv4、ARP协议的配置和观察◎IEEE 802.3协议(基于Windows系统)一、协议介绍1.IEEE 802.3协议结构在所有IEEE 802协议中,OSI数据链路层被划分为两个IEEE 802子层,即:媒体访问控制(MAC)子层和MAC客户端子层。

IEEE 802.3物理层对应于OSI参考模型的物理层。

MAC子层有以下几个基本职能。

(1)数据封装发送和接收数据封装。

包括成帧、编址(源地址及目的地址的处理)和差错检测等。

(2)发送媒体访问管理借助于监视物理层收发信号(PLS)部分提供的载波监听信号,发送媒体访问管理设法避免发送信号与媒体上其他信息发生冲突。

(3)接收媒体访问管理接收媒体访问管理部件要检测到达的帧是否错误,帧长是否超过最大长度,是否为8位的整倍数,还要过滤冲突的信号,即把小于最小长度的帧过滤掉。

(4)接收数据解封这一部分检验帧的目的地址字段,决定本站是否应该接收该帧,如地址符合,将送到LLC子层,并进行差错检验。

媒体访问控制(MAC)客户端子层可能是以下一种。

ν逻辑链路控制(LLC):提供终端协议栈的以太网MAC和上层之间的接口,其中LLC 由IEEE 802.2标准定义。

ν网桥实体:提供局域网之间的LAN -to- LAN接口,可以使用同种协议(如以太网到以太网)和不同的协议(如以太网到令牌环)之间。

网桥实体由IEEE 802.1标准定义。

2.MAC帧格式MAC帧是在MAC子层实体间交换的协议数据单元,10/100Mbps以太网中IEEE 802.3 MAC帧的格式如下图所示。

IEEE 802.3 MAC帧中包括前导码P、帧起始定界符SFD、目的地址DA、源地址SA、表示数据字段字节数长度的字段LEN、要发送的数据字段、填充字段PAD和帧校验序列FCS等8个字段。

这8个字段中除了数据字段和填充字段外,其余的长度都是固定的。

3.以太网基本工作原理以太网上的每台计算机都能独立运行,不存在中心控制器。

数据链路层协议的设计与实现

数据链路层协议的设计与实现

计算机通信网络实验数据链路层协议的设计与实现学院:班级:学号::2012年11月11日一、实验目的计算机网络的数据链路层协议保证通信双方在有差错的通信线路上进行无差错的数据传输,是计算机网络各层协议信控制功能最典型的一种协议。

本实验实现一个数据链路层协议的数据传送部分,目的在于更好地理解基本数据链路层协议的基本工作原理,掌握计算机网络协议的基本实现技术。

二、实验容使用C 语言实现下面数据链路层协议:1.分析和实现一个理想的链路层协议2.对于前面实现的协议进行扩充,实现它的第一次改进,如何防止发方过快淹没收方。

3.对上一步再假设在不可靠的的链路上进行通信。

三、实验步骤1.熟悉数据链路层协议的功能;2.编写数据链路层协议的实现程序;3.调试并运行自己编写的协议实现程序;4.了解协议的工作轨迹,如出现异常情况,在实验报告中写出原因分析;5.保留你实现的数据链路层协议,以备教师检查。

四、实验过程1、程序功能及设计思路功能概述:用客户端/服务器模式代表A站、B站。

先由客户端输入服务器IP地址,发送SYN 同步帧,告诉服务器准备接受。

客户端输入数据后,会进行CRC编码,再发送数据帧;服务器收到后,先进行校验,数据正确则发送ACK帧,客户端则发送下一帧数据;否则服务器发送NAK帧,客户端重新发送该数据。

CRC校验:1)将收到的字符转为int型(32位),并将其二进制码左移16位,存于data;2)进行C(D)=Remainder[(S(D)∙D^L)/g(D) ],即CRC校验,得到校验位。

3)将校验位加在信息元后,组成24位的码字,存于要发送的数据帧dframe。

停等式ARQ协议:Client:1)置SN=0;2)收到数据,将SN分配给该数据,如果没有收到,则等待;3)存于要发送的数据帧中,发送给server;4)如果从server收到确认帧,且RN>SN,则SN加1(模2),返回2;如果收到NAK或RN=SN,则返回3,重传数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据链路层协议及技术资料
5.1 数据链路层基本概念
• 链路:一条无源的点到点的物理线路段 • 数据链路:链路+规程(控制数据传输)。一条物理
连接加上为实现数据可靠传输所配置的硬件和相关的 通信协议) • 数据链路层的作用:通过一些数据链路层协议(链路 控制规程),在不太可靠的物理链路上实现可靠的数 据传输
• 技术:如何避免字符数据可能与帧的头尾标志相同? 发送方在数据中遇到DLE时,自动在其前后插入一个 DLE 接收方在数据中遇到单个DLE时,可确定帧界,遇到2 个 DLE时,自动删除一个DLE
5.2.2 带字符填充的首尾字符定界法
• 用途:帧同步用于面向字符型协议,比如PPP,IBM 的二进制同步通信协议BSC
段规定的长度(8bbit,16bit,32bit)计算他们的和, 若校验和大于规定的长度,则将进位加到最后的校验 和中。将校验和和数据一起发送。在接收端,重新计 算校验和与原校验和比较。比如传输“HELLO WORLD.”以16bit为例
4865H+6C6CH+6F20H+776FH+726CH+642EH+ 进位=71FCH
来实现 软件:通过快速的CRC检验软件来实现
5.4 差错控制和流量控制
• 数据链路协议主要考虑的问题: 1、避免所传送的数据可能出现差错和丢失 2、使发方发送数据的速率适应收方的接收能力
理想化的数据传输
• 假设1:所传送的数据既不会出现差错和也不会丢失 (不考虑差错控制问题)
• 假设2:接收端的数据接收速率足够快,有能力接收 发送端的数据发送率(不考虑流量控制问题)
• 一般情况:信道速率b比特/秒,帧长度L比特,往返传 输延迟R秒,则信道利用率为 (L/b)/(L/b+R)=l/(l+Rb/L)
• 有确认无连接:使用前不建立连接,但每帧传输必须 得到确认
适合信号传播时延比较大,线路状态不一定很可靠的情 况
例如:无线通信:建立连接降低了利用率(540ms);误 码率相对高,需确认):用于不可靠的通道传输;
• 有确认有连接(电话,大多数广域网的通信子网的 DLL)
数据链路层可靠传输
保证直接相连的两台主机的可靠性传输 1)将传输的数据组合成同一的格式:帧 2)数据校验和反馈重发机制 3)流量控制
5.3.2 奇偶检验
• 通过增加冗余位使得码字中“1”的个数恒为奇数或偶 数的编码方法.
例:发送端发送ASCII码0110000,在传输的过程中由 于干扰,接收端接收的是0110001。那么系统能不能 知道出现出错了呢?
如果发送端发送的是ASCII码数据+奇校验位,即 01100001,那么接收端接收的是01100011,那么系 统能不能知道出错了呢?若接收到的数据是 01100111,那么系统如何判断?
• 解决方法:给每个数据帧附加不同的发送序号Ns,如 果接收端收到相同序号的数据帧,则丢弃,并回送一 个ACK
• 发送序号需要多少位?对于ARQ协议,发送序号有1 和0即可(只需1bit),每发一个新的数据帧,发送序 号和上次发送不一样
停止等待协议的信道利用率
• 单程传输时延Td,数据帧发送时间Tf,数据传输率C,数 据帧长度L,信道利用率Cr=(总时间-等待时间)/传 输一帧的总时间
• 在理想化的条件下,数据链路层不需要: 1、差错控制协议 2、流量控制协议 就可保证数据的正确传输
5.4.1 最简单流量控制的停止等待协议
• 保留假设1,去掉假设2。考虑流量控制问题--流量 控制协议
• 使发送端发送数据的速率适应接收端的接收能力 • 最简单流量控制协议(发送方和接收方各有一个帧的
L为码距,D为可以检测出的错误位数,
C为可以纠正的错误位数,并且有D≥C。
常用检错码和纠错码
检错码: 校验和 奇偶校验码 循环冗余编码CRC • 目前应用最广的检错码编码方法之一 纠错码: 海明码
5.3.1 校验和
• 算法简单,容易实现,但检错率不高 • 将发送的数据看成是二进制整数序列,并划分成一段
• 若计数出错,对本帧和后面的帧有影响。(错误没有 办法恢复)
5.2.2 带字符填充的首尾字符定界法
• 比如以ASCII字符DLE和STX作为帧的头部,DLE和ETX 作为帧的尾部(DLE=10H,STX=02H,ETX=03H) (DLE:data link escape表转义字符,STX:start of text,ETX:end of text)
引起相邻多个数据位出错 ; • 引起突发差错的位长称为突发长度; • 在通信过程中产生的传输差错,是由随机差错与突发
差错共同构成的。
差错评价指标及差错控制方法
评价指标: • 误码率:错传的码元数与所传输码元总数之比 • 误比特率:错传的比特数与所传输总比特数之比。在
二进制码元时,误比特流=误码率 差错控制基本方式: • 反馈纠错:在接收端能发现差错,但不能确定错码的
2、发送
:实际上,把CRC校验码R(X)附加到数
据码M(X)的后面,然后发送传输
• 接收端:
CRC举例
• 数据码M(X)=110011,利用生成多项式 G(X)=X4+X3+1,求CRC校验码为多少?
• 流行的生成多项式有:
CRC-12
G(x)= x12+x11+x3+x2+x+1
CRC-16
G(x)= x16+x15+x2+1
• “0”比特插入删除技术(透明传输):发送方5个“1” 后插入“0”,接收方删除第5个“1”后的“0”
5.2.4 物理层编码违例法
• Manchester encoding or Differential Manchester encoding 用high-low pair/low-high pair 表示1/0, high-high/low-low不表示数据,可以用来做定界符。
缓冲空间) 发送节点: 1、从数据链路层的发送缓存中取一个数据帧 2、发送这个数据帧 3、等待 4、若收到由接收端的应答信息,转1 接收节点: 1、等待 2、接收由发送端发来的数据帧 3、将其存入数据链路层的接收缓存 4、发送应答信息,表示数据帧已接收,转到1
5.4.2实用的停止等待协议ARQ
• 去掉假设1,去掉假设2
• 忽略应答帧长度和处理时间: Cr=Tf/(Tf+2Td)=1/(1+2TdC/L)
• 卫星信道传输速率50kbps,往返传输延迟500ms,若传 1000bit的帧,使用停止等待协议,则传输一个帧所需 时间为: 发送时间+信息信道延迟+确认信道延迟= 1000bit/50kbps+250ms+250ms=520ms 信道利用率=20/520约为4%
考虑差错控制问题--差错控制协议
考虑流量控制问题--流量控制协议
初步协议:
1、发送端发送数据帧后,等待接收 端的应答帧
2、接收端收到数据帧后,通过CRC 校验,如果无差错,回送一个确认 帧ACK,否则,回送一个否认帧 NAK
3、发送端收到应答帧,如果是ACK, 发送下一数据帧,如果是NAK,重 发数据帧
集合中,可得到所Байду номын сангаас任意两个码字的海明距离,其中最 小的海明距离称为该码字编码的海明距离d
检错编码和纠错编码
使用3位二进制来对8个码 字进行编码不能检测出 错
使用4位二进制来对8个码 字进行编码能检测奇数 位出错,但不能纠错
海明距离(码距)为3及以上,才能够进行纠错
码距与纠错检错位的关系
一般情况下,冗余位越多,检错纠错能力越强,但相应 编码效率也随之降低了 L-1=C+D
5.2 成帧(framing)
帧的组成必须保证能识别一个完整的帧,并保证一旦出 现传输差错导致前一个帧丢失,也必须能识别下一个 帧(错误发生之后重新同步)。
成帧方法: ➢字符计数法 ➢带字符填充的首尾字符定界法 ➢带位填充的首尾标记定界法 ➢物理层编码违例法
5.2.1 字符计数法
• 帧头中用一个字节来表示整个帧的字符个数
• G(X)被通信双方事先共同选定使用: 发送端:通过G(X)生成校验码 接收端:通过G(X)校验接收的码字 对于多项式的运算:采用模2计算(加法不进,减法不
借位);加减法是一样的 模2计算即是异或运算
• 发送端:
1、生成校验码R(X):把要发送的数据码去除G(X),所得 的余数值T(X)就是循环冗余码
差错产生的原因和差错类型
• 传输差错 — 通过通信信道后接收的数据与发送数据 不一致的现象;
• 差错控制 — 检查是否出现差错以及如何纠正差错; • 通信信道的噪声分为两类:热噪声(传输介质导体的
电子热运动形成)和冲击噪声(外界电磁干扰形成); • 由热噪声引起的差错是随机差错,或随机错,一般出
错数据位不相邻 ; • 冲击噪声引起的差错是突发差错,或突发错,一般会
• 令牌环网中使用编码违例格式
5.3 差错产生与差错控制方法
5.3.1 为什么要设计数据链路层
• 在原始物理传输线路上传输数据信号是有差错的;
• 设计数据链路层的主要目的: 将有差错的物理线路改进成无差错的数据链路; 方法 — 差错检测 差错控制(重发和编序号) 流量控制(滑动窗口协议)
• 作用:改善数据传输质量,向网络层提供高质量的服 务。
5.3.3 循环冗余码-CRC码
• 特点:实现容易,检错能力强,广泛使用。常结合反 馈重发法来保证信息的可靠传输。
• 码字组成:
• 编码和解码的计算采用二进制比特序列多项式 • 二进制比特序列多项式
• 例:若数据码=110011,可以表示为: M(X)=X5+X4+X+1
• 生成多项式G(X):
相关文档
最新文档