函数单调性的判定方法(高中数学)

合集下载

高中数学讲义:求函数的单调区间

高中数学讲义:求函数的单调区间

函数的单调区间单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。

求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。

一、基础知识:1、函数的单调性:设()f x 的定义域为D ,区间I D Í,若对于1212,,x x I x x "Î<,有()()12f x f x <,则称()f x 在I 上单调递增,I 称为单调递增区间。

若对于1212,,x x I x x "Î<,有()()12f x f x >,则称()f x 在I 上单调递减,I 称为单调递减区间。

2、导数与单调区间的联系(1)函数()f x 在(),a b 可导,那么()f x 在(),a b 上单调递增()',()0x a b f x Þ"γ, 此结论可以这样理解:对于递增的函数,其图像有三种类型: ,无论是哪种图形,其上面任意一点的切线斜率均大于零。

等号成立的情况:一是单调区间分界点导数有可能为零,例如:()2f x x =的单调递增区间为[)0+¥,,而()'00f =,另一种是位于单调区间内但导数值等于零的点,典型的一个例子为()3f x x =在0x =处的导数为0,但是()0,0位于单调区间内。

(2)函数()f x 在(),a b 可导,则()f x 在(),a b 上单调递减()',()0x a b f x Þ"Σ,(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由()',()x a b f x "Î,的符号能否推出()f x 在(),a b 的单调性呢?如果()f x 不是常值函数,那么便可由导数的符号对应推出函数的单调性。

函数单调性的判定方法(高中数学)

函数单调性的判定方法(高中数学)

函数单调性的判定方法学生: 日期; 课时: 教师:1.判断具体函数单调性的方法1.1 定义法一般地,设f 为定义在D 上的函数。

若对任何1x 、D x ∈2,当21x x <时,总有(1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数;(2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。

利用定义来证明函数)(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -;(3)变形(普遍是因式分解和配方);(4)断号(即判断)()(21x f x f -差与0的大小);(5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。

例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。

证明:设1x ,),(2+∞-∞∈x ,且21x x <,则).)(()()()(212221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=-由于043)2(22221212221>++=++x x x x x x x ,012>-x x 则0))(()()(2122211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在()+∞∞-,上是减函数。

例2.用定义证明函数xkx x f +=)( )0(>k 在),0(+∞上的单调性。

证明:设1x 、),0(2+∞∈x ,且21x x <,则)()()()(221121x kx x k x x f x f +-+=-)()(2121x k x k x x -+-=)()(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((212121x x kx x x x --=, 又210x x << 所以021<-x x ,021>x x ,当1x 、],0(2k x ∈时021≤-k x x ⇒0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ⇒0)()(21<-x f x f ,此时函数)(x f 为增函数。

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。

那么,有哪些求函数单调性的方法呢?方法一:定义法对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x(1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数;(2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。

例如:根据函数单调性的定义,证明:函数在 上是减函数。

要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为0,不妨设20x ≠,那么222222121123()24x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。

方法二:性质法除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有:1. f(x)与c•f(x)当c >0具有相同的单调性,当c <0具有相反的单调性;2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;3.当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。

这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。

方法三:同增异减法(处理复合函数的单调性问题)对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数.注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;(2)互为反函数的两个函数有相同的单调性;(3)如果f(x)在区间D上是增(减)函数,那么f(x)在D的任一子区间上也是增(减)函数。

高中数学函数单调性的判定和证明方法(详细)

高中数学函数单调性的判定和证明方法(详细)
④定号,判断 的正负符号,当符号不确定时,需进行分类讨论;
⑤下结论,根据函数单调性的定义下结论。
作差法:
例1.判断函数 在(-1,+∞)上的单调性,并证明.
解:设-1<x1<x2,
则f(x1)-f(x2)= -


∵-1<x1<x2,
∴x1-x2<0,x1+1>0,x2+1>0.
∴当a>0时,f(x1)-f(x2)<0, 即f(x1)<f(x2),
根据(1)可知 f(x1-x2)>1,f(x2)>0.
∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),
∴函数f(x)在R上单调递减.
(二)、运算性质法.
函数
函数表达式
单调区间
特殊函数图像
一次函数
当 时, 在R上是增函数;
当 时, 在R上是减函数。
二次函数
当 时, 时 单调减,
⑷若两个基本初等函数在对应区间上的单调性是同时单调递增或同单调递减,则 为增函数,若为一增一减,则 为减函数(同增异减);
⑸求出相应区间的交集,既是复合函数 的单调区间。
以上步骤可以用八个字简记“一分”,“二求”,“三定”,“四交”。利用“八字”求法可以解决一些复合函数的单调性问题。
例7.求 ( 且 )的单调区间。
减函数的区间
函数
表达式
单调性
解:列表如下
由表知 是减函数的区间 , 。
所以函数的单调增区间为
减区间为 .
(四)、同增异减法(复合函数法).
定理1:若函数 在 内单调, 在 内单调,且集合{ ︳ , }
(1)若 是增函数, 是增(减)函数,则 是增(减)函数。(2)若 是减函数, 是增(减)函数,则 是减(增)函数。

高中数学函数单调性的判定和证明方法(详细)

高中数学函数单调性的判定和证明方法(详细)

函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x1<x2, 并是某个区间上任意二值;②作差:;或作商:,≠0;③变形向有利于判断差值符号的方向变形;,≠0向有利于判断商的值是否大于1方向变形;(常用的变形技巧有:1、分解因式,当原函数是多项式时,作差后进行因式分解;2、通分,当原函数是分式函数时,作差后往往进行通分再进行因式分解;3、配方,当原函数是二次函数时,作差后考虑配方便于判定符号;4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④定号,判断的正负符号,当符号不确定时,需进行分类讨论;⑤下结论,根据函数单调性的定义下结论。

作差法:例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。

(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得作商法:例3.设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1(1)求证:f(0)=1 且当x<0时,f(x)>1(2)求证:f(x)在R上是减函数.证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),令m=1,n=0,可得f(1)=f(1)•f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0.∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)•f(x)=1,∴f(-x)f(x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=1f(-x)>1.(1)设x1<x2,则x1-x2<0,根据(1)可知 f(x1-x2)>1,f(x2)>0.∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),∴函数f(x)在R上单调递减.(二)、运算性质法.v1.0 可编辑可修改函数函数表达式单调区间特殊函数图像一次函数)0(≠+=kbkxy当0>k时,y在R上是增函数;当0<k时,y在R上是减函数。

高中数学函数的单调性知识点总结

高中数学函数的单调性知识点总结

高中数学函数的单调性知识点总结函数的单调性,指的是函数的在其定义域或某区间上的增减性。

包括单调增和单调减两种情况。

1.增函数和单调递增区间一般地,设函数()f x 的定义域为I ,区间D I ⊆:如果12,x x D ∀∈,当12x x <时,都有()()12f x f x <,那么就称函数()f x 在区间D 上单调递增。

特别地,当函数()f x 在它的定义域上单调递增时,就称它是增函数。

图象特点:在区间D 上,沿x 轴正向从左向右看图象呈上升趋势。

2.减函数和单调递减区间一般地,设函数()f x 的定义域为I ,区间D I ⊆:如果12,x x D ∀∈,当12x x <时,都有()()12f x f x >,那么就称函数()f x 在区间D 上单调递减。

特别地,当函数()f x 在它的定义域上单调递减时,就称它是减函数。

图象特点:在区间D 上,沿x 轴正向从左向右看图象呈下降趋势。

3.定义法判断或证明函数单调性的步骤,可以归纳为:取值定大小,作差和变形,定号给结论,3个关键步骤。

4.复合函数的单调性复合函数()()y f u x =的单调性,遵循“同增异减”的原则.其中()y f u =是外层函数,()u u x =是内层函数,有以下几种情况:①()y f u = ,()u u x = ,则()()y f u x = ;②()y f u = ,()u u x = ,则()()y f u x = ;③()y f u = ,()u u x = ,则()()y f u x = ;④()y f u = ,()u u x = ,则()()y f u x = ;【小结】内外层函数单调性相同时为增函数,单调性相反时为减函数。

例题:判断下列复合函数在()0,1x ∈上的单调性。

(1)y =解:()0,1x ∈时,()20,1u x =∈。

外层函数:y =()0,1u ∈上单调增,内层函数:2u x =在()0,1x ∈上单调减。

高中数学函数的单调性

高中数学函数的单调性

(一)知识内容1.函数单调性的定义:①如果函数()f x 对区间D 内的任意12,x x ,当12x x <时都有()()12f x f x <,则称()f x 在D 内是增函数;当12x x <时都有()()12f x f x >,则()f x 在D 内时减函数.②设函数()y f x =在某区间D 内可导,若()0f x '>,则()y f x =为x D ∈的增函数;若()0f x '<,则()y f x =为x D ∈的减函数.2.单调性的定义①的等价形式:设[]12,,x x a b ∈,那么()()()12120f x f x f x x x ->⇔-在[],a b 是增函数;()()()12120f x f x f x x x -<⇔-在[],a b 是减函数;()()()12120x x f x f x --<⎡⎤⎣⎦()f x ⇔在[],a b 是减函数.3.复合函数单调性的判断:“同增异减”4.函数单调性的应用.利用定义都是充要性命题.即若()f x 在区间D 上递增(递减)且1212()()f x f x x x <⇔<(1x 2,x D ∈); 若()f x 在区间D 上递递减且1212()()f x f x x x <⇔>.(1x 2,x D ∈). ①比较函数值的大小②可用来解不等式.③求函数的值域或最值等(二)主要方法1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;2.判断函数的单调性的方法有: ⑴用定义;用定义法证明函数单调性的一般步骤:①取值:即设1x ,2x 是该区间内的任意两个值,且12x x <②作差变形:通过因式分解、配方,有理化等方法,向有利于判断差的符号的方向变形.③定号:确定差12()()f x f x -(或21()()f x f x -)的符号,若符号不确定,可以进行分类讨论. ④下结论:即根据定义得出结论,注意下结论时不要忘记说明区间. ⑵用已知函数的单调性; ⑶利用函数的导数;函数的单调性⑷如果()f x 在区间D 上是增(减)函数,那么()f x 在D 的任一非空子区间上也是增(减)函数; ⑸图象法;⑹复合函数的单调性结论:“同增异减” ; 复合函数的概念:如果y 是u 的函数,记作()y f u =,u 是x 的函数,记为()u g x =,且()g x 的值域与()f u 的定义域的交集非空,则通过u 确定了y 是x 的函数[()]y f g x =,这时y 叫做x 的复合函数,其中u 叫做中间变量,()u f u =叫做外层函数,()u g x =叫做内层函数. 注意:只有当外层函数()f u 的定义域与内层函数()g x 的值域的交集非空时才能构成复合函数[()]f g x . ⑺奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性. ⑻互为反函数的两个函数具有相同的单调性.⑼在公共定义域内,增函数()f x +增函数()g x 是增函数;减函数()f x +减函数()g x 是减函数;增函数()f x -减函数()g x 是增函数;减函数()f x -增函数()g x 是减函数.⑽函数(0,0)by axa b x =+>>在,⎛⎫-∞+∞ ⎪⎪⎝⎭或上单调递增;在0⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝或上是单调递减.3.证明函数单调性的方法:⑴利用单调性定义①;⑵利用单调性定义②(三)典例分析【例1】如图是定义在区间[5,5]-上的函数()y f x =,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?【例2】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.【例3】根据函数单调性的定义,证明函数3()1f x x =-+在(,)-∞+∞上是减函数.【例4】证明函数()f x =【例5】证明函数3y x =在定义域上是增函数.【例6】求下列函数的单调区间:⑴ |1|y x =-;⑵ 1y x x=+(0x >).【例7】求下列函数的单调区间:⑴|1||24|y x x =-++;⑵ 22||3y x x =-++【例8】作出函数2||y x x =-的图象,并结合图象写出它的单调区间.【例9】讨论函数2()1xf x x =-(11)x -<<的单调性.【例10】讨论函数2()23f x x ax =-+在(2,2)-内的单调性.拓展:若2()23f x x px =++在(,1]-∞是减函数,在[1,)+∞上是增函数,则(1)f =______【例11】讨论函数y 的单调性.【例12】求函数212y x x =++的单调区间.【例13】设1n >,()f x 是定义在有限集合{}1,2,3,,A n =上的单调递增函数,且对任何,x y A ∈,有()()()()f x f x f y f y =.那么,( ) A .2n = B .3n = C .4n = D .5n ≥【例14】若()f x 是R 上的减函数,且()f x 的图象经过点(03)A ,和点(31)B -,,则不等式|(1)1|2f x +-<的解集为( ). A .(3)-∞,B .(2)-∞,C .(03),D .(12)-,【例15】函数21x y x =-(x ∈R ,1x ≠)的递增区间是( )A .2x ≥B .0x ≤或2x ≥C .0x ≤D .1x ≤x【例16】已知2()()2x x af x a a a -=⋅--(0a >且1a ≠)是R 上的增函数.则实数a 的取值范围是( ). A .(01), B .()(01)2+∞,,C .)+∞D .)(01)2⎡+∞⎣,,【例17】已知()f x 是定义在(0,)+∞上的增函数,且当*n ∈N 时,*()f n ∈N ,[()]3f f n n =,则(1)(2)f f += .【例18】求函数1()f x x x=+,0x >的最小值.点评 由对函数1(),0f x x x x=+>的分析,可以很快得到函数2(),0af x x a x=+>的性质:⑴函数()f x 为奇函数;⑵函数()f x 在x a <-上为增函数,在0a x -<<上为减函数,在0x a <<上为减函数,在x a >上为 增函数;⑶函数()f x 在0x >上有最小值为2a ,在0x <上有最大值为2a -.【例19】求函数y =【例20】求函数y =【例21】已知()f x 是定义在+R 上的增函数,且()()()xf f x f y y=-.⑴求证:(1)0f =,()()()f xy f x f y =+;⑵若(2)1f =,解不等式1()()23f x f x -≤-.【例22】已知函数()f x 对任意实数x ,y 均有()()()f x y f x f y +=+.且当x >0时,()0f x >,试判断()f x 的单调性,并说明理由.【例23】已知给定函数()f x 对于任意正数x ,y 都有()f xy =()f x ·()f y ,且()f x ≠0,当1x >时,()1f x <.试判断()f x 在(0,)+∞上的单调性,并说明理由.【例24】设a 是实数,2()()21xf x a x =-∈+R , ⑴试证明对于任意a ,()f x 为增函数;⑵试确定a 值,使()f x 为奇函数.。

【高中数学考点精讲】考点一 函数的单调性的判断

【高中数学考点精讲】考点一 函数的单调性的判断

考点08 函数单调性与最值1、函数单调性的判断方法(1)定义法:在定义域内的某个区间上任取并使得,通过作差比较与的大小来判断单调性。

(2)性质法:若函数为增函数,为增函数,为减函数,为减函数,则有①为增函数,②为增函数,③为减函数,④为减函数。

(3)图像法:对于含绝对值或者分段函数经常使用数形结合的思想,通过函数的图象来判断函数的单调性。

由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)复合函数法:对于函数,可设内层函数为,外层函数为,可以利用复合函数法来进行求解,遵循“同增异减”,即内层函数与外层函数在区间D上的单调性相同,则函数在区间D上单调递增;内层函数与外层函数在区间D 上的单调性相反,则函数在区间D上单调递减.增函数减函数增函数减函数增函数减函数减函数增函数随着的增大而增大随着的增大而增大随着的增大而减小随着的增大而减小增函数增函数减函数减函数2、函数单调性的应用(1)比较大小.比大小常用的方法是①利用单调性比大小;②搭桥法,即引入中间量,从而确定大小关系;③数形结合比大小。

注:一般三个数比较大小使用中间量法(一个大于1,一个介于0-1之间,一个小于0)再结合函数的图像判断大小。

(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.解抽象函数不等式问题(如:f(a2+a-5)<2.)的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.(3)利用函数单调性求参数的取值范围.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②二次函数的单调性与开口和对称轴(对称轴左右两侧单调性相反)有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数单调性的判定方法学生: 日期; 课时: 教师:1.判断具体函数单调性的方法定义法一般地,设f 为定义在D 上的函数。

若对任何1x 、D x ∈2,当21x x <时,总有(1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数;(2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。

利用定义来证明函数)(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <;.(2)作差)()(21x f x f -;(3)变形(普遍是因式分解和配方);(4)断号(即判断)()(21x f x f -差与0的大小);(5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。

例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。

证明:设1x ,),(2+∞-∞∈x ,且21x x <,则).)(()()()(212221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=-由于043)2(22221212221>++=++x x x x x x x ,012>-x x 则0))(()()(2122211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在()+∞∞-,上是减函数。

~例2.用定义证明函数xkx x f +=)( )0(>k 在),0(+∞上的单调性。

证明:设1x 、),0(2+∞∈x ,且21x x <,则)()()()(221121x k x x k x x f x f +-+=-)()(2121x k x k x x -+-= )()(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((212121x x k x x x x --=, 又210x x << 所以021<-x x ,021>x x ,当1x 、],0(2k x ∈时021≤-k x x ⇒0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ⇒0)()(21<-x f x f ,此时函数)(x f 为增函数。

*综上函数xkx x f +=)( )0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。

此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。

用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。

在解决问题时,定义法是最直接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。

函数性质法函数性质法是用单调函数的性质来判断函数单调性的方法。

函数性质法通常与我们常见的简单函数的单调性结合起来使用。

对于一些常见的简单函数的单调性如下表:函数函数表达式单调区间特殊函数图像一次函数>)0(≠+=k b kx y当0>k 时,y 在R 上是增函数; 当0<k 时,y 在R 上是减函数。

二次函数cbx ax y ++=2),,,0(R c b a a ∈≠ *当0>a 时,abx 2-<时y 单调减, abx 2->时y 单调增; 当0<a 时,abx 2-<时y 单调增,abx 2->时y 单调减。

反比例函数xk y =R k ∈(且0≠k )当0>k 时,y 在0<x 时单调减,在0>x 时单调减;当0<k 时,y 在0<x 时单调增,在0>x 时单调增。

|指数函数x a y =)1,0(≠>a a当1>a 时,y 在R 上是增函数;当10<<a ,时y 在R 上是减函数。

对数函数]xy a log =)1,0(≠>a a当1>a 时,y 在),0(+∞上是增函数; 当10<<a 时,y 在),0(+∞上是减函数。

一些常用的关于函数单调的性质可总结如下几个结论: ⑴.)(x f 与)(x f +C 单调性相同。

(C 为常数)⑵.当0>k 时,)(x f 与)(x kf 具有相同的单调性;当0<k 时, )(x f 与)(x kf 具有相反的单调性。

⑶.当)(x f 恒不等于零时,)(x f 与)(1x f 具有相反的单调性。

⑷.当)(x f 、)(x g 在D 上都是增(减)函数时,则)(x f +)(x g 在D 上是增(减)函数。

⑸.当)(x f 、)(x g 在D 上都是增(减)函数且两者都恒大于0时,)(x f )(x g 在D 上是增(减)函数;当)(x f 、)(x g 在D 上都是增(减)函数且两者都恒小于0时,)(x f )(x g 在D 上是减(增)函数。

>⑹.设)(x f y =,D x ∈为严格增(减)函数,则f 必有反函数1-f ,且1-f在其定义域)(D f 上也是严格增(减)函数。

例3.判断5)1(2log )(21323+++++=+x x x x x f x 的单调性。

解:函数)(x f 的定义域为),0(+∞,由简单函数的单调性知在此定义域内323log ,,x x x 均为增函数,因为021>+x ,012>+x 由性质⑸可得)1(221++x x 也是增函数;由单调函数的性质⑷知x x x 23log ++为增函数,再由性质⑴知函数)1(2log )(21323++++=+x x x x x f x +5在),0(+∞为单调递增函数。

例4.设函数)0()(>>++=b a b x ax x f ,判断)(x f 在其定义域上的单调性。

解:函数bx ax x f ++=)(的定义域为),(),(+∞-⋃--∞b b .先判断)(x f 在),(+∞-b 内的单调性,由题可把bx ax x f ++=)(转化为b x b a x f +-+=1)(,又0>>b a 故0>-b a 由性质⑶可得b x +1为减函数;由性质⑵可得b x b a +-为减函数;再由性质⑴可得bx ba x f +-+=1)(在),(+∞-b 内是减函数。

同理可判断)(x f 在),(b --∞内也是减函数。

故函数bx ax x f ++=)(在),(),(+∞-⋃--∞b b 内是减函数。

函数性质法只能借助于我们熟悉的单调函数去判断一些函数的单调性,因此首先把函数等价地转化成我们熟悉的单调函数的四则混合运算的形式,然后利用函数单调性的性质去判断,但有些函数不能化成简单单调函数四则混合运算形式就不能采用这种方法。

图像法用函数图像来判断函数单调性的方法叫图像法。

根据单调函数的图像特征,若函数)(x f 的图像在区间I 上从左往右逐渐上升则函数)(x f 在区间I 上是增函数;若函数)(x f 图像在区间I 上从左往右逐渐下降则函数)(x f 在区间I 上是减函数。

、{例5. 如图1-1是定义在闭区间[-5,5]上的函数)(x f y =的图像,试判断其单调性。

解:由图像可知:函数)(x f y =的单调区间有[-5,-2),[-2,1),[1,3),[3,5).其中函数)(x f y =在区间[-5,-2),[1,3)上的图像是从左往右逐渐下降的,则函数)(x f y =在区间[-5,-2),[1,3)为减函数;函数)(x f y =在区间[-2,1),[3,5]上的图像是从往右逐渐上升的,则函数)(x f y =在区间[-2,1),[3,5]上是增函数。

例6.利用函数图像判断函数1)(+=x x f ;x x g 2)(=;12)(++=x x h x 在[-3,3]上的单调性。

分析:观察三个函数,易见)()()(x g x f x h +=,作图一般步骤为列表、描点、作图。

首先作出1)(+=x x f 和x x g 2)(=的图像,再利用物理学上波的叠加就可以大致作出12)(++=x x h x的图像,最后利用图像判断函数12)(++=x x h x的单调性。

解:作图像1-2如下所示:由以上函数图像得知函数1)(+=x x f 在闭区间[-3,3]上是单调增函数;x x g 2)(=在闭区间[-3,3]上是单调增函数;利用物理上波的叠加可以直接大致作出12)(++=x x h x 在闭区间[-3,3]上图像,即12)(++=x x h x 在闭区间[-3,3]上是单调增函数。

事实上本题中的三个函数也可以直接用函数性质法判断其单调性。

用函数图像法判断函数单调性比较直观,函数图像能够形象的表示出随着自变量的增加,相应的函数值的变化趋势,但作图通常较烦。

对于较容易作出图像的函数用图像法比较简单直观,可以类似物理上波的叠加来大致画出图像。

而对于不易作图的函数就不太适用了。

但如果我们借助于相关的数学软件去作函数的图像,那么用图像法判断函数单调性是非常简单方便的。

复合函数单调性判断法定理1:若函数)(u f y =在U 内单调,)g(x u =在X 内单调,且集合{u ︳)g(x u =,X x ∈}U ⊂ (1)若)(u f y =是增函数,)g(x u =是增(减)函数,则)]([x g f y =是增(减)函数。

(2)若)(u f y =是减函数,)g(x u =是增(减)函数,则)]([x g f y =是减(增)函数。

归纳此定理,可得口诀:同则增,异则减(同增异减) 复合函数单调性的四种情形可列表如下:情形函数 单调性第①种情形第②种情形第③种情形第④种情形显然对于大于2次的复合函数此法也成立。

推论:若函数)(x f y =是K(K ≥2),N K ∈)个单调函数复合而成其中有K m ≤个减函数: ① 是减函数时,则当)(12x f y k m =+=; ② 是增函数时,则当)(2x f y k m ==。

判断复合函数)]([x g f y =的单调性的一般步骤: ⑴合理地分解成两个基本初等函数)(),(x g u u f y ==; ⑵分别解出两个基本初等函数的定义域; ⑶分别确定单调区间;⑷若两个基本初等函数在对应区间上的单调性是同时单调递增或同单调递减,则)]([x g f y =为增函数,若为一增一减,则)]([x g f y =为减函数(同增异减);⑸求出相应区间的交集,既是复合函数)]([x g f y =的单调区间。

相关文档
最新文档