肿瘤放射治疗技术的现状与发展

肿瘤放射治疗技术的现状与发展
肿瘤放射治疗技术的现状与发展

原创:肿瘤放射治疗技术的现状与发展

摘要放射治疗在过去的十年中经历了一系列技术革命,相继出现了三维适形放疗(3DCRT)、调强放疗(IMRT)、质子放疗等技术,这些技术的主要进步是靶区剂量分布适形性的提高。但是,由于呼吸运动等因素的影响,在放疗实施过程中肿瘤及其周围正常组织会发生形状和位置的变化,这种不确定性一定程度阻碍了3DCRT和IMRT技术的发展。图像引导放疗技术(IGRT)的出现,对补偿呼吸运动影响的肿瘤放疗取得了很好的疗效,特别是近年来提出的四维放射治疗(4DRT)技术,进一步丰富了IGRT的实现方式。本文将详细介绍现有的各种放疗技术及其存在的问题,同时讨论一下放疗技术的未来发展方向。

关键词图像引导放疗;锥形束CT;四维放疗;呼吸门控系统

1引言

理想的放疗目的是精确给予肿瘤高剂量的同时尽量减少对靶区周围正常组织的照射。近年来3DCRT和IMRT技术实现了静态三维靶区剂量分布的高度适形,较大程度上解决了静止且似刚性靶区的剂量适形放射问题。然而,在实际放疗过程中,主要由呼吸运动引起的内部组织的运动和形变(主要是胸部和腹部的靶组织),严重影响了IMRT和3DCRT技术的准确实施。如在单次放疗中,呼吸运动和心脏跳动会影响胸部器官或上腹部器官的位置和形状,胃肠蠕动也会带动邻近的靶区;在分次放疗间随着疗程的进行出现的肿瘤的缩小或扩展;消化系统和泌尿系统的充盈程度;在持续的治疗过程中患者身体变瘦或体重减轻等造成的靶区和标记的相对移位。针对上述问题,我们迫切需要某种技术手段去探测肿瘤的摆位误差和运动形态,并且这种技术可以对靶区的形态变化采取相应的补偿和控制措施。IGRT正是基于以上问题的出现而产生的。现在我们可以采用在线校位和自适应放疗技术去解决分次间的摆位误差和靶区移位问题,也可以采用呼吸限制、呼吸门控、四维放疗等技术对单次放疗中出现的靶区运动进行补偿和控制,而这些技术都是属于IGRT的范畴[2]。后面的内容将分别介绍IMRT技术、IGRT 技术的不同实现方式,包括呼吸限制、呼吸门控、自适应放疗、四维放疗,最后介绍一下未来放疗技术及设备的发展方向。

2肿瘤放疗技术的现状

由于目前各种放疗技术各具优势及经济市场发展等原因,不同的放疗技术还处于并存的状态,适形调强放疗和图像引导放疗的部分技术代表了放疗领域的现状。

2.1适形调强放射治疗

适形调强放疗技术包括三维适形放疗和调强放疗。三维适形放疗是通过采用立体定位技术,在直线加速器前面附加特制铅块或利用多叶准直器来对靶区实施非共面照射,各射野的束轴视角(beam eye view, BEV)方向与靶区的形状一样,使得剂量在靶区上的辐射分布可以更加准确,而对周围正常组织的照射又可降到较低程度[3]。与以往的常规放疗相比,三维适形放疗设备的突出优势是多叶准直器的使用。多叶准直器所产生的辐射野可以根据肿瘤在空间任何角度方向(一般指机架旋转360度范围内)上的几何投影形状而改变,使辐射野的几何形状与肿瘤投影相匹配。如美国Varian生产的23EX直线加速器上面装配有60对多叶

准直器,该型多叶准直器在等中心平面上有40对宽0.5cm的叶片,两旁还各有10对宽1.0cm的叶片,最大射野达40cm×40cm。由于多叶准直器灵活、高效的特点,将会逐步取代铅块的使用。

调强放疗是在三维适形放疗技术的基础上发展起来的。调强放射治疗与三维适形技术相比,其优势体现在:①采用CT或MRT三维重建定位,提高了摆位和照射的精确度;②逆向计划的实施确保了剂量分布参数不仅从正面计算,而且利用了逆向算法来验证和审核,实现了射野强度分布的最优化;③可以配置射野内的各线束的权重,保证了剂量分布形状与靶区的实际三维分布形状相一致[4-5]。IMRT的这些特点,使得我们可以对不同的靶区设计个体化的剂量分布计划,总体上缩短了治疗时间,提高了肿瘤的局部控制率。IMRT技术的临床结果表明,其有效提高了中度和低度肿瘤的敏感性,在正常组织受损程度降低的情况下提高了肿瘤的单次照射剂量和总剂量,从而不仅保证了疗效且缩短了治疗的总时间。

在目前已经使用的各种调强放疗系统中,电动多叶准直器的使用较为广泛且技术相对成熟。如国内的大恒医疗设备公司推出的STAR-2000系列精确适形调强放疗系统,该系统具有CT/MRT、CT/PET等多模式三维图像融合功能,采用了内置多叶准直器,可自动进行逆向优化计算给出调强计划。经临床测试,该系统对肿瘤的定位准确,而且可以实现靶区的高剂量照射,显示出较三维适形放疗系统的优势。图像引导下适形调强放疗技术的研究在近年来取得了很大进步,相信不久的将来必将引领“精确定位、精确计划、精确放疗”技术的新发展。

2.2呼吸限制和呼吸门控

呼吸运动会引起肺、乳腺、肝、胃等胸部器官和腹部器官的形变和移位,所以人们首先采用了呼吸限制的方法来减少呼吸运动对肿瘤运动的影响。呼吸限制在一定程度上暂停了靶区的运动,这样,当我们做CTV到PTV的扩展时,有效的减少了PTV与CTV间的安全边界[7]。近年来出现的呼吸限制技术主要有主动呼吸限制技术(voluntary breath hold,ABC)和深度吸气屏气技术(deep inspiration breath hold,DIBH)。这些技术的优势是操作简单省时,但是呼吸限制需要患者配合医生进行屏气,所以呼吸限制仅适合肺功能较好而且愿意配合医生进行治疗的患者。

基于呼吸限制的局限性,人们提出了呼吸门控技术。呼吸门控是指通过某种检测设备对呼吸运动进行检测,在呼吸周期的特定时间间隔内打开或关闭射线束,从而在特定时相间隔内近似定位了肿瘤的状态。例如,实时体位跟踪呼吸门控系统(RPM Respiratory Gating System)采用一台红外摄像机来跟踪固定在患者胸部或腹部的体外标记,然后系统通过呼吸运动波形曲线来描述患者的呼吸运动模式。在放疗计划中,我们已经通过所获得的CT图像建立了一个在特定时相对靶区进行放射的计划,在治疗过程中当靶区进入计划治疗区域时系统会自动打开射线束。若患者由于呼吸异常等原因造成呼吸曲线偏离阈值时,系统会自动关闭射线。这样,患者就可以在相对自然的呼吸下接受治疗。

呼吸门控的执行可以采用外部标记法或内部标记法,外部标记是固定在患者腹部或胸部的反射性固体块,可以通过红外摄像机进行监控,如上面提到的实时体位跟踪系统就是采用了这种体外红外摄像跟踪方法。内部标记法是指在患者体内靶区植入不透X线金属标记物,这样,可以通过射线对标记进行检测来确定肿瘤的运动状态。

但是,呼吸限制和呼吸门控技术也有不足之处。在实际放疗中,它们都是在呼吸周期的某一个时段内对肿瘤实施照射,这样导致的结果是疗程的延长,而多次治疗又会产生新的误差。呼吸限制和呼吸门控技术的这些不足一定程度上阻碍了它们的推广和发展。

2.3自适应放射治疗

传统的放疗是在正式实施治疗之前的2周到3周时间做放疗计划,然后在实际放疗中利用计划实施放射,期望达到准确的适形剂量分布。但是,这种方法显然有很大缺陷,因为我们不能保证当前肿瘤的形状与运动状态与两周前的相同,而且实施治疗时需要重新摆位,会产生新的摆位误差。

自适应放疗技术是为了减少分次治疗间的摆位误差和靶区运动而发展起来的。自适应放疗基本过程是:在每个分次治疗时对靶区进行CT扫描摄片,然后系统在离线状态测量每次摆位误差,最后通过前面数次存储的摆位数据,综合分析并调整PTV和CTV间的安全边界,确定新的放疗计划,利用新的计划来继续进行后面余下的分次治疗。但是,上面提到的自适应放疗技术不适合于随机误差较大且分次治疗次数较多的治疗。经调查,最新的自适应放疗技术可以做到充分利用单次放疗前的摆位和剂量分布数据来重新实施摆位或剂量调整,代表了自适应放疗领域新的发展方向。

2.4四维放射治疗

在呼吸运动引起肿瘤移位的研究中发现,在单次治疗中肿瘤的最大移位可达3cm,所以计划中的CT数据需要准确描述肿瘤的实际运动。但是,传统的CT图像往往忽略了呼吸作用的影响,因而所获得的图像与实际治疗中的相比经常会出现扩大或扭曲的现象。虽然在当前的放疗技术中,我们可以采用呼吸门控系统,但疗效提高不大。四维放疗技术的出现,较好的解决了运动肿瘤的准确定位问题。四维放疗在包括CT扫描的三维成像和加速器三维方向照射系统外还引入了时间因素,相应的CT可以按时序扫描,称为4DCT。

为了模拟肿瘤随呼吸的运动,我们需要从四维图像中获取实际靶区容积的信息。4DCT对呼吸运动的完整周期进行扫描,反映了胸部器官和靶区随呼吸运动的“轨迹”,据此我们可以制定个体化的靶体积(ITV)。4DCT数据的获取与呼吸运动周期可以实现同步。

在这里,我们通过分析一套4DCT设备来简要说明四维放疗的过程,这套设备由Varian公司的RPM(Real-time Position Management)系统和GE公司的Discovery ST multislice PET/CT scanner系统组成,分为两个阶段:

2.4.1 计划设计阶段

放疗师在CT定位前通过对患者进行呼吸训练来使其保持均匀且平静的呼吸。对于呼吸功能不好的患者,可以实施主动呼吸控制技术,它通过设计好的通气设备控制气流来调整病人的呼吸节奏。4D-CT扫描过程:在患者腹部次于剑突的部位固定一反射块,利用RPM系统的红外摄像机对标记块进行随时监控。与RPM系统相连的计算机利用Varian公司配套提供的4D软件对标记的运动进行实时分析。在扫描过程中,标记的运动作为“呼吸运动轨迹”被软件记录下来。扫描完成后,4D软件对不同位置和不同时相的CT数据信息按呼吸周期排序,然后我们通过AW(Advantage Workstation)工作站将大量的CT切片按呼吸运动轨迹的时相进行分类,AW工作站利用RPM系统创建呼吸运动轨迹时所保留的时相标记文件来进行时相计算,将一个完整周期(一个周期选定为从吸气末到下一个吸气末)划分为十个等间隔的时相。最后对各个时相的图像进行三维重建,形成

了一个完整的4DCT图像序列。

2.4.2治疗阶段

前面过程是四维放疗的计划设计阶段,下一个阶段就是实施治疗了。在治疗中,利用呼吸监控装置检测患者,当呼吸运动进行到某个时相时治疗机就会自动调用该时相的射野参数等数据对靶区实施照射。

目前,四维放疗在靶区定位和图像获取技术方面已经成熟,而且已经开始投入市场,但是,在计划和实施阶段还存在一些问题尚待解决和完善,因此,四维放疗的开展还有待于后两者的发展和成熟[2]。

3放疗技术的发展方向

目前,肿瘤放疗已经在几个方向上取得了发展:从离线校正向在线校正发展;从模糊显像向高清晰显像发展;从单一显像向集成显像发展[9]。随着精确放疗技术的不断前进,多维放疗与适形调强放疗的结合将会成为未来几年放疗领域发展的一个新方向,体现在:

3.1图像引导下的适形调强放疗

由于目前放疗系统在治疗实施阶段还存在靶区适形性的问题,图像引导下的适形调强放疗指明了四维放疗的一个方向[10]。该技术在新型的加速器上集成了KV级X射线容积成像设备,即千伏级锥形束CT(kilovoltage cone-beam CT)。该设备的特点是采用锥形X射线随机架旋转来进行数据采集,通过锥形束算法最终获得三维影像[11]。通过该设备获得的肿瘤图像与4DCT序列的三维图像进行比较,根据计划实施实时照射。非晶硅平板探测器的使用,使加速器获取的图像具有更高的空间分布率和更宽的射野范围,基于非晶硅平板探测器的剂量分析软件可以测量肿瘤所受的照射剂量,从而可以更好的对治疗计划进行评价和改进[12]。图像引导下的适形调强放疗的研究将是未来几年四维放疗领域的一个热点。

3.2预测跟踪技术下的适形调强放疗

通过近年来在图像引导放疗领域的研究,我们已经可以使用诊断用X射线图像去探测植入靶区内的不透X线标记物来实现实时定位和追踪肿瘤,但是通过门控或波束追踪(beam tracking)技术进行放疗计划设计时,我们需要适当考虑治疗系统延迟,包括图像获取、图像处理、传输延迟、发动机感应,机械阻尼等[13]。为克服系统延迟,采用呼吸运动预测的技术经临床验证对补偿呼吸运动有明显优势,预测跟踪技术下的适形调强放疗将有助于四维放疗中靶区计划实施的精确性。

3.3物理适形与生物适形相结合的多维生物适形调强放疗

近年来生物适形技术的发展取得了一定的进步,如正电子发射断层扫描(Positron Emission Computed tomography,PET)、单光子发射断层扫描(Single Photon Emission Computed tomography,SPECT)等功能性影像技术有了很大发展,过这些技术所获得的影像可以反映肿瘤和正常器官组织的生理及功能信息。生物适形技术的一个代表是PET/CT技术,它是将PET与CT两种影像诊断技术的结合,经临床验证,该技术可以补偿单一CT或PET不能直接评价功能代谢信息或低分辨率显像问题,一次性显像便可获得组织形态和功能信息,大大提高了肿瘤放疗的精确性[14]。物理适形与生物适形相结合的多维生物适形调强放疗将开创生物治疗的新时代。

4结语

适形调强放疗有效的提高了靶区三维空间剂量照射的适形性且实现了放疗剂量的大幅提升。但是,由于呼吸运动对胸腹部肿瘤的影响,在设计治疗计划时,我们通常需要扩大安全边界的办法,来确保肿瘤的不漏照,这样势必会影响靶区的适形性且造成实际剂量分布与计划的不一致。继而出现各种的IGRT技术,开始逐步解决由于呼吸运动等因素影响肿瘤状态的问题:在线较位和自适应放疗技术一定程度上解决了摆位误差和分次治疗间的靶区移位问题;屏气技术和呼吸门控技术使靶区暂时停止运动或在较小范围内运动;四维放疗技术实现了跟踪呼吸引起的靶区运动并按计划好的4D-CT序列来实施放射。随着放疗技术的发展,未来的放疗领域会是各种技术的结合使用,而不会是单一的某种技术。图像引导下的适形调放疗、预测跟踪技术下的适形调强放疗及多维生物适形调强放疗将代表未来几年“精确定位、精确计划、精确治疗”发展的几个方向。随着现有放疗技术的完善和新技术的不断提出和发展,各种放疗技术的融合将推动未来肿瘤放疗向高精化、实时化的方向发展。

肿瘤放射治疗技术的现状与发展

原创:肿瘤放射治疗技术的现状与发展 摘要放射治疗在过去的十年中经历了一系列技术革命,相继出现了三维适形放疗(3DCRT)、调强放疗(IMRT)、质子放疗等技术,这些技术的主要进步是靶区剂量分布适形性的提高。但是,由于呼吸运动等因素的影响,在放疗实施过程中肿瘤及其周围正常组织会发生形状和位置的变化,这种不确定性一定程度阻碍了3DCRT和IMRT技术的发展。图像引导放疗技术(IGRT)的出现,对补偿呼吸运动影响的肿瘤放疗取得了很好的疗效,特别是近年来提出的四维放射治疗(4DRT)技术,进一步丰富了IGRT的实现方式。本文将详细介绍现有的各种放疗技术及其存在的问题,同时讨论一下放疗技术的未来发展方向。 关键词图像引导放疗;锥形束CT;四维放疗;呼吸门控系统 1引言 理想的放疗目的是精确给予肿瘤高剂量的同时尽量减少对靶区周围正常组织的照射。近年来3DCRT和IMRT技术实现了静态三维靶区剂量分布的高度适形,较大程度上解决了静止且似刚性靶区的剂量适形放射问题。然而,在实际放疗过程中,主要由呼吸运动引起的内部组织的运动和形变(主要是胸部和腹部的靶组织),严重影响了IMRT和3DCRT技术的准确实施。如在单次放疗中,呼吸运动和心脏跳动会影响胸部器官或上腹部器官的位置和形状,胃肠蠕动也会带动邻近的靶区;在分次放疗间随着疗程的进行出现的肿瘤的缩小或扩展;消化系统和泌尿系统的充盈程度;在持续的治疗过程中患者身体变瘦或体重减轻等造成的靶区和标记的相对移位。针对上述问题,我们迫切需要某种技术手段去探测肿瘤的摆位误差和运动形态,并且这种技术可以对靶区的形态变化采取相应的补偿和控制措施。IGRT正是基于以上问题的出现而产生的。现在我们可以采用在线校位和自适应放疗技术去解决分次间的摆位误差和靶区移位问题,也可以采用呼吸限制、呼吸门控、四维放疗等技术对单次放疗中出现的靶区运动进行补偿和控制,而这些技术都是属于IGRT的范畴[2]。后面的内容将分别介绍IMRT技术、IGRT 技术的不同实现方式,包括呼吸限制、呼吸门控、自适应放疗、四维放疗,最后介绍一下未来放疗技术及设备的发展方向。 2肿瘤放疗技术的现状 由于目前各种放疗技术各具优势及经济市场发展等原因,不同的放疗技术还处于并存的状态,适形调强放疗和图像引导放疗的部分技术代表了放疗领域的现状。 2.1适形调强放射治疗 适形调强放疗技术包括三维适形放疗和调强放疗。三维适形放疗是通过采用立体定位技术,在直线加速器前面附加特制铅块或利用多叶准直器来对靶区实施非共面照射,各射野的束轴视角(beam eye view, BEV)方向与靶区的形状一样,使得剂量在靶区上的辐射分布可以更加准确,而对周围正常组织的照射又可降到较低程度[3]。与以往的常规放疗相比,三维适形放疗设备的突出优势是多叶准直器的使用。多叶准直器所产生的辐射野可以根据肿瘤在空间任何角度方向(一般指机架旋转360度范围内)上的几何投影形状而改变,使辐射野的几何形状与肿瘤投影相匹配。如美国Varian生产的23EX直线加速器上面装配有60对多叶

2018年《肿瘤放射治疗技术》常考题(三)

2018年《肿瘤放射治疗技术》常考题(三) 单选题-1/知识点:章节测试 适形放疗要求各野到达靶区内P点的剂量率和照射时间的乘积之和为一常数,调整各野照射P点的剂量率的方法有 A.组织补偿器 B.多叶准直器动态扫描调强 C.多叶准直器静态扫描调强 D.笔形束电磁扫描调强 E.独立准直器动态扫描 单选题-2/知识点:章节测试 放射治疗的质量保证的英文缩写是 A.QA B.QC C.CA D.GA E.QG 单选题-3/知识点:章节测试 钴治疗机等中心误差应不大于 A.1mm B.2mm

C.1.5mm D.2.5mm E.0.5mm 单选题-4/知识点:章节测试 斗篷野照射喉保护大小一般为 A.1cm×1cm B.2cm×2cm C.3cm×3cm D.4cm×4cm E.5cm×5cm 单选题-5/知识点:医学伦理学 国际上最早对人体实验制定基本国际准则的医德文献是 A.《希波克拉底誓言》 B.《赫尔辛基宣言》 C.《纽伦堡法典》 D.《日内瓦协议》 E.《东京宣言》 单选题-6/知识点:医学伦理学 关于生殖权利错误的是 A.人权的一个基本组成部分

B.是人的自然权利 C.是人类的生存和延续所不可缺少的 D.在保护生殖权利与调节人口之间存在着矛盾 E.有悖于我国计划生育原则 单选题-7/知识点:放射治疗物理学基础 射野边缘处的半影由以下几种半影组成 A.几何半影、干涉半影和散射半影 B.物理半影、穿射半影和散射半影 C.准直器半影、穿射半影和散射半影 D.几何半影、穿射半影和模体半影 E.几何半影、穿射半影和散射半影 单选题-8/知识点:章节测试 以下有关口底癌放疗布野的描述不正确的是 A.肿瘤靠前者应包下唇 B.肿瘤靠后者可不包下唇 C.后界一般置于椎体前缘 D.上界在舌上缘上2cm E.下界一般置于舌骨下缘水平 单选题-9/知识点:章节测试 下列乳腺癌非对称照射野摆位技术描述不正确的是

肿瘤放射治疗知识点及试题

名词解释 1.立体定向放射治疗(1. 2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确定位技术和标志靶区的 头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。 2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出强度变化的射线进行治疗,加 上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。 3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非致死性放射损伤,结局可导 致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。 4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立即开始被修复。 5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会出血细胞的加速增殖现行,此 现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射5d,总剂量60-70Gy,照射 总时间6~7周的放疗方法。 7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子的任何因素进行修正。一 般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。 8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀灭效应,提高局控率的药物。 包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。 9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤,同时不减少放射对肿瘤的杀灭 效应化学修饰剂。 10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的治疗方法。 11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤细胞群集,细胞数量级≤ 106,如根治术或化疗完全缓解后状态。 12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边缘病理未净。 13.临床病灶临床或影像学可识辨的病灶,细胞数量级≥109,如剖腹探查术或部分切除术后。 14.密集肿瘤区(GTV)指通过临床检查或影像检查可发现(可测量)的肿瘤范围,包括原发肿瘤及转移灶。 15.计划靶区(PTV)指考虑到治疗过程中器官和病人的移动、射野误差及摆位误差而提出的一个静态 的几何概念,包括临床靶区和考虑到上述因素而在临床靶区周围扩大的范围。CTV+0.5cm 16.“B”症状临床上将不明原因发热38℃以上,连续3天;盗汗;不明原因体重减轻(半年内体重减 轻大于10%)称为“B”症状。 17.咽淋巴环(韦氏环,Waldege’s ring)是由鼻咽腔、扁桃体、舌根、口咽以及软腭背面淋巴组织 所围绕的环形区域。 1、肿瘤放射治疗学:是研究和应用放射物质或放射能来治疗肿瘤的原理和方法一门临床学科。它包括放射物理学、放射生物学、放疗技术学和临床肿瘤学。 2、放射物理学——研究各种放射源的性能和特点,治疗剂量学和防护。 3、放疗技术学——研究具体运用各种放射源或设备治疗病人,射野设置定位技术摆位技术。 4、放射生物学——研究机体正常组织及肿瘤组织对射线反应以及如何改变这些反应的质和量。 5、临床肿瘤学——肿瘤病因学,病理组织学,诊断学以及治疗方案的选择,各种疗法的配合。 6、亚致死性损伤(sublethaldamage,SLD) 细胞受到照射后在一定时间内能够完全修复的损伤。 7、潜在致死性损伤(potential lethal damage,PLD)细胞受到照射后在适宜的环境或条件能够修复,否则将转化为不可逆损伤,从而最终丧失分裂能力。 8、致死性损伤(lethal damage,LD)细胞所受损伤在任何条件下都不能修复。 9、氧效应:放射线和物质作用在有氧和无氧状态下存在差异的现象 无氧状态产生一定生物效应的剂 10、氧增强比=————————————————————

肿瘤放疗原则(详细)

放射治疗简称"放疗",是目前治疗恶性肿瘤的重要手段之一。目前,大约60%~70%的肿瘤患者在病程不同时期,因不同的目的需要放射治疗,包括综合治疗和姑息治疗。随着放射设备的增加和更新,如今它已成为一种独立的专门学科,称为肿瘤入射击治疗学。 自从X线和镭元素发现后,20世纪20年代,有了可靠的X线设备,Regard 和Cowtard等开始用深部X线治疗喉癌。此后,由于放射设备的改进和对放射物理特性和了解,加上放射生物学、肿瘤学以及其他学科发展和促进,使放射肿瘤学不断发展,放射治疗在肿瘤治疗中地位逐渐得到了提高。 现在最理想的放射治疗设备是光子能量为5~18MeV、电子能量为4~22MeV且能量可调的高能加速器,以及60Co、137Cs、125I或192Ir局部插植近距离治疗机,这些放射源的照射可以做到完全符合肿瘤体积的治疗需要,从而,最大限度的杀灭肿瘤细胞,提高治疗效果。 (一)放射源的种类 放射使用的放射源现共有三类:①放射性同位素发出的α、β、γ射线; ②X 线治疗机和和各种加速器产生的不同能量的X线;③各种加速器产生的电子束、质子束、中子束、负π介子束及其他重粒子束等。这些放射源以外照射和内照射两种基本照射方式进行治疗,除此之外,还有一种利用同位素治疗,既利用人体不同器官对某种放射性同位素的选择性吸收,将该种放射性同位素注入体内进行治疗,如131I治疗甲状腺癌,32P治疗癌性腹水等。 (二)放射源设备 1、X线治疗机 临床治疗的X线机根据能量高低分为临界X线(6~10kv)、接触X线(10~60kv)、浅层X线(60~160kv)、高能X线(2~50MeV)。除高能X线主要由加速器产生以外,其余普通X线机由于深度剂量低、能量低、易于散射、剂量分布差等缺点,目前已被60Co和加速器取代。 2、60Co治疗机 60Co在衰变中释放的γ线平均能量为1.25MeV,和一般深部X线机相比,具有以下优点:①穿透力强,深部剂量较高,适用深部肿瘤治疗;②最大剂量点在皮下5mm,所以皮肤反应轻;③在骨组织中的吸收量低,因而骨损伤轻;④旁向散射少,射野外组织量少,全身积分量低;⑤与加速器相比,结构简单,维修方便,经济可靠。其不足之处是存在着半影问题。造成60Co机半影问题的原因有三种,即几何半影、穿射半影和散半影。半影的存在造成射野剂量的不均匀性。前两种半影是由机器设计造成的。采用复式限光筒或在限光筒与病人皮肤上放遮挡块,可以相对消除几何半影;采用同心球面遮光机可以相对消除穿射半影。目前,60Co治疗机有固定式和螺旋式两种类型。 3、医用加速器 加速器的种类很多,在医疗上使用最多的是电子感应加速器、电子直线加速器和电子回旋加速器。他们既可产生高能电子束,又能产生高能X 线,其能量范围在4~50MeV。其中的电子回旋加速器既有电子感应加速器的经济性,又有电子直线加速器的高输出特点,而且,同时克服了两者的缺点,其输出量比直线加速器高几倍,其能量也容易调得高,无疑它将成为今后医用高能加速器发展的方向。 (三)临床对射线的合理选择 从物理和剂量角度看,临床上理想的射线在组织中造成的剂量分布,应尽量符合放射剂量学原则。即:①照射肿瘤的剂量要求准确;②对肿瘤区域内照射剂量的分布要求均匀;③尽量提高肿瘤内照射剂量,降低正常组织受量;④保护肿瘤周围的重

磁共振模拟(MRSIM)_肿瘤放疗模拟技术新前沿

磁共振模拟——站在肿瘤放疗的最前沿 磁共振模拟 站在肿瘤放疗的最前沿
黄岁平 博士 关键词:磁共振模拟 MRSIM 据有关调查显示,目前全世界范围内的肿瘤患者,约有 70%需要接受不同程 度的放射治疗,以达到治愈肿瘤或缓解症状、改善生活质量的目的。能够最大限度 地把放射剂量集中到病变(靶区)内,杀灭肿瘤细胞,同时使其周围正常组织和器 官少受或免受不必要的照射,从而得到保护,是肿瘤放射治疗一直以来追求的目 标。 20世纪 70年代 CT的使用是放射治疗计划所取得的一个巨大进步。引入 CT 图像的模拟增加了临床医生对靶区体积的空间意识,从而较之原有的传统治疗的靶 区体积(由垂直 X线胶片确定)产生了一个质的改变-----CT扫描得到一系列断层 轴面,经过多种方式的三维重建,形成一个三维计划,这使得适形放射治疗 (CRT)的概念得以实现。但 CT却有一些先天的局限性----它只对具有不同的电 子密度或 X线吸收特征的组织结构具有较好的分辨率(如空气对骨或对水或软组 织),但如果没有明显的脂肪或空气界面,则对具有包括肿瘤在内的相似电子密度 的不同软组织结构区分较差。相比之下,磁共振最大的优点就是对具有相似电子密 度的软组织有较强的显示能力并且能区分其特征。在这种情况下,磁共振能够更好 的提供靶区的轮廓,不但包括肿瘤的范围,而且还包括临近的重要软组织器官。通 过更准确地定位肿瘤靶区、避免危及临近的组织器官、以及提高局部控制率等。
一.磁共振模拟独特的优越性。
事实上,临床医生早已意识到诊断性的 MRI扫描对肿瘤体积的确定具有相当 重要的信息补充,引入 MR图像作定位由来已久。最早通常是由医生用肉眼在 MRI上观察疾病的范围,然后手工将数据转移至模拟胶片或 CT扫描片上,这种方 法极易产生解释和转译错误。第二种方式是通过使用一种放大投影系统将 MRI图 像叠加到模拟胶片或 CT图像上进行融合处理的 MR辅助的模拟。第三种更加定量 的方式是将 MRI图像与 CT图像进行融合,那样就可以将 MRI上具有较高分辨率 的肿瘤图像与几何精确的 CT图像中电子密度信息结合起来。但以上任意一种融合 方式都是在放疗过程中增加了一个步骤,也就是说,延长了整个放疗过程花费的时 间,加重了医生的工作任务,加大了病人的经济负担,也增加了误差的可能性及偏 离度。现在我们已经很明确对于中枢神经系统部位如颅底和脊髓部位的肿瘤,以及 软组织肉瘤和盆腔肿瘤,MRI成像已远优于 CT成像。这些情况下,就可以单纯借 助 MR图像完成模拟工作,因为 MRI有许多优于 CT方面的特点, 直接利用 MR 图像进行模拟定位有着不可替代的优越性:

肿瘤放射治疗概述

肿瘤放射治疗概述 放射治疗是肿瘤的三大治疗手段之一。现代治疗肿瘤强调综合治疗及个体化治疗,即手术、放疗和化疗,根据患者病种、病理及分期的差异,三种治疗方法配合治疗;以及根据患者年龄、性别及个体差异制定适合个体的治疗方案。一、放射治疗定义:放射疗法是用X线,γ线、电子线等放射线照射肿瘤组织,由于放射线的生物学作用,能最大量的杀伤癌组织,破坏癌组织,使其缩小。其原理是依据大量的放射线所带的能量可破坏细胞的染色体,使细胞生长停止。放射治疗最常作为直接或辅助治疗癌症的方式。 二、适应证:放疗已是肿瘤治疗中不可缺少的手段之一。在所有恶性肿瘤患者中,需用放射治疗的在70%以上,有部分肿瘤以放疗为主要治疗手段即可达治愈,如:口咽、舌根、扁桃体癌的放疗治愈在37%~53%,上颌窦、鼻腔筛窦癌38%~40%,早期的舌癌、鼻咽和宫颈癌86%~94%,美国癌症协会最新统计,Ⅰ期鼻咽癌单纯放疗,5年生存率已达100%;另外食管癌联合化疗,早期80%和中晚期在8%~16%,国外的早期直肠、喉癌80%~97%等,放疗在肿瘤治疗上是有重要价值的。 三、目前国内常用放疗方式:1、普通外照射;2、三维适形放射治疗; 3、调强适形放射治疗;4、腔内放射治疗;5、“X刀”、“γ刀”放射治疗。 四、放疗副反应:因放射治疗是局部治疗,故引起的副反应也以局部反应为主,例如咽喉部放疗会引起喉头急性水肿;盆腔放疗会引起腹泻,局部皮肤反应;头部放疗会有脱发现象,一般放疗结束后2~3个月会长出新发。放疗期间还会有全身乏力、食欲下降等不适,需加强营养。 五、放疗时间安排:放射治疗一个疗程所需的时间取决于肿瘤的性质、病变的早晚、治疗的目的、病人的身体状况等多方面的因素,一般需要4~6周。每位患者每天做一次放疗。每周星期一至星期五放疗,星期六、星期日休息。

肿瘤放射治疗知识点及试题

名词解释 1.立体定向放射治疗(1. 2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确 定位技术和标志靶区的头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。 2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出 强度变化的射线进行治疗,加上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。 3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非 致死性放射损伤,结局可导致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。 4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立 即开始被修复。 5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会 出血细胞的加速增殖现行,此现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射 5d,总剂量60-70Gy,照射总时间6~7周的放疗方法。 7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子 的任何因素进行修正。一般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。 8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀 灭效应,提高局控率的药物。包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。

9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤, 同时不减少放射对肿瘤的杀灭效应化学修饰剂。 10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的 治疗方法。 11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤 细胞群集,细胞数量级≤106,如根治术或化疗完全缓解后状态。 12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边 缘病理未净。 13.临床病灶临床或影像学可识辨的病灶,细胞数量级≥109,如剖腹探查术或 部分切除术后。 14.密集肿瘤区(GTV)指通过临床检查或影像检查可发现(可测量)的肿瘤范围, 包括原发肿瘤及转移灶。 15.计划靶区(PTV)指考虑到治疗过程中器官和病人的移动、射野误差及摆位 误差而提出的一个静态的几何概念,包括临床靶区和考虑到上述因素而在临床靶区周围扩大的范围。 CTV+0.5cm 16.“B”症状临床上将不明原因发热38℃以上,连续3天;盗汗;不明原因 体重减轻(半年内体重减轻大于10%)称为“B”症状。 17.咽淋巴环(韦氏环,Waldege’s ring)是由鼻咽腔、扁桃体、舌根、口咽 以及软腭背面淋巴组织所围绕的环形区域。 1、肿瘤放射治疗学:是研究和应用放射物质或放射能来治疗肿瘤的原理和方法一门临床学科。它包括放射物理学、放射生物学、放疗技术学和临床肿瘤学。 2、放射物理学——研究各种放射源的性能和特点,治疗剂量学和防护。 3、放疗技术学——研究具体运用各种放射源或设备治疗病人,射野设置定位技术摆位技术。 4、放射生物学——研究机体正常组织及肿瘤组织对射线反应以及如何改变这些反应的质和量。

肿瘤放疗学总结(详细)

小结 1 概述: ⑴近距离治疗的定义、特征; 近距离放疗也称内照射,它与外照射(远距离照射)相对应,是将封装好的放射源,通过施源器或输源导管直接置入患者的肿瘤部位进行照射。 2、基本特征 1. 放射源贴近肿瘤组织,肿瘤组织可以得到有效的杀伤剂量,而邻近的正常组织,由于辐射剂量随距离增加而迅速跌落,受量较低。 2. 近距离照射很少单独使用,一般作为外照射的辅助治疗手段,可以给予特定部位,如外照射后残存的瘤体等予以较高的剂量, 进而提高肿瘤的局部控制率。 ⑵分类: ①按放射源的置入方式: 手工 手工操作大多限于低剂量率且易于防护的放射源。 后装技术 后装技术则是指先将施源器(applicator) 置放于接近肿瘤的人体天然腔、管道或将空心针管植入瘤体,再导入放射源的技术,多用于计算机程控近距离放疗设备。 ②按放射源的剂量率; 6、近距离放疗按剂量率大小划分 ●低剂量率(LDR):<2~4Gy/h ●中剂量率(MDR):<4~12Gy/h ●高剂量率(HDR):>12Gy/h ③按治疗方式 3、近距离放疗的照射方式 ●腔内治疗 ●管内治疗 ●组织间插植治疗 ●术中插植治疗 ●表面敷贴治疗 ⑶近距离放疗使用放射源的种类及特点 一、近距离放疗的物理量和单位制 ●放射源的活度(activity,A) : 放射性物质的活度定义为源在t 时刻衰变率。 放射活度的旧单位是居里(Curie),符号Ci,它定义为1Ci=3.7×1010衰变/秒 在标准单位制下放射活度单位是贝克勒尔(Bq),1Bq=ldps=2.70×10-11Ci ●密封源的外观活度A app: 在实际应用中,源的有效活度直接受源尺寸、结构、壳壁材料的衰减及滤过效应的影响,源在壳内的内含活度,即裸源活度与有外壳时放射源的活度测量值可能存在很大差异,因此派生所谓外观活度的概念,它定义为同种核素、理想点源的活度,它在空气介质中、同一参考点位置上将产生与实际的有壳密封源完全相同的照射量率。目前随着源尺寸的微型化,外壳材料变得更薄,导致外观活度与内含活度的差异日趋缩小,外观活度又可称作等效活度。●放射性核素的质: 放射性核素射线的质量用核素符号、半衰期和辐射线的平均能量三要素来表示。

肿瘤放射治疗学试题及答案

肿瘤放射治疗学试题及答案 1、恶性肿瘤:是在人类正常细胞基础上,在多种致癌因素作用下,逐渐形成的、 不断增殖的、个体形态变异或缺失的、具有迁徙和浸润行为的细胞群。临床上常表现为一定体积的肿物。 2、我国目前肿瘤放疗事故(恶性肿瘤最新发病率)为:10万人口每年280例。 3、肿瘤放疗:放射治疗就是用射线杀灭肿瘤细胞的一种局部治疗技术。 4、放疗时常用的射线:射线分两大类:一类是光子射线,如X、γ线,是电磁 波;一类是粒子,如电子、质子、中子。 5、放疗的四大支柱:放射物理学、放射生物学、放射技术和临床肿瘤学。 6、肿瘤细胞放射损伤关键靶点:DNA。 7、射线的直接作用:(另一种答案:破坏单键或双键)。任何射线在被生物物质 所吸收时,是直接和细胞的靶点起作用,启动一系列事件导致生物改变。如:电离、光电、康普顿。 8、射线的间接作用:(另一种答案:电解水-OH,自由基破坏)。射线在细胞内可 能和另一个分子或原子作用产生自由基,它们扩散一定距离,达到一个关键的靶并产生损伤。 9、B-T定律:细胞的放射敏感性与它们的增殖能力成正比。与它们的分化程度 成反比。 10、影响肿瘤组织放射敏感性的因素:组织类型、分化程度、临床因素。 肿瘤自身敏感性:肿瘤负荷、肿瘤分型、分期;肿瘤来源和分化程度;肿瘤部位和血供;照射剂量;2、化学修饰与肿瘤放射效应:放射增敏剂:氧气、多种药物;放射保护剂:低氧、谷胱甘肽加温与放疗;430C加温自身即可杀灭肿瘤细胞;能使S期细胞、乏氧细胞变的敏感;热休克蛋白,42-4450C, 2/周;3、放疗与同步化疗:空间协作:放射控制原发,化疗控制转移;毒性依赖:必须注意两者叠加问题;互相增敏:联合应用,疗效1+1>2,机制不详;保护正常组织:缩小病灶,减少剂量; 11、放射野设计四原则:1、靶区剂量均匀:治疗的肿瘤区域内吸收剂量要均匀,剂量梯度部超5%,90%剂量线包整个靶区。(野对称性);2、准确的靶区和剂量:即CTV准确,考虑到肿瘤类型和生物学行为(不同胶质瘤外扩大不一样),

放射治疗联合抗肿瘤血管治疗研究现状及进展

放射治疗联合抗肿瘤血管治疗研究现状及进展 放射治疗是治疗恶性肿瘤的重要方法之一,超过半数以上的恶性肿瘤患者,在治疗过程中会接受放射治疗[1]。如何提高放射治疗的疗效成为日益关注的焦点,综合治疗成为肿瘤治疗的必然趋势,传统上放射治疗与手术、化疗以及热疗等都有过密切的配合和临床应用;近年来随着靶向治疗药物不断走进临床,其抗肿瘤的特异性和选择性更强,也使放射治疗与分子靶向药物的联合应用成为可能,其中抗肿瘤血管治疗对血管的作用直接影响肿瘤氧分压,与放射治疗敏感性密切相关,与放射治疗针对的靶点各不相同,两者联合应用理论上在不增加治疗毒性的情况下可增加治疗疗效,其联合应用正成为肿瘤综合治疗中研究的热点之一。现对其研究现状和治疗进展介绍如下。 1血管生成与肿瘤 血管生成(angiogenesis)是指在原有微血管的基础上通过“芽生”的方式形成的新生毛细血管;是肿瘤血管形成的主要形式。肿瘤组织在生长过程中,诱导新的血管生成,以提供肿瘤生长所需的营养和氧气,并带走代谢产物,同时通过血管向其它组织运输转移细胞,并在机体的其它部位继续生长和诱导血管形成,导致肿瘤转移。肿瘤血管形成的机制非常复杂,涉及许多细胞因子、细胞基质及蛋白水解酶的相互作用;现在大多数人已经接受“血管生成开关”的观点,认为血管形成主要受促进因子和抑制因子的共同调节;其中血管内皮生长因子(VEGF)是最重要的促血管生成因子,它不仅促进新生血管的生成,还有抗血管内皮细胞凋亡作用。许多外来因素如放射治疗、肿瘤内环境因素(缺氧及PH值下降)等均可促进VEGF的表达和分泌。肿瘤细胞正是通过改变血管生成调节因子的局部平衡,激活宿主血管内皮细胞,使其增殖,向肿瘤方向迁移并形成管腔,从而形成了肿瘤的未成熟血管。肿瘤血管的生成处于一种失控的无序状态,与正常血管相比在细胞组成、组织结构和功能特点等方面均不相同。肿瘤血管缺乏完整的平滑肌和基底膜结构,管壁较薄;肿瘤细胞和内皮细胞相间排列在肿瘤血管内表面,形成“马赛克血管”;内皮细胞间存在较大间隙,基底膜不完整导致渗透性增强;血浆白蛋白漏出导致组织间隙压力增加;肿瘤血管高度无序、迂曲、膨胀、粗细不均以及分支过多,可导致血流紊乱、缺氧及酸性物质堆积区形成。在这些乏氧区,肿瘤上调血管生成因子以防止细胞凋亡,可能与放疗失败的原因有关。恶性肿瘤不仅诱导其本身血管新生,还刺激肿瘤邻近组织血管新生,为其恶性增殖进一步提供所需营养和氧气,如果没有血管新生,大部分肿瘤则处于休眠状态,直径不超过2~3mm[2 ]。 2放疗与血管生成 放疗后将导致强烈的血管生成[3]。Gorski等报道,各种癌细胞株放疗后的VEGF 的表达水平将直接被上调[4],从而促进肿瘤血管的生成。放疗后细胞因子,生长因子以及细胞周期相关基因的转录活化,并调控酪氨酸激酶、MAPKs以及ras基因相关激酶细胞间信号通路而影响肿瘤细胞的存活以及促进肿瘤细胞的增殖。放疗也能够活化EGFR ,EGFR又能活化MAPK通路[5],MAPK通路又促进一些转化因子如TGF-β和VEGF等的表达。放疗本身也可以上调并增强血管生成通路而引起放射抗拒。放疗后经常可以看到肿瘤细胞增殖明显,可能就是血管生成通路被上调的结果[6];同时也可以观察到肿瘤干细胞的增殖。虽然肿瘤在放疗后多数出现再氧合现象,但有些肿瘤却对放疗毫无反应,可能是放疗后其它调节血管生成的因素比如血管渗透性的增加、组织间静水压的增加,肿瘤血流灌注的下降、耗氧量的增加、乏氧增多以及肿瘤存活通路的上调等的作用结果[7-9]。研究表明,放射治疗将导致HIF-1表达水平升高[10], HIF-1通过调节依赖VEGF的信号传导途径和非依赖VEGF 的信号传导途径[11],从而促进肿瘤血管形成。所有那些因素共同刺激放射治疗后肿瘤血管的生成,导致肿瘤血管的形成,引起放射敏感性下降,放射抗拒。放疗与血管生成对于肿瘤

《放射治疗学》考试题

. '. 《放射治疗学》试卷姓名专业 一、单项选择题(每题2分,共40分。请将答案写在表格内) 1.用于治疗肿瘤的放射线可以是放射性核素产生的射线是: A.αB.δC.θ 2.X线治疗机和各类加速器产生的不同能量的射线是: A.γB.αC.X 3.各类加速器也能产生的射线是: A.电子束B.高级质子束C.低能粒子束 4.放射治疗与外科手术一样,是: A.局部治疗手段B.全身治疗手段C.化学治疗手段 5.放射治疗是用什么物质杀伤肿瘤细胞,达到治愈的目的? A.放射线B.化学药物C.激光 6.放射线治疗的适应证比较广泛,临床上约有多大比例的恶性肿瘤病人需要做放射治疗?A.50% B.70% C.90% 7.60钴的半衰期是: A.5.27年B.6.27年C.7.27年 8.几个半价层厚度的铅,可使原射线的透射率小于5%? A.4.5~5.0 B.6.5~7.0 C.7.5~8.0 9.照射患者一定深度组织的吸收剂量为: A.组织量B.空气量C.机器输出量 10.放射源到体模表面照射野中心的距离是: A.源皮距B.源瘤距C.源床距 11在放射治疗中,直接与肿瘤患者治疗有关的常用设备有: A.DSA B.适形调强C.加速器和钴-60治疗机 12.60钴治疗机的半影有: A.物理半影B.化学半影C.散射半影 13.高能x射线的基本特点是: A.等中心照射较60钴治疗机更准B.在组织中有更高的穿透能力C.照射更准确 14.高能电子束的基本特点是: A.高能电子束易于散射B.主要用于深部肿瘤的照射 C.不同能量的电子束在介质中有确定的有限射程 15.模拟治疗定位机的临床应用主要表现在: A.肿瘤和敏感器官的定位B.评价治疗计划的好坏C.固定病人的体位 16.放射治疗中用的楔形板的楔形角度有: A.100 B.200 C.300 D.400 17.放射敏感的肿瘤是指: A.给以较低的剂量即可达到临床治愈B.给以较低的剂量即可达到永久治愈C.该类肿瘤不易远处转移 18.立体定向放射治疗是: A.精确放射治疗B.根治性放射治疗C.普通放射治疗 19.一般来讲,人体组织细胞对放射线的敏感性与组织繁殖能力成正比,与分化程度成反比,即: A.繁殖能力愈强的组织对放射线愈敏感 B.繁殖能力愈强的组织对放射线愈不敏感 C.分化程度愈高的组织对放射线愈敏感 20.各种不同组织接受照射后能够耐受而不致造成不可逆性损伤所需要的最大剂量为: A.该组织的耐受剂量B.该组织的损伤剂量C.该组织的治疗剂量 二、填空题(每空1分,共40分) 1.在照射的线束内,把线束内测量的同等剂量点连线的曲线称_______________。 2.远距离放射治疗的方式有__________放射治疗技术,__________放射放射治疗技术,_________放射治疗技术。3.近距离放射治疗的方式有____________技术,______________技术,_________技术,_____________技术。 4.放射治疗的种类有___________放射治疗,____________放射治疗,__________放射治疗,__________放射治疗,___________放射治疗。 5.肿瘤区__________是指通过临床或影像检查可发现的肿瘤范围,包括_____________,_____________和____________。 6.恶性肿瘤的放射治疗剂量应当选择在正常组织能够耐受且肿瘤细胞致死的范围内,这样才能使肿瘤逐渐消退,周围正常组织不产生严重损伤。对射线不同敏感的肿瘤放射剂量大致分:_______________的肿瘤剂量,______________肿瘤剂量,______________的肿瘤剂量,_____________的肿瘤剂量,_________放射治疗剂量。 7.根据楔形板造成的等剂量曲线倾斜变形结果看,楔形板使用具有__________,放疗摆位中必须注意其__________,严格遵守___________的要求,如果使用中楔形板方向出现错误,结果将适得其反。 8.肿瘤放疗中,由于病灶总是不规则形状,常需要用铅挡块或加速器多叶准直器系统屏蔽遮挡___________或____________,使其免受或少受照射,形成___________。 9.斗蓬野照射技术一般适用于___________隔上病变的治疗,照射范围包括______,___________,__________,___________。 10.全身照射主要用于____________及某些全身广泛性且对_______________的恶性肿瘤的治疗。 11.全身照射技术主要用于白血病的骨髓移植予处理,可以达到三个目的,_________________,________________,________________________。 12.体位固定技术大致分两种_______________, ________________。 三、问答题(20分) 阐述60钴治疗机的临床应用特点。

放射治疗

放射治疗 1、医用加速器电子线范围治疗能量范围为4-25MeV。 2、放疗计划验证包括的内容有:治疗机等中心,治疗机定位激光线,患者几何位置,治疗机绝对剂量。 3、同位素60钴的半衰期是5.3年 4、与60钴相比,普通X线治疗机的缺点主要在于深部剂量低,皮肤量高 5、从事放射治疗专业的人员包括:维修工程师,放疗医生,放疗技师,物理师。 6、放疗物理师的工作范围包括:质量控制和质量保证。 7、模拟技术员的工作范围包括:放疗患者的定位、拍片 8、下列关于放疗技术员的职责描述正确的是:要了解所使用的治疗机的性能及基本结构,掌握正确操作机器的方法,熟悉所使用的射线的性质特点及工作条件,要准确无误的执行治疗计划,摆位要正确 9、根治性放射治疗的目的不是为了减轻症状和改善生活质量。 10、目前,国内外肿瘤放射治疗设备中,应用最为广泛的外照射治疗设备是直线加速器。 11、视神经、视网膜、角膜的放射耐受量为≤5000cGy/5周 12、避免正常组织超量的原则,正确的是牢记各种重要组织器官放射耐受量,照射应尽量少包括正常组织 13、在头颈部肿瘤患者的放射治疗中,对重要组织器官进行防护时正确的是对鼻旁窦肿瘤放疗时需将泪腺遮挡,以免日后出现严重干眼症、角膜炎等,鼻咽、口咽、口腔肿瘤放疗中应常规挡喉,能量较低的高能射线作单侧野照射可降低颞颌关节和下颌骨的放射剂量,对腮腺区肿瘤放射治疗时,用单侧两野交角高能X线照射可以保护健侧腮腺,从而尽量减少放疗后口干的症状 14、有关头颈部肿瘤术前放疗的描述不正确的是术前放疗50Gy的剂量会明显增加手术的并发症 15、下列关于唇癌的描述中,正确的是唇癌是仅次于皮肤癌的最常见的头颈部肿瘤,唇癌以局部侵犯为主,较少出现局部淋巴结转移,近中线处的下唇癌多转移至颏下满巴结,下唇癌多转移至颌下淋巴结。 16、下列关于放疗技术员工作的基本要求的描述不正确的是 17、根治性放疗包括肿瘤原发区和肿瘤相关的淋巴引流区 18、姑息性放疗的目的主要是减轻症状和改善生活质量,不追求肿瘤的消退 19、在细胞周期中的肿瘤细胞,G2/M肿瘤细胞对射线最敏感 20、调强放射治疗英文字母缩写是IMRT 21、X射线射线不属于高LET射线 22、放射治疗常规分割的分次剂量一般是1.8-2.0 Gy 23、源皮距(SSD)是指射线源到人体皮肤表面某一点的距离 24、中心轴百分深度剂量(PDD

肿瘤放射治疗技术新进展

肿瘤放射治疗技术新进展 2007-12-17 放射肿瘤学由于高科技的发展已取得了许多理论上和技术上的突破,本文简要介绍了放射生物科学,生物等效剂量超分割以及三维调强立体定向放射等技术的进展。 1放射生物学进展 1.1放射生物学的进展以线性——平方模式(Linear-Quadratic model)来解释放射生物学中的反应,以α/β系数来预测放射治疗剂量时间疗效关系,为放射生物学开辟了较为广阔的天地。近年来深入研究了细胞周期,即增殖期(G1-S-G2-M)和静止期(G0)的关系,为此提出了4个R:即是修复(Repair),再氧化(Reoxygenation)和再分布(Redistribution)和再增殖(Regeneration)作为指导放射生物中克服乏氧等问题的研究要点,放射生物学推进到目的明确,针对性强的有效研究中去。近年来在研究细胞修复和增殖中又进一步了解到细胞凋亡(Apoptosis)和细胞分裂(Mitosis)的关系后,提出了凋亡指数(AI)与分裂指数(MI) (Apoptosisindex/Mitosisindex)比来予测放射敏感性和预后,指导调发自发性凋亡和平衡各种细胞的抗放、耐药(即Resistant RT和Resistant Chemotherapy),并由此估计复发,研究增敏,开发出超分割、加速超分割治疗等新技术,从而取得了科研及临床的许多新结果,加深了理论深度,开拓出新的领域,推动了放射治疗学的进展。 1.2DNA和染色体研究 为了测定肿瘤细胞本身辐射损伤,染色体中DNA链中的断裂(单链断裂SSB和双链断裂DS,其断裂的准确位置,以及在这个过程中,肿瘤细胞如何进行修复,也观察到错误修复,以及无修复等对细胞的子代产生的决定作用。目前临床用对DNA调节机制的多种原理表达进行测试,可以分清那些是有意义的表达,那些是灵敏的表达,建立对临床治疗,预后评估的方法学和化验项目,指导放射生物学,放射物理学,临床放射肿瘤学的发展,使更有目的性,针对性和实用性。放射生物学从细胞水平已进入到大分子水平,从纯实验室过渡到临床初步应用阶段。 2放射物理技术的进展 2.1立体定向治疗的实现 基于电子计算机精度提高,双螺旋CT及高清晰度MRI出现,因此立体定向治疗应运而生,目前使用的γ-刀,从某种意义来说是一个立体定向放射手术过程(Sterol Radiation Surgery,SRS),它通过聚焦,等中心照准,于单次短时间或多次较长时间给予肿瘤超常规致死量治疗,达到摧毁瘤区细胞的目的,γ刀利用约30~200个钴源,在等中心条件下,从立体不同方向位置,在短距离内对细小肿瘤(或良性肿瘤,先天畸形等病灶,一般约1~2cmΦ)进行一次或多次照射,给予总剂量超过肿瘤及正常组织耐受量,用准确聚焦的办法使多个60Co源的剂量集中在靶区,分射束聚焦使周围正常组织受量仍在可能的耐受量中,由于采用电脑、CT,以及准确的立体设计定位,因而射野边界锐利可达±2mm以下,确保了非瘤区正常组织安全。应用于脑部的良性小肿瘤和先天性畸形效果尤佳,应用于脑干等生命禁区

肿瘤放疗前沿技术--IGRTVGRTSGRTDGRT四维放疗简介

Image Guided Radio Therapy(IGRT),是指为了解决病人器官移位对放疗剂量和靶区的影响而采用的技术,它主要是利用各种影像工具所获的病人放疗任一时刻靶区所在影像位置和变化来调整放疗源与准直器和射野,以使肿瘤完全在TPS所设计的范围内。随其发展而来的是VGRT(容积影像引导的肿瘤放疗),SGRT(结构影像引导的放疗),DGRT(剂量引导的放疗),虽然定义和技术上与IGRT略有不同,但总体来说都是一个意义。以上各项均可称之为四维放疗。它包括肿瘤的上下,左右,前后,运动四维角度。 一、四维放疗技术的由来:肿瘤由于呼吸等器官运动的影响,在放疗过程中各个方向均是运动的,无论Tumor是在头颈部还是在胸部还是腹部,只不过在胸部的运动幅度更大,据报道在胸部的肿瘤平均移动范围可达2-3cm,且各个方向的幅度也不同,在这种情况下我们在确定PTV时必须在CTV各方向外扩2-3cm,这在肺癌等胸部肿瘤来说是不可能扩这么大范围的,而在进行IMRT治疗时肿瘤的剂量更不确定。 图1、肿瘤在各个方向上的运动示意图: 图2、肿瘤在各个方向上的运动影像图示:

二、四维放疗的发展历程(从被动呼吸门控到呼吸引导门控): Gating technique 是四维放疗技术的基础; 1、被动呼吸门控:现在主要应用的是ABC和DIBH 1-1、ABC(Active Breathing Coordinator):这种技术在国内已用不少单位应用,主要是利用呼吸罩控制病人呼吸,在射线投照时使患者在一定时间(如10S)呼吸暂时停止的方法,从而控制肿瘤运动。在进行IMRT治疗CT扫描时也必须获得的是在ABC时的图像 图3、ABC控制示意图: 图4:CT扫描时的图像控制验证对比:从左到右依次为1、正常呼吸下的CT图像,2、放疗开始时某一呼吸深度ABC时的图像,3、30分钟后同一呼吸深度ABC时的图像,从图像中我们可以看到肿瘤位移的控制,2与3基本相同

2015年肿瘤放射治疗技术(中级)专业知识真题知识点

2015年肿瘤放射治疗技术(中级)专业知识真题知识点山西医科大学第一医院放疗科傅炜 1、近距离照射治疗距离5mm~5cm 2、铯137具有和镭相同的穿透力,同等当量具有类似的剂量分布。放射性比度不可能做得太高,多用于腔内照射。铯134的半衰期比铯137短得多。 3、铱192,在距源5cm范围内任意点的剂量率与距离平方的乘积近似不变。半衰期74.2天。 4、碘125源的γ射线能量较低,主要用于眼内黑色素瘤的巩膜外插植。 5、钯103的半衰期比碘125更短,比碘125能产生更高的生物剂量效应。 6、锶90可用于治疗表浅病变,同时不会影响皮肤的血液供应 7、锎252为中子放射源。 8、医用加速器的种类有三种:电子感应加速器,电子直线加速器和回旋加速器 9、电子直线加速器是利用微波电场把电子加速到高能的装置 10、X线治疗机使用复合滤过板,要注意防止次序,从射线窗口向外,先放原子序数高的。 11、钴60治疗机几何半影的计算公式(书上有)

12、钴60治疗机电源具有足够的内阻抗,使用有载和空载两种稳定状态之间的电压波动不超过±5% 13、1953年第一台行波电子直线加速器在英国投入使用。 14、磁控管,3000兆赫兹频段,兆瓦级的脉冲大功率震荡管 15、微波功率源有磁控管和速调管 16、巴黎系统的布源规则(书上) 17、步进源计量学系统,AL=L-10mm 18、模拟定位机射野“井”字界定线的用途(书上) 19、CT模拟机的定位床的进床精度应保持在0.5mm之内 20、组织补偿器放置在射野挡块托架上。 21、射野胶片照相验证(书上) 22、EPID可用于位置验证和剂量验证。 23、肿瘤剂量的不确定度应控制在±5%以内;接受照射的治疗体积内,处方剂量的变化应在﹢7%和-5%以内 24、热点的概念(书上) 25、治疗验证,独立核对常用于常规放疗和适形放疗,模体测量用于调强放疗,在体测量在我国不是必须要做的 26、对于体厚20cm的患者,10~25MV能量的X线比较理想。 27、高能电子束照射,电子束能量E0≈3*d后+2~3(MeV) 28、两野对穿照射,一般应该使每野在体位中心处的深度剂量≥70% 29、优化算法,积分方程的逆向直接求解:傅里叶变换;使

肿瘤放疗前沿技术--IGRT

肿瘤放疗前沿技术--IGRT/VGRT/SGRT/DGRT/四维放疗简介Image Guided Radio Therapy(IGRT),是指为了解决病人器官移位对放疗剂量和靶区的影响而采用的技术,它主要是利用各种影像工具所获的病人放疗任一时刻靶区所在影像位置和变化来调整放疗源与准直器和射野,以使肿瘤完全在TPS所设计的范围内。随其发展而来的是VGRT (容积影像引导的肿瘤放疗),SGRT(结构影像引导的放疗),DGRT(剂量引导的放疗),虽然定义和技术上与IGRT略有不同,但总体来说都是一个意义。以上各项均可称之为四维放疗。它包括肿瘤的上下,左右,前后,运动四维角度。 疗技术的由来:肿瘤由于呼吸等器官运动的影响,在放疗过程中各个方向均是运动的,无论Tumor是在头颈部还是在胸部还是腹部,只不过在胸部的运动幅度更大,据报道在胸部的肿瘤平均移动范围可达2-3cm,且各个方向的幅度也不同,在这种情况下我们在确定PTV时必须在CTV各方向外扩2-3cm,这在肺癌等胸部肿瘤来说是不可能扩这么大范围的,而在进行IMRT 治疗时肿瘤的剂量更不确定。 图1、肿瘤在各个方向上的运动示意图: 图2、肿瘤在各个方向上的运动影像图示:

二、四维放疗的发展历程(从被动呼吸门控到呼吸引导门控): Gating technique 是四维放疗技术的基础; 1、被动呼吸门控:现在主要应用的是ABC和DIBH 1-1、ABC(Active Breathing Coordinator):这种技术在国内已用不少单位应用,主要是利用呼吸罩控制病人呼吸,在射线投照时使患者在一定时间(如10S)呼吸暂时停止的方法,从而控制肿瘤运动。在进行IMRT治疗CT扫描时也必须获得的是在ABC时的图像图3、ABC控制示意图: 图4:CT扫描时的图像控制验证对比:从左到右依次为1、正常呼吸下的CT图像,2、放疗开始时某一呼吸深度ABC时的图像,3、30分钟后同一呼吸深度ABC时的图像,从图像中我们可以看到肿瘤位移的控制,2与3基本相同

相关文档
最新文档