2019重庆中考数学(A卷)试题及答案
2019年重庆市中考数学试卷及答案

2019年重庆市中考数学试卷及答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣22.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.54.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.B.C.D.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1 9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A (2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.4010.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.612.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+()﹣1=.14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函y=x﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣3|+b≤x﹣3的解集.24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.25.(10分)如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=CM+2CE.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.2019年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比﹣1小的数是()A.2 B.1 C.0 D.﹣2【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:∵﹣2<﹣1<0<2,∴比﹣1小的数是﹣2,故选:D.【点评】本题考查了有理数的大小比较,注意:正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小.2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2 B.3 C.4 D.5【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.【点评】此题主要考查了相似三角形的性质,正确得出对应边之间关系是解题关键.4.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°【分析】由切线的性质得出∠BAC=90°,求出∠ABC=40°,由等腰三角形的性质得出∠ODB=∠ABC=40°,再由三角形的外角性质即可得出结果.【解答】解:∵AC是⊙O的切线,∴AB⊥AC,∴∠BAC=90°,∵∠C=50°,∴∠ABC=40°,∵OD=OB,∴∠ODB=∠ABC=40°,∴∠AOD=∠ODB+∠ABC=80°;故选:C.【点评】本题考查了切线的性质,等腰三角形的性质、直角三角形两锐角互余、三角形的外角性质,熟练运用切线的性质是本题的关键.5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【分析】根据矩形的判定方法判断即可.【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题熟练掌握矩形的判定方法是解题的关键.6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.【点评】本题考查了二次根式的乘法和无理数的估算,熟练掌握二次根式的计算法则是关键.7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.B.C.D.【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1【分析】根据题意一一计算即可判断.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.【点评】本题考查代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A (2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.40【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E(x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x﹣2)2+42=x2,求出x,得到E点坐标,代入y=,利用待定系数法求出k.【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20.故选:B.【点评】本题考查了矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E点坐标是解题的关键.10.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米【分析】如图,根据已知条件得到=1:2.4=,设CF=5k,AF=12k,根据勾股定理得到AC==13k=26,求得AF=10,CF=24,得到EF=6+24=30,根据三角函数的定义即可得到结论.【解答】解:如图,∵=1:2.4=,∴设CF=5k,AF=12k,∴AC==13k=26,∴k=2,∴AF=10,CF=24,∵AE=6,∴EF=6+24=30,∵∠DEF=48°,∴tan48°===1.11,∴DF=33.3,∴CD=33.3﹣10=23.3,答:古树CD的高度约为23.3米,故选:C.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.6【分析】先解关于x的一元一次不等式组,再根据其解集是x≤a,得a小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a的值,再求和即可.【解答】解:由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴a≥﹣3,且a=﹣3,a=﹣1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.【点评】本题综合考查了含参一元一次不等式,含参分式方程得问题,需要考虑的因素较多,属于易错题.12.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM =,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣3)0+()﹣1= 3 .【分析】根据零指数幂和负整数指数幂计算可得.【解答】解:原式=1+2=3,故答案为:3.【点评】本题主要考查零指数幂和负整数指数幂,解题的关键是掌握a﹣p=(a≠0,p为正整数)及a0=1(a≠0).14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 2.56×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于25600000有8位,所以可以确定n=8﹣1=7.【解答】解:25600000=2.56×107.故答案为:2.56×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.【分析】先画树状图展示所有30种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有30种等可能的结果数,其中两次都摸到红球的结果数为6,所以两次都摸到红球的概率为=.故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为2﹣π.(结果保留π)【分析】根据菱形的性质得到AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,根据直角三角形的性质求出AC、BD,根据扇形面积公式、菱形面积公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.【点评】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是6000 米.【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【解答】解:由题意可得,甲的速度为:4000÷(12﹣2﹣2)=500米/分,乙的速度为:=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12﹣2)﹣500×2+500×4=6000(米),故答案为:6000.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是3:20 .【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【解答】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意可得,由①得x=③,将③代入②,z=y,∴贝母的面积与该村种植这三种中药材的总面积之比=,故答案为3:20.【点评】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷【分析】(1)根据完全平方公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(x+y)2﹣y(2x+y)=x2+2xy+y2﹣2xy﹣y2=x2;(2)(a+)÷====.【点评】本题考查分式的混合运算、完全平方公式、单项式乘多项式,解答本题的关键是明确它们各自的计算方法.20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.【点评】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b众数c100方差52 50.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x ≥90)的学生人数是多少?【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)a=(1﹣20%﹣10%﹣)×100=40,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平方数,∴b==94;∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×=468人,答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点评】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.【解答】解:(1)2019不是“纯数”,2020是“纯数”,理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不。
最新2019年重庆市中考数学试题(A卷)及参考答案(word解析版)

(满分 150 分,考试时间 120 分钟)
参考公式:抛物线
y=ax
2
+bx+c
(
a≠
0
)的顶点坐标为
b 4ac b2
,Leabharlann ,对称轴为 x2a 4a
b
.
2a
一、选择题: (本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为
25600000 人次,请把数
25600000 用科学记数法表示为
.
15.一个不透明的布袋内装有除颜色外,其余完全相同的
3 个红球, 2 个白球, 1 个黄球,搅匀后,
从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率
为
.
16.如图,在菱形 ABCD 中,对角线 AC ,BD 交于点 O,∠ABC = 60°, AB = 2,分别以点 A、点 C 为圆心,以 AO 的长为半
径画弧 分别与 菱形的边相交,则图中阴影 部分 的面积
为
.(结果保留 π)
17.某公司快递员甲匀速骑车前往某小区送物件, 出发几分钟后, 快递员乙发现甲的手机落在公司, 无法联系, 于是乙匀速骑车去追赶甲. 乙刚出发 2 分钟
时,甲也发现自己手机落在公司, 立刻按原路原速骑车
回公司, 2 分钟后甲遇到乙,乙把手机给甲后立即原路
一半的钱给甲,则甲的数为 50;而甲把其 的钱给乙,则乙的钱数也为 50,问甲、乙各有多少
钱?设甲的钱数为 x,乙的钱数为 y,则可建立方程组为(
)
A.
B.
C.
D.
8.按如图所示的运算程序,能使输出 y 值为 1 的是(
重庆市2019年中考数学试卷及解析

2019年重庆市中考数学试卷一.选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A .B .C .D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2019重庆)在﹣3,﹣1,0,2这四个数中,最小的数是( )A .﹣3B .﹣1C .0D .2考点:有理数大小比较。
解答:解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A .2.(2019重庆)下列图形中,是轴对称图形的是( )A .B .C .D .考点:轴对称图形。
解答:解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .3.(2019重庆)计算()2ab 的结果是( )A .2abB .b a 2C .22b aD .2ab考点:幂的乘方与积的乘方。
解答:解:原式=a 2b 2.故选C .4.(2019重庆)已知:如图,OA ,OB 是⊙O 的两条半径,且OA⊥OB,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20°考点:圆周角定理。
解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=45°.故选A .5.(2019重庆)下列调查中,适宜采用全面调查(普查)方式的是( )A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率考点:全面调查与抽样调查。
解答:解:A 、数量较大,普查的意义或价值不大时,应选择抽样调查;B 、数量较大,具有破坏性的调查,应选择抽样调查;C 、事关重大的调查往往选用普查;D 、数量较大,普查的意义或价值不大时,应选择抽样调查.故选C .6.(2019重庆)已知:如图,BD 平分∠ABC,点E 在BC 上,EF∥AB.若∠CEF=100°,则∠ABD 的度数为( )A .60°B .50°C .40°D .30°考点:平行线的性质;角平分线的定义。
2019年重庆市中考数学试题(A卷)含答案解析(word版)

重庆市2019年初中毕业暨高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a --(,对称轴为2b x a =-. 一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(2019•重庆A )在—4,0,—1,3这四个数中,最大的数是( )A. —4B. 0C. —1D. 3考点:有理数大小比较.分析:先计算| ﹣4|=4 ,| ﹣1|=1,根据负数的绝对值越大,这个数越小得﹣4 <﹣1,再根据正 数大于0,负数小于0 得到﹣4 <﹣1<0<3 .解答:解:∵| ﹣4|=4 ,| ﹣1|=1,∴﹣4 <﹣1,∴﹣4 ,0,﹣1,3 这四个数的大小关系为﹣4 <﹣1<0<3 .故选D .点评:本题考查了有理数大小比较:正数大于0,负数小于0 ;负数的绝对值越大,这个数 越小.2.(2019•重庆A )下列图形是轴对称图形的是( )A .B .C . D考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A 、是轴对称图形,故正确;B 、不是轴对称图形,故错误;C 、不是轴对称图形,故错误;D 、不是轴对称图形,故错误.故选A .点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称 轴折叠后可重合.3.(2019•重庆A 12 )A. 43B. 23C. 32D. 6考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2 .故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.4.(2019•重庆A)计算()32a b的结果是()A. 63a b D. 6a ba b C. 53a b B. 23考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n =a mn(m ,n 是正整数);②(ab )n =a n b n(n 是正整数);求出()32a b的结果是多少即可.解答:解:()32a b= (a 2)3•b 3= 63a b即计算()32a b的结果是63a b.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n =a mn (m ,n 是正整数);②(ab )n=a n b n.5.(2019•重庆A)下列调查中,最适合用普查方式的是()A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生视力情况C. 调查重庆市初中学生锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、调查一批电视机的使用寿命情况,调查局有破坏性,适合抽样调查,故A 不符合题意;B、调查某中学九年级一班学生的视力情况,适合普查,故B 符合题意;C、调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故C 不符合题意;D 、调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故D 不符合题意;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.(2019•重庆A )如图,直线AB ∥CD ,直线EF 分别与直线AB,CD 相交于点G ,H 。
2019年重庆市中考数学试卷(a卷)(附答案,解析)

2019年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)(2019•重庆)下列各数中,比1-小的数是()A.2B.1C.0D.2-2.(4分)(2019•重庆)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.(4分)(2019•重庆)如图,ABO CDODO=,2BO=,3CD=,则AB的长是()∆∆∽,若6A.2B.3C.4D.54.(4分)(2019•重庆)如图,AB是O的直径,AC是O的切线,A为切点,BC与O交于点D,连结OD.若50∠的度数为()∠=︒,则AODCA.40︒B.50︒C.80︒D.100︒5.(4分)(2019•重庆)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形6.(4分)(2019•重庆)估计1(2362)3+⨯的值应在( ) A .4和5之间 B .5和6之间 C .6和7之间 D .7和8之间7.(4分)(2019•重庆)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ B .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩D .15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 8.(4分)(2019•重庆)按如图所示的运算程序,能使输出y 值为1的是( )A .1m =,1n =B .1m =,0n =C .1m =,2n =D .2m =,1n =9.(4分)(2019•重庆)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线//BD x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E .若点(2,0)A ,(0,4)D ,则k 的值为( )A .16B .20C .32D .4010.(4分)(2019•重庆)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)1:2.4i =的山坡AB 上发现有一棵古树CD .测得古树底端C 到山脚点A 的距离26AC =米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角48AED ∠=︒(古树CD与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( ) (参考数据:sin480.73︒≈,cos480.67︒≈,tan 48 1.11)︒≈A .17.0米B .21.9米C .23.3米D .33.3米11.(4分)(2019•重庆)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩的解集是x a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .612.(4分)(2019•重庆)如图,在ABC ∆中,D 是AC 边上的中点,连结BD ,把BDC ∆沿BD 翻折,得到BDC '∆,DC '与AB 交于点E ,连结AC ',若2AD AC ='=,3BD =,则点D 到BC '的距离为( )A 33B .3217C 7D 13二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2019•重庆)计算:011(3)()2π--+= 14.(4分)(2019•重庆)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 .15.(4分)(2019•重庆)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 .16.(4分)(2019•重庆)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,60ABC ∠=︒,2AB =,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留)π17.(4分)(2019•重庆)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 米.18.(4分)(2019•重庆)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)(2019•重庆)计算:(1)2()(2)x y y x y +-+(2)2949()22a a a a a --+÷-- 20.(10分)(2019•重庆)如图,在ABC ∆中,AB AC =,D 是BC 边上的中点,连结AD ,BE 平分ABC ∠交AC 于点E ,过点E 作//EF BC 交AB 于点F .(1)若36C ∠=︒,求BAD ∠的度数;(2)求证:FB FE =.21.(10分)(2019•重庆)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100)x ,下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表 年级七年级 八年级 平均数92 92 中位数93 b 众数c 100 方差 5250.4 根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(90)x 的学生人数是多少?22.(10分)(2019•重庆)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数- “纯数”.定义;对于自然数n ,在计算(1)(2)n n n ++++时,各数位都不产生进位,则称这个自然数n 为“纯数”, 例如:32是”纯数”,因为计算323334++时,各数位都不产生进位;23不是“纯数”,因为计算232425++时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.23.(10分)(2019•重庆)在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义(0)||(0)a a a a a ⎧=⎨-<⎩. 结合上面经历的学习过程,现在来解决下面的问题在函数|3|y kx b =-+中,当2x =时,4y =-;当0x =时,1y =-.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函132y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式1|3|32kx b x -+-的解集.24.(10分)(2019•重庆)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2%a ,每户物管费将会减少3%10a ;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6%a ,每户物管费将会减少1%4a .这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少5%18a ,求a 的值. 25.(10分)(2019•重庆)如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM AE ⊥,垂足为E ,交CD 于点M ,AF BC ⊥,垂足为F ,BH AE ⊥,垂足为H ,交AF 于点N ,点P 是AD 上一点,连接CP .(1)若24DP AP ==,17CP =,5CD =,求ACD ∆的面积.(2)若AE BN =,AN CE =,求证:22AD CM CE =+.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)(2019•重庆)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴交于点A ,B (点A 在点B 的左侧),交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN BD ⊥,交抛物线于点N (点N 在对称轴的右侧),过点N 作NH x ⊥轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求13HF FP PC ++的最小值; (2)在(1)中,当MN 取得最大值,13HF FP PC ++取得最小值时,把点P 2个单位得到点Q ,连结AQ ,把AOQ ∆绕点O 顺时针旋转一定的角度(0360)αα︒<<︒,得到△A OQ '',其中边A Q ''交坐标轴于点G .在旋转过程中,是否存在一点G ,使得Q Q OG ''∠=∠?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.2019年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,比1-小的数是()A.2B.1C.0D.2-【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:2102-<-<<,∴比1-小的数是2-,故选:D.2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.3.(4分)如图,ABO CDO∆∆∽,若6BO=,3DO=,2CD=,则AB的长是()A.2B.3C.4D.5【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:ABO CDO∆∆∽,∴BO AB DO DC=,6BO=,3DO=,2CD=,∴632AB =,解得:4AB=.故选:C.4.(4分)如图,AB是O的直径,AC是O的切线,A为切点,BC与O交于点D,连结OD.若50C∠=︒,则AOD∠的度数为()A.40︒B.50︒C.80︒D.100︒【分析】由切线的性质得出90BAC∠=︒,求出40ABC∠=︒,由等腰三角形的性质得出40ODB ABC∠=∠=︒,再由三角形的外角性质即可得出结果.【解答】解:AC是O的切线,AB AC∴⊥,90BAC∴∠=︒,50C∠=︒,40ABC∴∠=︒,OD OB=,40ODB ABC∴∠=∠=︒,80AOD ODB ABC∴∠=∠+∠=︒;故选:C.5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【分析】根据矩形的判定方法判断即可.【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.6.(4分)估计()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先根据二次根式的乘法进行计算,再进行估算.【解答】解:2=+2=+2=+4245<<,627∴<+,故选:C.7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩.故选:A.8.(4分)按如图所示的运算程序,能使输出y 值为1的是( )A .1m =,1n =B .1m =,0n =C .1m =,2n =D .2m =,1n =【分析】根据题意一一计算即可判断.【解答】解:当1m =,1n =时,21213y m =+=+=,当1m =,0n =时,211y n =-=-,当1m =,2n =时,213y m =+=,当2m =,1n =时,211y n =-=,故选:D .9.(4分)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线//BD x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E .若点(2,0)A ,(0,4)D ,则k 的值为( )A .16B .20C .32D .40【分析】根据平行于x 轴的直线上任意两点纵坐标相同,可设(,4)B x .利用矩形的性质得出E 为BD 中点,90DAB ∠=︒.根据线段中点坐标公式得出1(2E x ,4). 由勾股定理得出222AD AB BD +=,列出方程2222224(2)4x x ++-+=,求出x ,得到E 点坐标,代入k y x=,利用待定系数法求出k .【解答】解://BD x 轴,(0,4)D , B ∴、D 两点纵坐标相同,都为4,∴可设(,4)B x .矩形ABCD 的对角线的交点为E ,E ∴为BD 中点,90DAB ∠=︒.1(2E x ∴,4). 90DAB ∠=︒,222AD AB BD ∴+=,(2,0)A ,(0,4)D ,(,4)B x ,2222224(2)4x x ∴++-+=,解得10x =,(5,4)E ∴.反比例函数(0,0)k y k x x=>>的图象经过点E , 5420k ∴=⨯=.故选:B .10.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)1:2.4i =的山坡AB 上发现有一棵古树CD .测得古树底端C 到山脚点A 的距离26AC =米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角48AED ∠=︒(古树CD 与山坡AB 的剖面、点E 在同一平面上,古树CD 与直线AE 垂直),则古树CD 的高度约为( )(参考数据:sin480.73︒≈,cos480.67︒≈,tan 48 1.11)︒≈A .17.0米B .21.9米C .23.3米D .33.3米【分析】如图,根据已知条件得到51:2.412CF AF ==,设5CF k =,12AF k =,根据勾股定理得到221326AC CF AF k =+==,求得10AF =,24CF =,得到62430EF =+=,根据三角函数的定义即可得到结论.【解答】解:如图,51:2.412CF AF ==, ∴设5CF k =,12AF k =,221326AC CF AF k ∴=+==,2k ∴=,10AF ∴=,24CF =,6AE =,62430EF ∴=+=,48DEF ∠=︒,tan 48 1.1130DF DF EF ∴︒===, 33.3DF ∴=,33.31023.3CD ∴=-=,答:古树CD 的高度约为23.3米,故选:C .11.(4分)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩的解集是x a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .4 D .6 【分析】先解关于x 的一元一次不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩,再根据其解集是x a ,得a 小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a 的值,再求和即可.【解答】解:由不等式组11(42)423122x a x x ⎧--⎪⎪⎨-⎪<+⎪⎩得:5x a x ⎧⎨<⎩ 解集是x a ,5a ∴<;由关于y 的分式方程24111y a y y y---=--得241y a y y -+-=- 32a y +∴=, 有非负整数解,∴302a +, 3a ∴-,且3a =-,1a =-(舍,此时分式方程为增根),1a =,3a =它们的和为1.故选:B .12.(4分)如图,在ABC ∆中,D 是AC 边上的中点,连结BD ,把BDC ∆沿BD 翻折,得到BDC '∆,DC '与AB 交于点E ,连结AC ',若2AD AC ='=,3BD =,则点D 到BC '的距离为( )A 33B 321C 7D 13【分析】连接CC ',交BD 于点M ,过点D 作DH BC '⊥于点H ,由翻折知,BDC BDC '∆≅∆,BD 垂直平分CC ',证ADC '∆为等边三角形,利用解直角三角形求出1DM =,33C M DM '==2BM =,在Rt BMC '∆中,利用勾股定理求出BC '的长,在BDC '∆中利用面积法求出DH 的长.【解答】解:如图,连接CC ',交BD 于点M ,过点D 作DH BC '⊥于点H ,2AD AC ='=,D 是AC 边上的中点,2DC AD ∴==,由翻折知,BDC BDC '∆≅∆,BD 垂直平分CC ',2DC DC '∴==,BC BC '=,CM C M '=,2AD AC DC '∴='==,ADC '∴∆为等边三角形,60ADC AC D C AC '''∴∠=∠=∠=︒,DC DC '=,160302DCC DC C ''∴∠=∠=⨯︒=︒, 在Rt △C DM '中,30DC C '∠=︒,2DC '=,1DM ∴=,33C M DM '312BM BD DM ∴=-=-=,在Rt BMC '∆中,22222(3)7BC BM C M ''=++ 1122BDC S BC DH BD CM '∆'==,∴733DH =⨯,3217DH ∴=, 故选:B .二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:011(3)()2π--+= 3 【分析】根据零指数幂和负整数指数幂计算可得.【解答】解:原式123=+=,故答案为:3.14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 72.5610⨯ .【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值是易错点,由于25600000有8位,所以可以确定817n =-=.【解答】解:725600000 2.5610=⨯.故答案为:72.5610⨯.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为 15. 【分析】先画树状图展示所有30种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有30种等可能的结果数,其中两次都摸到红球的结果数为6,所以两次都摸到红球的概率为61305=. 故答案为:15.16.(4分)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,60ABC ∠=︒,2AB =,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 2233π- .(结果保留)π【分析】根据菱形的性质得到AC BD ⊥,1302ABO ABC ∠=∠=︒,120BAD BCD ∠=∠=︒,根据直角三角形的性质求出AC 、BD ,根据扇形面积公式、菱形面积公式计算即可.【解答】解:四边形ABCD 是菱形,AC BD ∴⊥,1302ABO ABC ∠=∠=︒,120BAD BCD ∠=∠=︒, 112AO AB ∴==, 由勾股定理得,223OB AB OA =-2AC ∴=,23BD =∴阴影部分的面积211201222322323603ππ⨯=⨯⨯⨯=, 故答案为:2233π. 17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 6000 米.【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【解答】解:由题意可得,甲的速度为:4000(1222)500÷--=米/分, 乙的速度为:400050025002100022+⨯-⨯=+米/分, 乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500(122)500250046000⨯--⨯+⨯=(米),故答案为:6000.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 3:20 .【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为()x y +,川香已种植面积13x 、贝母已种植面积14x ,黄连已种植面积512x 依题意列出方程组,用y 的代数式分别表示x 、y ,然后进行计算即可.【解答】解:设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为()x y +,川香已种植面积13x 、贝母已种植面积14x ,黄连已种植面积512x 依题意可得,()5919121640191:3:43164x y x y x y y z x z ⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+= ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①② 由①得32x y =③, 将③代入②,38z y =,∴贝母的面积与该村种植这三种中药材的总面积之比3383202y z x y y y ===++, 故答案为3:20.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)2()(2)x y y x y +-+(2)2949()22a a a a a --+÷-- 【分析】(1)根据完全平方公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)2()(2)x y y x y +-+22222x xy y xy y =++--2x =;(2)2949()22a a a a a --+÷-- (2)(94)22(3)(3)a a a a a a a -+--=-+- 2294(3)(3)a a a a a -+-=+- 2(3)(3)(3)a a a -=+- 33a a -=+. 20.(10分)如图,在ABC ∆中,AB AC =,D 是BC 边上的中点,连结AD ,BE 平分ABC ∠交AC 于点E ,过点E 作//EF BC 交AB 于点F .(1)若36C ∠=︒,求BAD ∠的度数;(2)求证:FB FE =.【分析】(1)利用等腰三角形的三线合一的性质证明90ADB ∠=︒,再利用等腰三角形的性质求出ABC ∠即可解决问题.(2)只要证明FBE FEB ∠=∠即可解决问题.【解答】(1)解:AB AC =,C ABC ∴∠=∠,36C ∠=︒,36ABC ∴∠=︒,BD CD =,AB AC =,AD BC ∴⊥,90ADB ∴∠=︒,903654BAD ∴∠=︒-︒=︒.(2)证明:BE 平分ABC ∠, 12ABE CBE ABC ∴∠=∠=∠, //EF BC ,FEB CBE ∴∠=∠,FBE FEB ∴∠=∠,FB FE ∴=.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100)x ,下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级 七年级 八年级平均数92 92 中位数93 b 众数c 100 方差 5250.4 根据以上信息,解答下列问题:(1)直接写出上述图表中a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(90)x 的学生人数是多少?【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)3(120%10%)1004010a =---⨯=, 八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平方数,9494942b +∴==; 在七年级10名学生的竞赛成绩中99出现的次数最多,99c ∴=;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(90)x 的学生人数1372046820=⨯=人, 答:参加此次竞赛活动成绩优秀(90)x 的学生人数是468人.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数- “纯数”.定义;对于自然数n ,在计算(1)(2)n n n ++++时,各数位都不产生进位,则称这个自然数n 为“纯数”, 例如:32是”纯数”,因为计算323334++时,各数位都不产生进位;23不是“纯数”,因为计算232425++时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.【解答】解:(1)2019不是“纯数”,2020是“纯数”,理由:当2019n =时,12020n +=,22021n +=,个位是90110++=,需要进位,2019∴不是“纯数”; 当2020n =时,12021n +=,22022n +=,个位是0123++=,不需要进位,十位是2226++=,不需要进位,百位为0000++=,不需要进位,千位为2226++=,不需要进位,2020∴是“纯数”; (2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数是,只能是100,由上可得,不大于100的“纯数”的个数为39113++=,即不大于100的“纯数”的有13个.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义(0)||(0)a a a a a ⎧=⎨-<⎩. 结合上面经历的学习过程,现在来解决下面的问题在函数|3|y kxb =-+中,当2x =时,4y =-;当0x =时,1y =-.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函132y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式1|3|32kx b x -+-的解集.【分析】(1)根据在函数|3|y kx b =-+中,当2x =时,4y =-;当0x =时,1y =-,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象并写出它的一条性质;(3)根据图象可以直接写出所求不等式的解集.【解答】解:(1)在函数|3|y kx b =-+中,当2x =时,4y =-;当0x =时,1y =-, ∴|23|4|3|1k b b -+=-⎧⎨-+=-⎩,得324k b ⎧=⎪⎨⎪=-⎩, ∴这个函数的表达式是3|3|42y x =--; (2)3|3|42y x =--, 37(2)231(2)2x x y x x ⎧-⎪⎪∴=⎨⎪--<⎪⎩, ∴函数372y x =-过点(2,4)-和点(4,1)-;函数312y x =--过点(0,1)-和点(2,2)-; 该函数的图象如右图所示,性质是当2x >时,y 随x 的增大而增大;(3)由函数图象可得,不等式1|3|32kx b x -+-的解集是14x .24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2%a,每户物管费将会减少3%10a;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6%a,每户物管费将会减少1%4a.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少5%18a,求a的值.【分析】(1)设该小区有x套80平方米住宅,则50平方米住宅有2x套,根据物管费90000元,可列方程求解;(2)50平方米住宅有50040%200⨯=户参与活动一,80平方米住宅有25020%50⨯=户参与活动一;50平方米住宅每户所交物管费为3100(1%)10a-元,有200(12%)a+户参与活动二;80平方米住宅每户所交物管费为1160(1%)4a-元,有50(16%)a+户参与活动二.根据参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少5%18a,列出方程求解即可.【解答】(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50280)90000x x⨯+=,解得250x=答:该小区共有250套80平方米的住宅.(2)参与活动一:。
2019年中考数学试题(及答案)

2019年中考数学试题(及答案)一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×1072.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯D.94.610⨯C.84610⨯B.7⨯0.46103.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形4.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°5.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC5BC=2,则sin∠ACD的值为()A .5B .25C .5D .237.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x +=C .()136x x -=D .()136x x += 8.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°10.下面的几何体中,主视图为圆的是( )A .B .C .D .11.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .412.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .二、填空题13.已知62x =+,那么222x x -的值是_____.14.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.16.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____.17.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
中考数学真题知识分类练习试卷:有理数(含答案)
有理数一、单选题1.【湖南省娄底市2019年中考数学试题】2019的相反数是()A. B. 2019 C. -2019 D.【答案】C2.【山东省德州市2019年中考数学试题】3的相反数是()A. 3B.C. -3D.【答案】C分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.3.【山东省淄博市2019年中考数学试题】计算的结果是()A. 0B. 1C. ﹣1D.【答案】A【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.4.【山东省潍坊市2019年中考数学试题】( )A. B. C. D.【答案】B分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【江西省2019年中等学校招生考试数学试题】﹣2的绝对值是A. B. C. D.【答案】B6.【浙江省金华市2019年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.详解:∵-1<-<0<1,∴最小的数是-1,故选D.点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.7.【浙江省金华市2019年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D8.【江苏省连云港市2019年中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.详解:150 000 000=1.5×108,故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【江苏省盐城市2019年中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C.D.【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【湖北省孝感市2019年中考数学试题】的倒数是()A. 4B. -4C.D. 16【答案】B分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.11.【安徽省2019年中考数学试题】的绝对值是()A. B. 8 C. D.【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键. 12.【2019年重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2,故选A.【点评】本题考查了相反数的定义,属于中考中的简单题13.【浙江省衢州市2019年中考数学试卷】﹣3的相反数是()A. 3B. ﹣3C.D. ﹣【答案】A14.【2019年浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.【答案】C分析首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.15.【天津市2019年中考数学试题】计算的结果等于()A. 5B.C. 9D.【答案】C分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.16.【山东省滨州市2019年中考数学试题】若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣2【答案】B17.【江苏省连云港市2019年中考数学试题】﹣8的相反数是()A. ﹣8B.C. 8D. ﹣【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:-8的相反数是8,故选:C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.18.【江苏省盐城市2019年中考数学试题】-2019的相反数是()A. 2019B. -2019C.D.【答案】A分析:只有符号不同的两个数叫做互为相反数.详解:-2019的相反数是2019.故选:A.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.19.【湖北省黄冈市2019年中考数学试题】-的相反数是()A. -B. -C.D.【答案】C分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:-的相反数是.故选C.点睛:本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.学科&网20.【四川省宜宾市2019年中考数学试题】3的相反数是()A. B. 3 C. ﹣3 D. ±【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:3的相反数是﹣3,故选C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.【广东省深圳市2019年中考数学试题】260000000用科学计数法表示为( ) 21.A. B. C. D.【答案】B22.【四川省成都市2019年中考数学试题】2019年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市2019年中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B二、填空题24.【山东省德州市2019年中考数学试题】计算:=__________.【答案】1分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.点睛:本题考查了有理数的加法,关键是根据法则计算.25.【湖北省黄冈市2019年中考数学试题】实数16 800 000用科学计数法表示为______________________.【答案】1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n 为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.26.【江苏省南京市2019年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市2019年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)三、解答题28.【江苏省南京市2019年中考数学试卷】如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边 B.线段上 C.点的右边【答案】(1).(2)B.。
2019年中考数学真题分类训练——专题十:三角形
2019年中考数学真题分类训练——专题十:三角形一、选择题1.(2019滨州)如图,在OAB △和OCD △中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为A .4B .3C .2D .1【答案】B2.(2019陕西)如图,在△ABC 中,∠B =30°,∠C =45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E .若DE =1,则BC 的长为A .2B 23+C 32D .3【答案】A3.(2019衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC =CD =DE ,点D 、E 可在槽中滑动.若∠BDE =75°,则∠CDE 的度数是A.60°B.65°C.75°D.80°【答案】D4.(2019重庆A卷)如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC′沿BD翻折,得到BDC'△,DC与AB交于点E,连接AC',若AD=AC′=2,BD=3则点D到BC的距离为A.332B.3217C.7D.13【答案】B5.(2019南通)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C6.(2019宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【答案】C7.(2019青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为A.35°B.40°C.45°D.50°【答案】C9.(2019天水)如图,等边OAB△的边长为2,则点B的坐标为A .(11),B .(13),C .(31),D .(33),【答案】B10.(2019宁波)已知直线m ∥n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若∠1=25°,则∠2的度数为A .60°B .65°C .70°D .75°【答案】C11.(2019宿迁)一副三角板如图摆放(直角顶点C 重合),边AB 与CE 交于点F ,DE BC ∥,则BFC ∠等于A .105︒B .100︒C .75︒D .60︒【答案】A12.(2019临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .2【答案】B13.(2019绍兴)如图,墙上钉着三根木条a ,b ,c ,量得∠1=70°,∠2=100°,那么木条a ,b 所在直线所夹的锐角是A .5°B .10°C .30°D .70°【答案】B14.(2019潍坊)如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形 【答案】C15.(2019梧州)如图,DE 是ABC △的边AB 的垂直平分线,D 为垂足,DE 交AC 于点E ,且85AC BC ==,,则BEC △的周长是A .12B .13C .14D .15【答案】B16.(2019杭州)在△ABC 中,若一个内角等于另外两个内角的差,则 A .必有一个内角等于30° B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90° 【答案】D17.(2019河南)如图,在四边形ABCD 中,AD ∥BC ,∠D =90°,AD =4,BC =3.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为A .2B .4C .3D 10【答案】A18.(2019张家界)如图,在ABC △中,90C ∠=︒,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于A.4 B.3 C.2 D.1【答案】C19.(2019台州)下列长度的三条线段,能组成三角形的是A.3,4,8 B.5,6,10C.5,5,11 D.5,6,11【答案】B20.(2019台湾)如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确A.∠1<∠2 B.∠1=∠2C.∠A+∠2<180°D.∠A+∠1>180°【答案】C21.(2019长春)如图,在ABC∠为钝角.用直尺和圆规在边AB上确定一点D.使△中,ACB∠=∠,则符合要求的作图痕迹是ADC B2A.B.C .D .【答案】B22.(2019金华)若长度分别为a ,3,5的三条线段能组成一个三角形,则a 的值可以是 A .1 B .2C .3D .8【答案】C23.(2019广西)如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为A .40︒B .45︒C .50︒D .60︒【答案】C24.(2019大庆)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是A .15°B .30°C .45°D .60°【答案】B25.(2019荆门)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则1∠的度数是A .95︒B .100︒C .105︒D .110︒【答案】C26.(2019百色)三角形的内角和等于 A .90︒B .180︒C .270︒D .360︒【答案】B27.(2019徐州)下列长度的三条线段,能组成三角形的是 A .2,2,4 B .5,6,12 C .5,7,2 D .6,8,10【答案】D 二、填空题28.(2019临沂)如图,在ABC △中,120ACB ∠=︒,4BC =,D 为AB 的中点,DC BC ⊥,则ABC △的面积是__________.【答案】329.(2019南京)如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长为__________.【答案】1030.(2019威海)如图,在四边形ABCD 中,AB CD ∥,连接AC ,BD .若90ACB ∠=︒,AC BC =,AB BD =,则ADC ∠=__________︒.【答案】10531.(2019北京)如图所示的网格是正方形网格,则∠PAB +∠PBA =__________°(点A ,B ,P 是网格线交点).【答案】4532.(2019成都)如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为__________.【答案】933.(2019黄冈)如图,AC BD ,在AB 的同侧,288AC BD AB ===,,,点M 为AB 的中点,若120CMD ∠=︒,则CD 的最大值是__________.【答案】1434.(2019舟山)如图,一副含30°和45°角的三角板ABC和EDF拼合在一个平面上,边AC与EF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E 从点A滑动到点C时,点D运动的路径长为__________cm;连接BD,则△ABD的面积最大值为__________cm2.【答案】(24–122),(243+362-126)35.(2019长沙)如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是__________m.【答案】10036.(2019南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是__________.【答案】4<BC≤3337.(2019枣庄)把两个同样大小含45︒角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点B C D ,,在同一直线上.若AB =2,则CD =__________.【答案】62-38.(2019兰州)在△ABC 中,AB =AC ,∠A =40°,则∠B =__________. 【答案】70°39.(2019盐城)如图,在ABC △中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为__________.【答案】240.(2019伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE △是直角三角形时,则CD 的长为__________. 【答案】3或24741.(2019襄阳)如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC △≌△DCB △的是__________(只填序号).【答案】②42.(2019南通)如图,△ABC 中,AB =BC ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF ,若∠BAE =25°,则∠ACF =__________度.【答案】7043.(2019哈尔滨)在ABC △中,50A ∠=︒,30B ∠=︒,点D 在AB 边上,连接CD ,若ACD △为直角三角形,则BCD ∠的度数为__________. 【答案】60︒或10︒44.(2019怀化)若等腰三角形的一个底角为72︒,则这个等腰三角形的顶角为__________. 【答案】36°45.(2019通辽)腰长为5,高为4的等腰三角形的底边长为__________. 【答案】6或25或4546.(2019大庆)如图,在△ABC 中,D 、E 分别是BC ,AC 的中点,AD 与BE 相交于点G ,若DG =1,则AD =__________.【答案】347.(2019江西)如图,在ABC △中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △,则CDE ∠=__________°.【答案】20三、证明题48.(2019南京)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形,∴BD=CE,∵D是AB的中点,∴AD=BD,∴AD=EC,∵CE∥AD,∴∠A=∠ECF,∠ADF=∠E,∴△ADF≌△CEF.49.(2019益阳)已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD.证明:由∠ECB=70°得∠ACB=110°,又∵∠D=110°,∴∠ACB=∠D,∵AB∥DE,∴∠CAB=∠E,∴在△ABC和△EAD中,==ACB DCAB E AB AE∠∠⎧⎪∠∠⎨⎪=⎩,∴△ABC≌△EAD.50.(2019山西)已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.证明:∵AD=BE,∴AD-BD=BE-BD,∴AB=ED,∵AC∥EF,∴∠A=∠E,在△ABC和△EDF中,C FA E AB ED∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EDF(AAS),∴BC=DF.51.(2019兰州)如图,AB=DE,BF=EC,∠B=∠E,求证:AC∥DF.证明:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC和△DEF中,AB DEB E BC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.52.(2019广州)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:ADE CFE△≌△.证明:∵FC∥AB,∴∠A=∠FCE,∠ADE=∠F,所以在△ADE与△CFE中,A FCEADE F DE EF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△CFE.53.(2019泸州)如图,AB CD ∥,AD 和BC 相交于点O ,OA OD =.求证:OB OC =.证明:∵AB CD ∥,∴A D ∠=∠,B C ∠=∠,在AOB △和DOC △中,A D B C OA OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AOB DOC △≌△, ∴OB OC =.54.(2019重庆A 卷)如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F .(1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF ∥AC 叫AD 的延长线于点F .求证:FB =FE .证明:(1)∵AB AC =,∴C ABC ∠=∠, ∵36C ∠=︒, ∴36ABC ∠=︒,∵D 为BC 的中点,∴AD BC ⊥,∴90903654BAD ABC ∠=-∠=-︒=︒︒︒. (2)∵BE 平分ABC ∠,∴ABE EBC ∠=∠, 又∵EF BC ∥,∴EBC BEF ∠=∠,∴EBF FEB ∠=∠, ∴BF EF =.55.(2019桂林)如图,AB =AD ,BC =DC ,点E 在AC 上. (1)求证:AC 平分∠BAD ; (2)求证:BE =DE .证明:(1)在△ABC 与△ADC 中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS ), ∴∠BAC =∠DAC , 即AC 平分∠BAD .(2)由(1)∠BAE =∠DAE ,在△BAE 与△DAE 中,得BA DA BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△DAE (SAS ), ∴BE =DE .56.(2019黄石)如图,在ABC △中,90BAC ∠=︒,E 为边BC 上的点,且AB AE =,D 为线段BE 的中点,过点E 作EF AE ⊥,过点A 作AF BC ∥,且AF 、EF 相交于点F . (1)求证:C BAD ∠=∠; (2)求证:AC EF =.证明:(1)如图,∵AB AE =,∴ABE △是等腰三角形, 又∵D 为BE 的中点,∴AD BE ⊥, 在Rt ABC △和Rt DBA △中,∵B Ð为公共角,90BAC BDA ∠=∠=︒, ∴C BAD ∠=∠.(2)∵AF BC ∥,∴EAF AEB ∠=∠, ∵AB AE =,∴ABE AEB ∠=∠, ∴EAF ABC ∠=∠,又∵90BAC AEF ∠=∠=∠︒, ∴BAC AEF △≌△, ∴AC EF =.57.(2019重庆)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D . (1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .证明:(1)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD ,∠ADC =90°,又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°. (2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD , ∵EF ∥AC , ∴∠F =∠CAD , ∴∠BAD =∠F , ∴AE =FE .58.(2019苏州)如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G . (1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.证明:(1)∵CAF BAE ∠=∠, ∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.59.(2019无锡)如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O . 求证:(1)DBC ECB △≌△; (2)OB OC =.证明:(1)∵AB =AC , ∴∠ECB =∠DBC ,在DBC △与ECB △中,BD CEDBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴DBC △≌ECB △.(2)由(1)DBC △≌ECB △, ∴∠DCB =∠EBC ,∴OB =OC .60.(2019枣庄)在ABC △中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:2AB AN AM +=.证明:(1)∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴AD BD DC ==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒, ∵2AB =,∴2,AD BD DC ===,∵30AMN ∠=︒,∴180903060BMD ∠=︒-︒-︒=︒, ∴30BMD ∠=︒,∴2BM DM =,由勾股定理得,222BM DM BD -=,即222(2)(2)DM DM -=,解得23DM = ∴2323AM AD DM =-=. (2)∵AD BC ⊥,90EDF ∠=︒,∴BDE ADF ∠=∠,在BDE △和ADF △中,B DAF DB DA BDE ADF ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BDE ADF △≌△, ∴BE AF =.(3)如图,过点M 作//ME BC 交AB 的延长线于E ,∴90AME ∠=︒, 则2AEAB =,45E ∠=︒,∴ME MA =,∵90AME ∠=︒,90BMN ∠=︒, ∴BME AMN ∠=∠,在BME △和AMN △中,E MAN ME MA BME AMN ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BME AMN △≌△,∴BE AN =, ∴2AB AN AB BE AE AM +=+==.61.(2019温州)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长.证明:(1)∵CF AB ∥, ∴B FCD BED F ∠=∠∠=∠,, ∵AD 是BC 边上的中线,∴BD CD =,∴△BDE ≌△CDF . (2)∵△BDE ≌△CDF , ∴2BE CF ==,∴123AB AE BE =+=+=. ∵AD BC BD CD ⊥=,, ∴3AC AB ==.62.(2019杭州)如图,在△ABC 中,AC <AB <BC .(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:∠APC =2∠B .(2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若∠AQC =3∠B ,求∠B 的度数.证明:(1)∵线段AB 的垂直平分线与BC 边交于点P , ∴PA =PB , ∴∠B =∠BAP , ∵∠APC =∠B +∠BAP , ∴∠APC =2∠B ;(2)根据题意可知BA =BQ , ∴∠BAQ =∠BQA ,∵∠AQC =3∠B ,∠AQC =∠B +∠BAQ , ∴∠BQA =2∠B ,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.四、解答题63.(2019河北)已知:整式A=(n2-1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ/ 8 __________勾股数组Ⅱ35 / __________解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=15;当n2-1=35时,n2+1=37.64.(2019大庆)如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A ,C 两港之间的距离(结果保留到0.1 km ,参考数据:2≈1.414,3≈1.732); (2)确定C 港在A 港的什么方向.解:(1)由题意可得,∠PBC =30°,∠MAB =60°, ∴∠CBQ =60°,∠BAN =30°,∴∠ABQ =30°, ∴∠ABC =90°. ∵AB =BC =10,∴AC =22AB BC +=102≈14.1.答:A 、C 两地之间的距离为14.1 km . (2)由(1)知,△ABC 为等腰直角三角形, ∴∠BAC =45°,∴∠CAM =15°, ∴C 港在A 港北偏东15°的方向上.65.(2019金华)如图,在76⨯的方格中,ABC △的顶点均在格点上,试按要求画出线段EF (E ,F 均为格点),各画出一条即可.【答案】如图所示:。
2019年数学中考试题(附答案)
9.如图,已知 ,那么下列结论正确的是( )
A. B. C. D.
10.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是( )
A.1B.0,1C.1,2D.1,2,3
11.二次函数 的图象如图所示,则一次函数 与反比例函数 在同一坐标系内的图象大致为( )
2019年数学中考试题(附答案)
一、选择题
1.下列命题中,其中正确命题的个数为( )个.
①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.
A.1B.2C.3D.4
2.不等式组 的解集在数轴上表示正确的是()
A. B. C. D.
∴∠DAB=90°,
∴∠DAM=30°,
∴AM= ,
故选:B.
【点睛】
本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM,
4.A
解析:A
【解析】
试题分析:∵今后项目的数量﹣今年的数量=20,∴ .故选A.
考点:由实际问题抽象出分式方程.
5.C
解析:C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
(收集数据)
甲班15名学生测试成绩统计如下:(满分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
乙班15名学生测试成绩统计如下:(满分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
(整理数据)
2019重庆中考数学试卷(含答案)
重庆市2019年初中学业水平暨高中招生考试试卷数 学(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.认题的答案书写在答题卡上,不得在试题卷上直接作答; 2.作答前认真阅绪答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签牛笔完成; 4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()02≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22,对称轴为a b 2x -= 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为DC B A 、、、的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.下列各数中,比1-小的数是( )A .2B .1C .0D .-22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A .B .C .D .3.如图,△ABO ∽△CDO ,若6=BO ,3=DO ,2=CD ,则AB 的长是( )A .2B .3C .4D .54.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若︒=∠50C ,则∠AOD 的度数为( ) A.︒40B .︒50C .︒80D .︒1005.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形3题图4题图2题图C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形6.估计()123+623⨯的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩8.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,9.如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数(0,0)ky k xx=>>的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.409题图8题图10题图12题图10.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:24的山坡AB上发现有一棵占树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos8°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米11.若关于x的一元一次不等式组11(42)42 3122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.612.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC′沿BD翻折,得到△BDC',DC与AB交于点E,连结AC',若AD=AC=2,BD=3则点D到BC的距离为()A.233B.7213C.7D.13二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.计算:=+1-213-)()(π.14.今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为.15.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.16题图17题图20题图18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的169种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的4019.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1))2(2y x y y x +-+)( (2)292492--÷--+a a a a a )(20.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E作EF ∥BC 交AB 于点F .(1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF //AC 叫AD 的延长线于点F .求证:FB =FE .21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94八年抽取的学生竞赛成绩扇形统计图七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b纵数c100方差52 50.421题图根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?22.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.321-=x y 23.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧-≥=)0()0(<a a a a a .结合上面经历的学习过程,现在来解决下面的问题在函数b kx y +-=3中,当2=x 时,;4-=y 当0=x 时,.1y -=(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质; (3)已知函321y -=x 的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.24.某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费. (1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加%2a ,每户物管费将会减少%103a ;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加%6a ,每户物管费将会减少%41a .这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少%185a ,求a 的值.25.如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 显AD 上一点,连接CP . (1)若DP =2AP =4,CP =17,CD =5,求△ACD 的面积. (2)若AE =BN ,AN =CE ,求证:AD =2CM +2CE .四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.如图,在平面在角坐标系中,抛物线y=x2-2x-3与x轴交与点A,B(点A在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+13PC的最小值;(2)在(1)中,当MN取得最大值HF+FP+1/3PC取得小值时,把点P向上平移个22单位得到点Q,连结AQ,把△AOQ绕点O瓶时针旋转一定的角度α(0°<α<360°),得到△AOQ,其中边AQ交坐标轴于点C在旋转过程中,是否存在一点G使得OGQQ''∠=∠?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2。