2019重庆中考数学第25题专题-整除有关的问题
重庆市中考数学25题

重庆市中考数学专题1、(一中2019级初三下入学考试)《见微知著》读到,从一个简单的经典问题出发,从特殊到一般,由简单到复杂;从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思维阀门发现新问题、新结论的重要方法。
阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思维难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体带入;(4)整体求和等。
例如:11111,1=+++=ba ab 求证:证明:111111=+++=+++=b b b b a ab ab 原式 波利亚在《怎样解题》中指出:“当你找到一个蘑菇或者作出第一个发现后,再四处看看,他们总是成群生长”类似问题:我们有更多的式子满足以上特征。
阅读材料二: 基本不等式()0,02 b a b a ab +≤,当且仅当b a =时等号成立,它是解决最值问题的有力工具;例如:在0 x 的条件下,当x 为何值时,xx 1+有最小值,最小值是多少? 解:∵0 x ,01 x ,∴xx x x 121⋅≥+,即2121=⋅≥+x x x x ,∴21≥+x x 当且仅当x x 1=,即1=x 时,x x 1+有最小值,最小值为2. 请根据阅读材料解答下列问题:(1)已知1=ab ,求下列各式的值: ①=+++221111b a ; ②=+++n n b a 1111 ;(2)若1=abc ,解方程.1151515=++++++++c ca cx b bc bx a ab ax(3)若正数b a 、满足1=ab ,求ba M 21111+++=的最小值。
2、(巴蜀2019级初三下开学考试)材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子。
在解某些特殊方程时,使用换元法常常可以达到转化与划归的目的。
例如在求解一元四次方程,012,0122224=+-==+-t t t x x x 则原方程变为时,令解得,1=t ,从而解得原方程的解为.1±=x材料二:杨辉三角形是中国数学史上的一个伟大成就,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现。
重庆中考第25题(阅读理解)专题专训(教师版)

重庆中考数学第25题专训2501.材料1:若一个正整数的各个数位上的数字之和能被3整除,则这个数就能被3整除;反之也成立.材料2:两位数m和三位数n,它们各个数位上的数字都不为0,将数m任意一个数位上的数字作为一个新的两位数的十位数字,将数n任意一个数位上的数字作为该新的两位数的个位数字,按照这种方式产生的所有新的两位数的和记为F(m,n),例如:F(12,345)=13+14=15+23+24+25=114;F(11,369)=13+16+19+13+16+19=96.(1)填空:F(16,123)= 222 ,(2)求证:当n能被3整除时,F(m,n)一定能被6整除;(3)若一个两位数s=21x+y,一个三位数t=121x+y+199(其中1≤x≤4,1≤y≤5,且x、y均为整数),交换三位数t的百位数字和个位数字得到新数t′,当t′与s的个位数字的3倍的和能被11整除时,称这样的两个数s和t为“珊瑚数对”,求所有“珊瑚数对”中F(s,t)的最大值.解:(1)F(16,123)=11+12+13+61+62+63=222,故答案为:222证明:设这个三位数的个位数是x,十位数是y,百位数是z,则这个三位数是100z+10y+x,∵各位数字之和能被3整除,∴(x+y+z)÷3是整数,∵100z+10y+x=(99z+9y)+x+y+z,∴(100z+10y+x)÷3=(99z+9y)÷3+(x+y+z)÷3=33z+3y+(x+y+z)÷3,∴这个数就能被3整除;(2)∵s=21x+y,t=121x+y+199(其中1≤x≤4,1≤y≤5,且x、y均为整数),∴当x分别等于1、2、3、4,y,分别等于1、2、3、4、5时,可得s分别等于22、23、24、25、26、43、44、45、46、47、64、65、66、67、68、85、86、87、88、89,t分别等于321、322、323、324、325、442、443、444、445、446、563、564、565、566、567、684、685、686、687、688,∴s的个位上的数是2、3、4、5、6、7、8、9,t′的个位上的数就是t的百位上的数即为:3、4、5、6,又∵当s和t为“珊瑚数对”时有t′与s的个位数字的3倍的和能被11整除的数是33、66、99、132、165…∴t′与s的个位数字的和是:11∵3+8=11、4+7=11、5+6=11,∴“珊瑚数对”是s的个位上的数是3、4、5、6、7、8的数和t的百位上的数即为:3、4、5、6的所有数∴F(s,t)的最大值是:F(88,688)=86+88+88+86+88+88=524.2502.任意一个正整数n,都可以表示为:n=a×b×c(a≤b≤c,a,b,c均为正整数),在n的所有表示结果中,如果|2b﹣(a+c)|最小,我们就称a×b×c是n的“阶梯三分法”,并规定:F (n)=,例如:6=1×1×6=1×2×3,因为|2×1﹣(1+6)|=5,|2×2﹣(1+3)|=0,5>0,所以1×2×3是6的阶梯三分法,即F(6)==2.(1)如果一个正整数p是另一个正整数q的立方,那么称正整数p是立方数,求证:对于任意一个立方数m,总有F(m)=2.(2)t是一个两位正整数,t=10x+y(1≤x≤9,0≤y≤9,且x≥y,x+y≤10,x和y均为整数),t的23倍加上各个数位上的数字之和,结果能被13整除,我们就称这个数t为“满意数”,求所有“满意数”中F(t)的最小值.解:(1)∵m为立方数∴设m=q×q×q∴|2q﹣(q﹣q)=0∴|q×q×q是m的阶梯三分法∴F(m)=(2)由已知,[23(10x+y)+x+y]能被13整除,整理得:231x+24y能被13整除∵231x+24y=13(10x+2y)﹣(3x+2y)∴3x+2y能被13整除∵1≤x≤9,0≤y≤9 ∴3≤3x+2y≤45∵x,y均为整数∴3x+2y的值可能为13、26或39当3x+2y=13时∵x≥y,x+y≤10∴x=3,y=2,t=32∴32的阶梯三分法为2×4×4 ∴F(32)=同理,当3x+2y=26时可得x=8,y=1或x=6,y=4∴t=81或64∴F(81)=4,F(64)=2同理,当3x+2y=39时可得x=9,y=6∴t=96∴F(96)=∴综合①②③,F(t)最小值为2503.对于一个各个数位上的数字均不为零的三位正整数n,如果它的百位数字、十位数字、个位数字是由依次增加相同的非零数字组成,则称这个三位数为“递增数”,记为D(n),把这个“递增数”的百位数字与个位数字交换位置后,得到321,即E(123)=321,规定F(n)=,如F(123)==1.(1)计算:F(159),F(246);(2)若D(s)是百位数字为1的数,D(t)是个位数字为9的数,且满足F(s)+F(t)=5,记k=,求k的最大值.解:(1)∵D(159)=159∴E(159)=100×9+10×5+1=951∴F(159)=∵D(246)=246∴E(246)=100×6+10×4+2=642∴F(159)=(2)设s、t的每个数位上的数字递增数值分别为x、y∵x、y为各个数位上的递增数值,递增后的数值不能使各数位上的数字超过9∴x、y分别取1﹣4的整数∴D(s)=100+10(1+x)+(1+2x)=12x+111D(t)=100(9﹣2y)+10(9﹣y)+9=999﹣210y∴E(s)=100(1+2x)+10(1+x)+1=210x+111E(t)=900+10(9﹣y)+(9﹣2y)=999﹣12y∴F(s)===x同理F(t)=y∵F(s)+F(t)=5∴x+y=5∴y=5﹣x∵k=∴k===26x+19∵1≤x≤4,且x为整数∴当x=4时,k最大值为1232504.有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x+1整除,再依次轮换个位数字得到的新数能被x+2整除,按此规律轮换后,能被x 0+3整除,…,能被x+n﹣1整除,则称这个n位数是x的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2的一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.解:(1)设两位自然数的十位数字为x,则个位数字为2x,∴这个两位自然数是10x+2x=12x,∴这个两位自然数是12x能被6整除,∵依次轮换个位数字得到的两位自然数为10×2x+x=21x∴轮换个位数字得到的两位自然数为21x能被7整除,∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”;(2)∵三位自然数是3的一个“轮换数”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次轮换得到的三位自然数是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次轮换得到的三位自然数是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的个位数字不是0,便是5,∴b=0或b=5,当b=0时,∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴这个三位自然数可能是为201,203,205,207,209,而203,205,209不能被3整除,∴这个三位自然数为201,207,当b=5时,∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c只能是1,5,7,9;∴这个三位自然数可能是为251,255,257,259,而251,257,259不能被3整除,∴这个三位自然数为255,即这个三位自然数为201,207,255.2505.已知,我们把任意形如:的五位自然数(其中c=a+b,1≤a≤9,1≤b≤9)称之为喜马拉雅数,例如:在32523自然数中,3=2=5,所以32523就是一个喜马拉雅数.并规定:能被自然数整除n的最大的喜马拉雅数记为F(n),能被自然数n整除的最小的喜马拉雅数记为I(n).(1)求证:任意一个喜马拉雅数都能被3整除;(2)求F(3)+I(8)的值.解:(1)t==10000a+1000b+100c+10b+a又∵c=a+b∴t==10000a+1000b+100c+10b+a=10101a+1110b∵(10101a+1110b)÷3=3367a+370b∴任意一个喜马拉雅数都能被3整除;(2)当a=8,b=1,c=9时能被自然数整除n的最大喜马拉雅数F(n)=81918且任意一个喜马拉雅数都能被3整除∴F(3)=81918当a=2,b=1,c=3时能被自然数整除n的最大喜马拉雅数I(n)=21312,且21312能被8整除,∴I(8)=21312∴F(3)+I(8)=81918+21312=103230.2506.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.2507.先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a ,十位数字为b ,个位数字为c ),若满足a+c=b ,则称这个三位数为“欢喜数”,并规定F ()=ac .如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F (374)=3×4=12.(1)对于“欢喜数”,若满足b 能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n (m >n ),若F (m )﹣F (n )=3,求m ﹣n 的值.解:(1)证明:∵为欢喜数,∴a+c=b .∵=100a+10b+c=99a+10b+a+c=99a+11b ,b 能被9整除,∴11b 能被99整除,99a 能被99整除,∴“欢喜数”能被99整除. (2)设m=,n=(且a 1>a 2),∵F (m )﹣F (n )=a 1•c 1﹣a 2•c 2=a 1•(b ﹣a 1)﹣a 2(b ﹣a 2)=(a 1﹣a 2)(b ﹣a 1﹣a 2)=3,a 1、a 2、b 均为整数,∴a 1﹣a 2=1或a 1﹣a 2=3.∵m ﹣n=100(a 1﹣a 2)﹣(a 1﹣a 2)=99(a 1﹣a 2),∴m ﹣n=99或m ﹣n=297.∴若F (m )﹣F (n )=3,则m ﹣n 的值为99或297.2508.当一个多位数的位数为偶数时,在其中间插入一位数k ,(0≤k ≤9,且k 为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)现有一个4位数2316,中间插入数字m(0≤m≤9,且m为3的倍数),得其关联数,求证:所得的2316的关联数与原数10倍的差一定能被3整除;(2)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数.解:(1)证明:∵这个4位数的前两位为23,后两位为16,∴2316的关联数是23m16将关联数与原数10倍相减得:m•102﹣9×16.∵m和9均为3的倍数,∴关联数与原数10倍的差一定能被3整除;(2)设原数为ab=10a+b,其关联数为amb=100a+10m+b,∵amb=9ab,∴100a+10m+b=9×(10a+b),∴5a+5m=4b,∴5(a+m)=4b,∵b、m为整数,a为正整数,且a、b、m均为一位数,∴b=5,a+m=4,∴a=1,m=3;a=2,m=2;a=3,m=1;a=4,b=0.∴满足条件的三位关联数为135、225、315和405.2509.根据阅读材料,解决问题.。
2019重庆市中考数学试卷(含答案和详细解析)

2019重庆市中考数学试卷(含答案和详细解析)重庆市中考数学试卷(A 卷)一、选择题(本大题共12小题,每小题4分共48分)5.(4分)(2019•重庆)2019年1月1日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这6.(4分)(2019•重庆)关于x 的方程=1的解是() 647.(4分)(2019•重庆)2019年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、8.(4分)(2019•重庆)如图,直线AB ∥CD ,直线EF 分别交直线AB 、CD 于点E 、F ,过点F 作FG ⊥FE ,交直线AB 于点G ,若∠1=42°,则∠2的大小是()9.(4分)(2019•重庆)如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是()10.(4分)(2019•重庆)2019年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,11.(4分)(2019•重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()12.(4分)(2019•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A 、B ,它们的横坐标分别为﹣1,﹣3,直线AB 与x 轴交于点C ,则△AOC 的面积为()二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2019•重庆)方程组的解是14.(4分)(2019•重庆)据有关部分统计,截止到2019年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为 _________ .15.(4分)(2019•重庆)如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD 的周长为16.(4分)(2019•重庆)如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 _________ .(结果保留π)17.(4分)(2019•重庆)从﹣1,1,2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y=2x+a的图象与x 轴、y 轴围成的三角形的面积为,且使关于x 的不等式组有解的概率为 _________ .18.(4分)(2019•重庆)如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE=2CE,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为 _________ .三、解答题(本大题共2小题,每小题7分,共14分)19.(7分)(2019•重庆)计算:20.(7分)(2019•重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.+(﹣3)﹣2019×|﹣4|+20.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)(2019•重庆)先化简,再求值:÷(﹣)+,其中x 的值为方程2x=5x ﹣1的解.22.(10分)(2019•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有 _________ 家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(10分)(2019•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a >0).则每户平均集资的资金在150元的基础上减少了a%,求a 的值.24.(10分)(2019•重庆)如图,△ABC 中,∠BAC=90°,AB=AC,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC .(1)求证:BE=CF;(2)在AB 上取一点M ,使BM=2DE,连接MC ,交AD 于点N ,连接ME .求证:①ME ⊥BC ;②DE=DN.五、解答题(本大题共2个小题,每小题12分,共24分)225.(12分)(2019•重庆)如图,抛物线y=﹣x ﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.26.(12分)(2019•重庆)已知:如图①,在矩形ABCD 中,AB=5,AD=关于AB 的对称点,连接AF 、BF .,AE ⊥BD ,垂足是E .点F 是点E(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.2019年重庆市中考数学试卷(A 卷)参考答案与试题解析一、选择题(本大题共12小题,每小题4分共48分)5.(4分)(2019•重庆)2019年1月1日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时 6.(4分)(2019•重庆)关于x 的方程=1的解是()该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、直线AB 于点G ,若∠1=42°,则∠2的大小是()10.(4分)(2019•重庆)2019年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()12.(4分)(2019•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A 、B ,它们的横坐标分别为﹣1,﹣3,直线AB 与x 轴交于点C ,则△AOC 的面积为()13.(4分)(2019•重庆)方程组的解是.5积为 4﹣.(结果保留π)的图象与x 轴、y 轴围成的三角形的面积为,且使关于x 的不等式组有解的概率为. 11DE=2CE,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为19.(7分)(2019•重庆)计算:12 +(﹣3)﹣2019×|﹣4|+20.20.(7分)(2019•重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.21.(10分)(2019•重庆)先化简,再求值:÷(﹣)+,其中x 的值为方程2x=5x ﹣1的解.了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:13(1)某镇今年1﹣5月新注册小型企业一共有 16 家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.1423.(10分)(2019•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a >0).则每户平均集资的资金在150元的基础上减少了a%,求a 的值.BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC .(1)求证:BE=CF;(2)在AB 上取一点M ,使BM=2DE,连接MC ,交AD 于点N ,连接ME .求证:①ME ⊥BC ;②DE=DN.15225.(12分)(2019•重庆)如图,抛物线y=﹣x ﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.1626.(12分)(2019•重庆)已知:如图①,在矩形ABCD 中,AB=5,AD=E 关于AB 的对称点,连接AF 、BF .,AE ⊥BD ,垂足是E .点F 是点(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角171819。
2019年重庆市中考数学试卷含答案

解析:A 【解析】 【分析】 作 BM⊥ED 交 ED 的延长线于 M,CN⊥DM 于 N.首先解直角三角形 Rt△CDN,求出
CN,DN,再根据 tan24°= AM ,构建方程即可解决问题. EM
【详解】 作 BM⊥ED 交 ED 的延长线于 M,CN⊥DM 于 N.
在 Rt△CDN 中,∵ CN 1 4 ,设 CN=4k,DN=3k, DN 0.75 3
=∠MAP+∠PAB,则 AP=_____.
20.等腰三角形一腰上的高与另一腰的夹角的度数为 20°,则顶角的度数是 .
三、解答题
21.如图,点 B、C、D 都在⊙O 上,过点 C 作 AC∥BD 交 OB 延长线于点 A,连接 CD,
且∠CDB=∠OBD=30°,DB= 6 3 cm.
(1)求证:AC 是⊙O 的切线; (2)求由弦 CD、BD 与弧 BC 所围成的阴影部分的面积.(结果保留 π)
3.B
解析:B 【解析】 【分析】 根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到. 【详解】 解:∵△MNP 绕某点旋转一定的角度,得到△M1N1P1, ∴连接 PP1、NN1、MM1, 作 PP1 的垂直平分线过 B、D、C, 作 NN1 的垂直平分线过 B、A, 作 MM1 的垂直平分线过 B, ∴三条线段的垂直平分线正好都过 B, 即旋转中心是 B. 故选:B.
何体的侧面积是( )
A.12cm2
B. 12 πcm2
C. 6π cm2
D. 8π cm2
12.甲、乙二人做某种机械零件,已知每小时甲比乙少做 8 个,甲做 120 个所用的时间与
乙做 150 个所用的时间相等,设甲每小时做 x 个零件,下列方程正确的是( )
2019重庆中考数学试题及答案

2019重庆中考数学试题及答案数学试卷重庆市2019年初中毕业暨高中招生考试数学试题全卷共五个大题,满分150分,考试时间120分钟。
注意事项:1.试题的答案书写在答题卡(卷)上,不得在试卷上直接作答。
2.作答前认真阅读答题卡(卷)上的注意事项。
3.考试结束,由监考人员将试题和答题卡(卷)一并收回。
一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内)。
1.在一3,一1,0,2这四个数中,最小的数是()A.一3B.一1C.0D.22.下列图形中,是轴对称图形的是()3.计算(ab)的结果是(。
)A.2abB.abC.abD.ab4.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上则∠XXX的度数为()A.45°B.35°C.25°D.20°5.下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率6.已知:如图,BD平分∠ABC,点E在BC上,EF//AB。
若∠CEF=100°,则∠ABD的度数为()A.60°B.50°C.40°D.30°7.已知关于x的方程2x+a-9=0的解是x=2,则a的值为(。
)A.2B.3C.4D.58.2019年“国际攀岩比赛”在重庆举行。
XXX从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时XXX也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场。
设XXX从家出发后所用时间为t,XXX与比赛现场的距离为S。
下面能反映S与t的函数关系的大致图象是()9.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为(。
2019重庆中考数学第25题专题-整除有关的问题

2018重庆中考数学第25题专题训练一整除有关的问题1、重庆实验外国语学校2018级初三上期期末25. 对于一个各数位上的数字均不为0且互不相等的三位自然数p ,将它各个数位上的数字分别3倍后再取其个位数,得到三个新的数字,再将这三个新数字重新组合成不同的三位数xyz ,当()xz xy -的值最小时,称此时的xyz 为自自然数p 的“冬至数”,并规定()()2x z y p K +-=.例如:p =235时,其各个数位上数字分别3倍后的三个个位数分别是6、9、5,重新组合后的数为为695、659、569、596、965、956,因为(6×5-6×9)的值最小,所以659是235的“冬至数”,此时()()1006952=+-=p K (1)求K (145)和K (746);(2)若s ,t 都是各数位上的数字均不为0且互不相等的三位自然数,s 的个位数字为1,十位数字是个位数字的2倍,t 的十位数字是百位数字的2倍,s 的百位数字与:的个位数字相同.若(s +t )能被4整除,(s -t )能被11整除,求()()t K s K 的最大值.2、重庆八中2018级初三上期期末25.一个三位自然数是s ,将它任意两个数位的数字对调后得到一个首位不为0的新三位自然数's ('s 可以与s 相同),设xyz s =',在's 所有的可能情况中,当z y x -+3最大时,我们称此时的's 是s 的“梦想数”,并规定()2223z y x s P -+=.例如125按上述方法可得到新数有:217、172、721,因为,,,,20122121672022112732 =-+=-+=-+ 所以172是172的“梦想数”,此时,()1442731127222=-⨯+=P .(1)求512的“梦想数”及()512P 的值;(2)设三位自然数,ab s 1=交换其个位与十位上的数字得到新数's ,若4887'729=+s s ,且()s P 能被7整除,求s 的值.5、重庆一中2018级初三上期期末25.若一个三位自然m=xyz(x,y,z为整数,且1≤x≤9,O≤y、z≤9)满足y=2x-z,则称m为“无问西东数”,交换m的百位数字与十位数字得新数n=yxz,则称n.m的“无问东西数”,规定F(m,n)=sm+n(s,t均为非零常数),记I(m)=F(m,n).如m=111为“无问西东数”,其“无问东西数”n=111;再如m=102为“无问西东数其无河东西数”n=12.已知I(l11)=ll,I(102)=-78.(1)记最大“无问西东数”为p,则I(P)=______,并求证:任意一个“无问西东数”与其各个数位上数字之和能被3整数(2)已知一个三位自然数h=100a+10b+3c(其中a,b,c为整数,且1≤a≤9,0≤b≤7,0≤c≤9)是“无问西东数”,且被8除余1,求I(h)的最小值.6、重庆南开中学2018级初三上期期末25.一个自然数从左到右各数位上数字和另一个自然数从右到左各数位上的数字完全相同,则称一个数是另一个数的镜反数,即:若A=),(其中0a 0a a a a a n 1n1-n 21≠≠⋯⋯则它的镜反数F(A)=121-n n a a a a ⋯⋯· 例如:F(13062)=26031(1)若M 是一个四位数,求证M+F(M)能被11整除;(2)已知任意四位数P 均可唯一分解为P=100a+b 2+c 的形式(其中a ,b ,c 均为非负整数,0≤b≤9且c <2b+1),规定G(P)=b 2ac -a +.例如:2018=100×20+18=100×20+42+2,所以G(2018)=14942202-20=⨯+.若N 是一个四位数,其中千位比百位大1,十位比个位小1,且存在大于1的整数k ,使得F(N)=k 2N ,求G(N)的最大值.课后练习:1.2.3.4.。
2019重庆中考数学第25题专题训练二(含答案)

2019重庆中考数学第25题专题训练二25.已知,我们把任意形如:t abcba =的五位自然数(其中c a b =+,19a ≤≤,08b ≤≤)称之为喜马拉雅数,例如:在自然数32523中,325+=,所以32523就是一个喜马拉雅数.并规定:能被自然数n 整除的最大的喜马拉雅数记为()F n ,能被自然数n 整除的最小的喜马拉雅数记为()I n . (1)求证:任意一个喜马拉雅数都能被3整除; (2)求()3+(8)F I 的值.解析:(1)各数位数字之和2222()3()a b c b a a b c a b a b a b ++++=++=+++=+ ∵a b 、是整数 ∴a b +是整数 ∴任意一个喜马拉雅数都能被3整除 (2)(3)90909F =,()101011110321263139888ab a b ba a b a ba b +++==+-∵喜马拉雅数能被8整除∴32a b +能被8整除19,08,1933227a b a b a b ≤≤≤≤≤+≤∴≤+≤,,328,1624a b ∴+=或可得:(8)21312I = ∴(3)(8)9090921312112221F I +=+=25.一个正偶数k 去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数k 为“魅力数”,把这个商叫做k 的魅力系数,记这个商为()F k .如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记(722)4F =.(1)计算:(304)(2052)F F +;(2)若m 、n 都是“魅力数”,其中3030101m a =+,40010n b c =++(09,09,09a b c ≤≤≤≤≤≤,a 、b 、c 是整数),规定:(,)a cG m n b-=.当()()24F m F n +=时,求(,)G m n 的值..解:(1)189962808062)8062(=-=F ……(1分)设abcd n = ∴99)10101000(101001000)(b a d c d c b a n F +++-+++=d c b a --+=1010∵d c b a 、、、是整数, ∴d c b a --+1010也为整数,即:结论成立.……(4分)(2)设“平衡数”mnpq N = 由题可得:12,-=+=+n p q p n m∴q p n m N +++=101001000 p n m 91011001++= 91191001-+=n m (5分)∵N 能被11整除∴119910911191191001-++=-+n n m n m ∴1199-n 为整数又∵90≤≤n 且n 为整数 ∴1=n∴112=-=n p ……(7分) ∴1101001+=m N ∵N 能被3整除∴3223633331101001+++=+a m m ∴322+a 为整数又∵91≤≤a ∴852或或=a∴N=2112或5115或8118……(9分) ∵63)8118(,36)5115(,9)2112(===F F F ∴9)(的最小值为N F ……(10分)阅读下列材料,解决问题:一个能被17整除的自然数我们称“灵动数”,“灵动数”的特征是;若把一个整数的个位数字截去,在从余下的数中,减去个位数的5倍,如果差是17的整数倍(包括0),则原数能被17整除,如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾,倍大,相减,验差”的过程,直到能清楚判断为止.例如:判断1675282是不是“灵动数”,判断过程:16752825167518-⨯=,167518516711-⨯=,1671151666-⨯=,16665136-⨯=,到这里如果你仍然观察不出来,就继续…65=30⨯,现在个位5=30>⨯剩下的13,就用大数减去小数,301317-=,17是17的1倍,所以1675282能被17整除,所以1675282是“灵动数”.(1)请用上述方法判断7242和2098754是否是“灵动数”,并说明理由;(2)已知一个四位整数可表示为27mn ,其中个位上的数字为n ,十位上的数字为m ,且m 、n 为整数,若这个数能被51整除,请求出这个数. 解:(1)5154-71,71452-724=⨯=⨯ 51是17的3倍,7242∴是“灵动数”;1827-5927956-209,209650-20962096055-20985,20985554-209875=⨯=⨯=⨯=⨯=⨯18不能被17整除,2098754∴不是“灵动数”. (2)由题可知:2700+10m+n=5153+10m+n-3能被51整除10m+n-3能被51整除96310390,90≤-+≤-∴≤≤≤≤n m n m10m+n-3=0或51,即10m+n=3或54⎩⎨⎧==⎩⎨⎧==∴4530n m n m 或 ∴这个数为2703或275425、一个多位自然数分解为末三位与末三位以前的数,让末三位数减去末三位以前的数,所得的差能被13整除,则原多位数一定能被13整除.(1)判断266357 (能/不能)被13整除,证明任意一个多位自然数都满足上述规律; (2)一个自然数t 可以表示为22q p t -=的形式,(其中q p >且为正整数),这样的数叫做“佛系数”,在t 的所有表示结果中,当q p -最小时,称22q p -是t 的“佛系分解”,并规定q p q p t F -+=2)(.例如:22227-92-632==,267-9-<,则79729)32(-⨯+=F 223=.已知一个五位自然数,末三位数4210800++=y m ,末三位以前的数为y x n ++=)(110(其中81≤≤x ,91≤≤y 且为整数),n 为“佛系数”,交换这个五位自然数的十位和百位上的数字后所得的新数能被13整除,求)(n F 的最大值. 解析:(1)能;…………………………………(1分)设末三位数为B ,末三位以前的数为A ,则这个数为1000A+B.)1377(13131001)131000100013,13+=+=++=+∴+=∴=-A k A k A A B A kA B k k A B (是整数是整数是整数1377,+∴A k A所以:任意一个多位自然数都满足上述规律…………………………………(4分)(2)当51≤≤y 时,这个五位数万位、千位、百位、各位数字为(1+x )、y 、8、(4+y )、2;1345336813472991013)1(10824100+-+++-=++-=-+-++∴y x y x y x y x y )(13453+-∴y x 是整数93,85,32,243,5,2,48,7,2,113,0,13453234531851,81=∴⎩⎨⎧==∴-=+-∴≤+-≤-∴≤≤≤≤n y x y x y x y x …………………………………(6分) 当96≤≤y 时,这个五位数万位、千位、百位、各位数字为(1+x )、y 、9、(6-y )、2;1324340-813518-991013)1(10926-100+-++-=+-=-+-+∴y x y x y x y x y )(13243+-∴y x 是整数⎩⎨⎧==∴---=+-∴-≤+-≤-∴≤≤≤≤6,85,413,26,3924342434096,81y x y x y x y x 66,58=∴n …………………………………(7分)由))((22q p q p q p n -+=-=,)()(q p q p -+,奇偶性相同139)93(127)85(223)32(,217)24(====F F F F ,, 139127223217<<< )(n F ∴最大值是139.…………………………………(10分)25.一个数的后三位数加上前边的数之和能被37整除,那么这个数就能够被37整除,如果前边的数超过三位,那么三个数字为一组,相加能够被37整除,这个数就能被37整除.例如:6549 ,549+6=555,555÷37=15,所以6549能被37整除;12360146, 146+360+12=518,518÷37=14,所以12360146能被37整除.(1)判断:333444 (能、不能)被37整除;证明:若四位数abcd (其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 为整数)能被37整除,求证:将abcd 的个位截去,再用余下的数减去个位数的11倍也能被37整除.(2)一个四位数abcd (其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 为整数),其个位数字与千位数字的和等于十位数字与百位数字的和,此四位数能被37整除,且百位数字加上个位数字再与十位数字的差是一个完全平方数,求此四位数.25.(1) 能 .........................1分 证明:由题可知,k a d c b 3710100=+++.........................1分 其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 、k 为整数 ∴a c b k d ---=1010037)()(c b a k c b a k a c b k c b a d c b a 330311371111110111407101003711101001110100+++-=+++-=----++=-++...................3分∴abcd 的个位截去,再用余下的数减去个位的11倍也能被37整除 (2)由题可知,c b d a +=+, k a d c b 3710100=+++2m c d b =-+.........................1分其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 、k 、m 为整数∴kc b b k c b k c b c b 37111011137111013710100=+-=+=+++ 1371110k c b =+- (1k 为整数).........................1分 ∵89111079≤+-≤-c b ∴7437037741110、、、、--=+-c b .........................1分 ∴⎩⎨⎧==3711c b 或⎩⎨⎧==7422c b当⎩⎨⎧==3711c b 时,满足条件2m c d b =-+的5=d ,此时5=a当⎩⎨⎧==7422c b 时,满足条件2m c d b =-+的⎪⎩⎪⎨⎧===743321d d d ,此时对应的⎪⎩⎪⎨⎧===478321a a a 综上所述,此四位数为5735、8473、7474、4477.........................2分25.一个两位正整数n ,如果n 满足各数位上的数字互不相同且均不为0,那么称n 为“启航数”,将n 的两个数位上的数字对调得到一个新数'n 。
中考数学第25题专题复习训练(含答案)

第25题专题复习训练(含答案)1.已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接DF、CF。
DE ,求CF;(1)如图1,当点D在AB上,点E在AC中点,2(2)如图2,在(1)的条件下将△ADE绕A点顺时针旋转45°时,线段DF、CF有何数量关系和位置关系?证明你的结论;(3)如图3,在(1)的条件下将△ADE绕A点顺时针旋转任意角度时,线段DF、CF又有何数量关系和位置关系?证明你的结论;2. 如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.F为线段BD的中点.(1)如图1,点E在AB上,点D与C重合,EF=2,求AB的长.(2)如图2,当D、A、C在一条直线上时.线段EF与FC有何数量关系和位置关系?证明你的结论;(3)如图③,连接EF、FC,线段EF与FC又有何数量关系和位置关系?证明你的结论;.3.如图1,△ACB 、△AED 都为等腰直角三角形,∠AED=∠ACB=90°,点D 在AB 上,连CE ,M 、N 分别为BD 、CE 的中点.(1)求证:MN ⊥CE ;(2)如图2将△AED 绕A 点逆时针旋转30°,CE 与MN 有何数量关系和位置关系?证明你的结论.4. 已知,如图1,等腰直角△ABC 中,E 为斜边AB 上一点,过E 点作E F ⊥AB 交BC 于点F ,连接AF ,G 为AF 的中点,连接EG ,CG 。
(1)如果BE=2,∠BAF=30°,求EG ,CG 的长;(2)将图1中△BEF 绕点B 逆时针旋转45°,得如图2所示,取AF 的中点G ,连接EG ,CG 。
延长CG 至M ,使GM=GC ,连接EM=EC ,求证:△EMC 是等腰直角三角形;(3)将图1中△BEF 绕点B 旋转任意角度,得如图3所示,取AF 的中点G ,再连接EG ,CG ,问线段EG 和GC 有怎样的数量关系和位置关系?并证明你的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018重庆中考数学第25题专题训练一
整除有关的问题
1、重庆实验外国语学校2018级初三上期期末
25. 对于一个各数位上的数字均不为0且互不相等的三位自然数p ,将它各个数位上的数字分别3倍后再取其个位数,得到三个新的数字,再将这三个新数字重新组合成不同的三位数xyz ,当()xz xy -的值最小时,称此时的xyz 为自自然数p 的“冬至数”,并规定()()
2x z y p K +-=.例如:p =235时,其各个数位上数字分别3倍后的三个个位数分别是6、9、5,重新组合后的数为为695、659、569、596、965、956,因为(6×5-6×9)的值最小,所以659是235的“冬至数”,此时()()1006
952=+-=p K (1)求K (145)和K (746);
(2)若s ,t 都是各数位上的数字均不为0且互不相等的三位自然数,s 的个位数字为1,十位数字是个位数字的2倍,t 的十位数字是百位数字的2倍,s 的百位数字与:的个位数字相同.若(s +t )能被4整除,(s -t )能被11整除,求
()()
t K s K 的最大值.
2、重庆八中2018级初三上期期末
25.一个三位自然数是s ,将它任意两个数位的数字对调后得到一个首位不为0的新三位自然数's ('s 可以与s 相同),设xyz s =',在's 所有的可能情况中,当z y x -+3最大时,我们称此时的's 是s 的“梦想数”,并规定()2
223z y x s P -+=.例如125按上述方法可得到新数有:217、172、721,因为,
,,,20122121672022112732ππ=-+=-+=-+ 所以172是172的“梦想数”,此时,()14427311272
22=-⨯+=P . (1)求512的“梦想数”及()512P 的值;
(2)设三位自然数,ab s 1=交换其个位与十位上的数字得到新数's ,若4887'729=+s s ,且()s P 能被7
整除,求s 的值.
5、重庆一中2018级初三上期期末
25.若一个三位自然m=xyz(x,y,z为整数,且1≤x≤9,O≤y、z≤9)满足y=2x-z,则称m为“无问西东数”,交换m的百位数字与十位数字得新数n=yxz,则称n.m的“无问东西数”,规定F(m,n)=sm+n(s,t均为非零
常数),记I(m)=F(m,n).如m=111为“无问西东数”,其“无问东西数”n=111;再如m=102为“无问西东数其无河东西数”n=12.已知I(l11)=ll,I(102)=-78.
(1)记最大“无问西东数”为p,则I(P)=______,并求证:任意一个“无问西东数”
与其各个数位上数字之和能被3整数
(2)已知一个三位自然数h=100a+10b+3c(其中a,b,c为整数,且1≤a≤9,0≤b≤7,0≤c≤9)是“无问西东数”,且被8除余1,求I(h)的最小值.
6、重庆南开中学2018级初三上期期末
25.一个自然数从左到右各数位上数字和另一个自然数从右到左各数位上的数字完全相同,则称一个数是
另一个数的镜反数,即:若A=),(其中0a 0a a a a a n 1n
1-n 21≠≠⋯⋯则它的镜反数F(A)=121-n n a a a a ⋯⋯· 例如:F(13062)=26031
(1)若M 是一个四位数,求证M+F(M)能被11整除;
(2)已知任意四位数P 均可唯一分解为P=100a+b 2+c 的形式(其中a ,b ,c 均为非
负整数,0≤b≤9且c <2b+1),规定G(P)=
b 2a
c -a +.例如:2018=100×20+18=100×20+42+2,所以G(2018)=14
942202-20=⨯+.若N 是一个四位数,其中千位比百位大1,十位比个位小1,且存在大于1的整数k ,使得F(N)=k 2N ,求G(N)的最大值.
课后练习:1.
2.
3.
4.。