重庆市中考数学25题

合集下载

(中考精品)重庆市中考数学真题(B卷)(原卷版)

(中考精品)重庆市中考数学真题(B卷)(原卷版)

重庆市2022年初中学业水平暨高中招生考试数学试卷(B 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2b x a=-. 一、选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A 、B 、C 、D 的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1. 2-的相反数是( )A. 2-B. 2C. 12 D. 12- 2. 下列北京冬奥会运动标识图案是轴对称图形的是( )A B.C. D.3. 如图,直线a b ∥,直线m 与a ,b 相交,若1115∠=︒,则2∠的度数为( )A. 115°B. 105°C. 75°D. 65° 4. 如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为.( )A. 3时B. 6时C. 9时D. 12时 5. 如图,ABC 与DEF 位似,点O 是它们的位似中心,且位似比为1∶2,则ABC 与DEF 的周长之比是( )A. 1∶2B. 1∶4C. 1∶3D. 1∶9 6. 把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A. 15B. 13C. 11D. 97. 4的值在( )A. 6到7之间B. 5到6之间C. 4到5之间D. 3到4之间8. 学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A. 2625(1)400x -=B. 2400(1)625x +=C. 2625400x =D. 2400625x =9. 如图,在正方形ABCD 中,对角线AC 、BD 相交于点O . E 、F 分别为AC 、BD 上一点,且OE OF =,连接AF ,BE ,EF .若25AFE ∠=︒,则CBE ∠的度数为( )A. 50°B. 55°C. 65°D. 70° 10. 如图,AB 是O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P,若AC PC ==,则PB 的长为( )B. 32C. D. 3 11. 关于x 的分式方程31133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( ) A. 13 B. 15 C. 18 D. 20 12. 对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确个数为( )A. 0B. 1C. 2D. 3二、填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13. 0|2|(3-+=_________.14. 不透明的袋子中装有2个红球和1个白球,除颜色外无其他差别,随机摸出一个球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率是________.15. 如图,在矩形ABCD 中,1AB =,2BC =,以B 为圆心,BC 的长为半轻画弧,交AD 于点E .则图中阴影部分的面积为_________.(结果保留π)16. 特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为_________.三、解答题(共2个小题,每小题8分,共16分)17. 计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷ ⎪⎝⎭-+. 18. 我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a ,高为h 的三角形的面积公式为12S ah =.想法是:以BC 为边作矩形BCFE ,点A 在边FE 上,再过点A 作BC 的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点的D .(只保留作图痕迹)在ADC 和CFA △中,∵AD BC ⊥,∴90ADC ∠=︒.∵90F ∠=︒,∴______①____.∵EF BC ∥,∴______②_____.又∵____③______.∴ADC CFA △≌△(AAS ).同理可得:_____④______.11112222ABC ADC ABD ADCF AEBD BCFE S S S S S S ah =+=+== 矩形矩形矩形. 三、解答题(共7个小题,每小题10分,共70分)19. 在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x ,67x ≤<,记为6;78x ≤<,记为7;89x ≤<,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11, 七、八年级抽取的学生课外阅读时长统计表年级七年级 八年级 平均数8.3 8.3 众数a 9 中位数 8 b8小时及以上所占百分比 75% c根据以上信息,解答下列问题:(1)填空:=a ______________,b =______________,c =______________.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由,(写出一条理由即可)20. 反比例函数4y x =的图象如图所示,一次函数y kx b =+(0k ≠)的图象与4y x =的图象交于(,4)A m ,(2,)B n -两点,(1)求一次函数的表达式,并在所给的平面直角坐标系中面出该函数的图象;(2)观察图象,直接写出不等式4kx b x+<解集; (3)一次函数y kx b =+的图象与x 轴交于点C ,连接OA ,求OAC 的面积. 21. 为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙的的施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22. 湖中小岛上码头C 处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A 处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C 接该游客,再沿CA 方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A 的北偏东30°方向上,B 在A 的北偏东60°方向上,且B 在C 的正南方向900米处.(1)求湖岸A 与码头C 的距离(结果精确到11.732=);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计) 23. 对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247(247)2471319÷++=÷=,∴247是13的“和倍数”.又如:∵214(214)2147304÷++=÷= ,∴214不是“和倍数”.(1)判断357,441否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a b c >>.在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为()F A ,最小的两位数记为()G A ,若()()16F AG A +为整数,求出满足条件的所有数A . 24. 如图,在平面直角坐标系中,抛物线234y x bx c =-++与x 轴交于点(4,0)A ,与y 轴交于点(0,3)B .是(1)求抛物线的函数表达式;(2)点P 为直线AB 上方抛物线上一动点,过点P 作PQ x ⊥轴于点Q ,交AB 于点M ,求65PM AM +的最大值及此时点P 的坐标; (3)在(2)的条件下,点P '与点P 关于抛物线234y x bx c =-++的对称轴对称.将抛物线234y x bx c =-++向右平移,使新抛物线的对称轴l 经过点A .点C 在新抛物线上,点D 在l 上,直接写出所有使得以点A 、P '、C 、D 为顶点的四边形是平行四边形的点D 的坐标,并把求其中一个点D 的坐标的过程写出来.25. 在ABC 中,90BAC ∠=︒,AB AC ==D 为BC 的中点,E ,F 分别为AC ,AD 上任意一点,连接EF ,将线段EF 绕点E 顺时针旋转90°得到线段EG ,连接FG ,AG .(1)如图1,点E 与点C 重合,且GF 的延长线过点B ,若点P 为FG 的中点,连接PD ,求PD 的长;(2)如图2,EF 的延长线交AB 于点M ,点N 在AC 上,AGN AEG ∠=∠且GN MF =,求证:AM AF +=;(3)如图3,F 为线段AD 上一动点,E 为AC 的中点,连接BE ,H 为直线BC 上一动点,连接EH ,将BEH △沿EH 翻折至ABC 所在平面内,得到B EH '△,连接B G ',直接写出线段B G '的长度的最小值。

中考数学题号复习:25题 新定义题型

中考数学题号复习:25题   新定义题型

中考题号复习:25题 新定义题型射影1. 如图所示,在平面内有一线段AB ,分别过A 点,B 点向x 轴作垂线,垂足分别为C 、D ,我们把线段CD 称之为线段AB 在x 轴上的射影,线段CD 的长称之为线段AB 在x 轴上的射影长.(1)双曲线x y 4=上有两点A 、B ,A(m ,4),B(n ,1),求AB 在x 轴上 的射影长;(2)直线a x y +=21的图像上有两点A 、B ,AB 在x 轴上的射影长为4, 求AB 的长;(3)已知抛物线c bx ax y ++=2和直线bx y -=,其中c b a 、、满足 c b a >>,抛物线过点(1,0),且与直线相交于A 、B 两点,求线段AB 在x 轴上的射影长CD 的取值范围.限变点若⎩⎨⎧<-≥=1,1,'a b a b b ,则点Q 为点P 的限变点,例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).(1)①点(1,3)的限变点的坐标是 ;②在点A (-2,-1),B (-1,2)中有一个点是函数y=x2的图像上某一个点的有限变点,这个点是 ;(2)若点P 在函数y=-x+3(2,2->≤≤-k k x )的图像上,其限变点Q 的坐标'b 的取值范围是25'≤≤-b ,求k 的取值范围;(3)若点P 在关于x 的二次函数t t tx x y ++-=222的图像上,其限变点Q 的纵坐标'b 的取值范围是,求令其中或n -m s ,m ,b ''=><≥n n m b s 关于t 的函数解析式及s 的取值范围.联姻函数3. 定义若存在实数对坐标(x ,y )同时满足一次函数y=px+q 和反比例函数y=x k,则二次函数y=k qx px -+2为一次函数与反比例函数的“联姻”函数.(1)试判断(需要写出判断过程):一次函数y=-x+3和反比例函数y=x 2是否存在“联姻”函数,若存在,写出它们的“联姻”函数和实数对坐标;(2)已知:整数m ,n ,t 满足条件t<n<8m,并且一次函数y=(1+n )x+2m+2与反比例函数xy 2015=存在“联姻”函数2015)10()(2--++=x t m x t m y ,求m 的值; (3)若同时存在两组实数对坐标),(11y x 和),(22y x 使一次函数y=ax+2b 和反比例函数x c y =为“联姻”函数,其中a>b>c,a+b+c=0,设L=| x1-x2 |,求L 的取值范围.和谐点4. 在平面直角坐标系中,如果点P 的横坐标和纵坐标都相等,则称点P 为和谐点.例如点(1,1),(21-,21-)(2-,2-)……都是和谐点. (1)分别判断函数23+-=x y 的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数)0(242≠-+=a x ax y 的图象经过和谐点(2,2),且当m x ≤≤0时,函数(3)直线3:+=kx y l 经过和谐点P ,与x 轴交于点D ,与反比例函数x n y G =:的图象交于N M ,两点(点M 在点N 的左侧),若点P 的横坐标为23,且24<DN DM +,求n 的取值范围.梦之点5. 在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点称为“梦之点”.例如点)1,1(--,)0,0(,)2,2(,…都是“梦之点”.显然,这样的“梦之点”有无数个.(1)若点P (2,m )是反比例函数n y x =(n 为常数,n ≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数31y kx s =+-(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,说明理由;(3)若二次函数21y ax bx =++(a ,b 是常数,a >0)的图象上存在两个不同的“梦之点”157值范围.定义域、值域、区间6. 定义:自变量为x 的某个函数记为)(x f ,当自变量x 取某个实数0x 时的函数值记为)(0x f ,自变量x 的取值范围称为函数的定义域,定义域内的自变量x 对应的所有函数值的集合称为函数的值域.若b a ,是任意两个不相等的实数,我们规定:满足不等式b x a ≤≤的实数x 的所有取值的全体叫做闭区间,记为[]b a ,.(1)设反比例函数)0()(>k xk x f =的定义域是[]6,3,值域为[]a ,2,求a k ,的值; (2)一次函数)0()(≠+=k b kx x f 的定义域是[]1,3-,值域为[]9,5,求函数的解析式;(3)是否存在这样的c b ,,使得二次函数c bx x x f ++=2)(的定义域是[]2,4-,值域为[]10,6,若存在,求出c b ,的值;若不存在,说明理由.相反点7. 已知y 是关于x 的函数,若其图象经过点),(t t P -,则称点P 为函数图象上的“相反点”.例如:直线32-=x y 上存在“相反点”)1,1(-P .(1)在双曲线x y 1-=上是否存在“相反点”?若存在,请求出P 点的坐标;若不存在,说明理由;(2)若抛物线192)132(2122+---+-=a a x a x y 上有“相反点”,且与直线x y -=相交于点),(11y x A 和),(22y x B ,求2221x x +的最小值;(3)若函数2)1(412-++--+=k m x k n x y 的图象上存在唯一的一个“相反点”,且当21≤≤-n 时,m 的最小值为k ,求k 的值.美丽抛物线8. 已知如图,直线b x y l +=31:,经过点)41,0(M ,一组抛物线的顶点),1(11y B ,),2(22y B ,),3(33y B ……),(n n y n B (n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:)0,(11x A ,)0,(22x A ,)0,(33x A ……)0,(11++n n x A ,设)10(1<<x d x =. (1)求b 的值;(2)设过211,,A B A 三点的二次函数的表达式为n m x a y ++=2)(,求此表达式(用含d 的代数式表示);(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.探究:当)10(<<x d 的大小变化时,这组抛物线是否存在美丽抛物线?若存在,请你求出相应的d 值.特征数9. 定义:任何一个一次函数q px y +=,取出它的一次项系数p 和常数项q ,有序数组[]q p ,为其特征数.例如:52+=x y 的特征数是[]5,2,同理,[]c b a ,,为二次函数c bx ax y ++=2的特征数.(1)若特征数是[]1,2+m 的一次函数为正比例函数,求m 的值;(2)以y 轴为对称轴的二次函数c bx ax y ++=2的图象经过),2(m A 、)1,(n B 两点(其中0>m ,0<n ),连接AB OB OA ,,,得到OB OA ⊥,10=∆AOB S ,求二次函数c bx ax y ++=2的特征数.伴随函数10. 如果把y 是以x 为自变量的函数,记作为)(x f y =,给出如下定义:对自变量取值范围的任意实数t ,当自变量x 满足1+≤≤t x t 时,函数)(x f y =的最大值为t M ,最小值为t m ,t M -t m 是以t 为自变量的函数,记作t t m M t g -=)(,我们把函数t t m M t g -=)(称为函数)(x f y =的“伴随函数”.(1)函数53+-=x y 的“伴随函数”为)(t g = ;(2)已知函数)40(42≤≤-=x x x y ,求出函数y 的“伴随函数”的表达式;(3)当函数b x y +=的图象与)40(42≤≤-=x x x y 的“伴随函数”的图象恰好只有两个公共点,求b 的取值范围.。

2024年重庆市中考真题数学试卷(A卷)含答案解析

2024年重庆市中考真题数学试卷(A卷)含答案解析

2024年重庆市中考真题(A卷)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,最小的数是()A.2-B.0C.3D.1 2 -2.下列四种化学仪器的示意图中,是轴对称图形的是()A.B.C.D.【答案】C【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意;故选:C.3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .3-B .3C . 6-D .64.如图,AB CD ∥,165∠=︒,则2∠的度数是( )A .105︒B .115︒C .125︒D .135︒【答案】B【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠=∠=︒,由邻补角性质得23180∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.【详解】解:如图,∵AB CD ∥,∴3165∠=∠=︒,∵23180∠+∠=︒,∴2115∠=︒,故选:B .5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A .1:3B .1:4C .1:6D .1:9【答案】D【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D .6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A .20B .22C .24D .26【答案】B【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7.已知m =m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π-B .4π-C .324π-D .8π-根据题意可得2AC AD =∵矩形ABCD ,∴AD BC =在Rt ABC △中,AB =9.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )AB C D 由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA =∴D H ∠=∠,10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A .0B .1C .2D .3【答案】D【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题11.计算:011(3)(2π--+= .12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .【答案】9【详解】解:360÷40=9,即这个多边形的边数是9.故答案为:9.13.重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为 .由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14.随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是 .【答案】10%【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15.如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF = .【答案】3【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.16.若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为 .17.如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF = .DG = .∵以AB 为直径的O 与AC ∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,18.我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是 .把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为 .三、解答题19.计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【详解】(1)根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD中,点O是对角线AC的中点.用尺规过点O作AC的垂线,分别交AB,CD于点E,F,连接AF,CE.(不写作法,保留作图痕迹)(2)已知:矩形ABCD,点E,F分别在AB,CD上,EF经过对角线AC的中点O,且⊥.求证:四边形AECF是菱形.EF AC证明:∵四边形ABCD是矩形,.∴AB CD∠=∠.∴①,OCF OAE∵点O是AC的中点,∴②.∴CFO AEO≅△△(AAS).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【详解】(1)解:如图所示,即为所求;(2)证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)(3)解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈,2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.∴90AEB CEB ∠=∠=︒,由题意可知:45GAB ∠=︒,∴45BAE ∠=︒,∴cos 40cos AE AB BAE =∠=⨯∴tan 202tan CE BE EBC =∠=25.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.∴()4,0A -,设直线AC 的解析式为y =代入()4,0A -,得04m =-解得1m =,∴直线AC 的解析式为y =()当0y =时,046x =--,解得32x =-,∴3,02G ⎛⎫- ⎪⎝⎭∵()4,0A -,()0,4C ,∴OA OC =,∴45OAC OCA ∠=∠=︒,∵DR x ∥轴,26.在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG 的值.∵EFD BAC ∠∠=,BAC ∠∴60EFD ∠=︒∵1EFD BAD ∠=∠+∠=∠∴160α∠=︒-,∵,AB AC EFD BAC =∠=∠∴=45ABC ∠︒,由轴对称知EAB ∠=∠试题31设BAD BAE β∠=∠=,∴90DAC GAF ∠=∠=︒∴GAE EAF GAF ∠=∠-∠∵GE GA =,。

2024年重庆市中考真题(A卷)数学试题

2024年重庆市中考真题(A卷)数学试题

重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2b x a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.1. 下列四个数中,最小的数是( )A. 2-B. 0C. 3D. 12-2. 下列四种化学仪器的示意图中,是轴对称图形的是( )A. B.C. D.3. 已知点()3,2-在反比例函数()0k y k x =≠的图象上,则k 的值为( )A. 3- B. 3 C. 6- D. 64. 如图,AB CD ∥,165∠=︒,则2∠的度数是()A. 105︒B. 115︒C. 125︒D. 135︒5. 若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A. 1:3B. 1:4C. 1:6D. 1:96. 烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A. 20B. 22C. 24D. 267. 已知m =,则实数m 的范围是( )A. 23m << B. 34m << C. 45m << D. 56m <<8. 如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A. 328π- B. 4πC. 324π-D. 8π9. 如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FG C E的值为( )A.B.C.D. 10. 已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:011(3)()2π--+=_____.12. 如果一个多边形的每一个外角都是40︒,那么这个多边形的边数为______.13. 重庆是一座魔幻都市,有着丰富旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为_____.14. 随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是______.15. 如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF =______.16. 若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y -=---的解为非负整数,则所有满足条件的整数a 的值之和为______.的17. 如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF =______.DG =______.18. 我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是______.把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为______.三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题,请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭.20. 为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a79根据以上信息,解答下列问题:(1)上述图表中=a ______,b ______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22. 为促进新质生产力发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得31条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?23. 如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .的的(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)24. 如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港.1.41≈1.73≈2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25. 如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且的的与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.26. 在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG 的值.重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2b x a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】B【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】D【9题答案】【答案】A【10题答案】【答案】D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.【11题答案】【答案】3【12题答案】【答案】9【13题答案】【答案】19【14题答案】【答案】10%【15题答案】【答案】3【16题答案】【答案】16【17题答案】【答案】 ①. 8 ②. 【18题答案】【答案】 ①. 82 ②. 4564三、解答题:(本大题8个小题,第19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.【19题答案】【答案】(1)222x y +;(2)11a a +-.【20题答案】【答案】(1)86,87.5,40;第11页/共11页(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【21题答案】【答案】(1)见解析 (2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【22题答案】【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元【23题答案】【答案】(1)()()124606063y x x y x x=<≤=<≤, (2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <≤【24题答案】【答案】(1)A ,C 两港之间的距离77.2海里;(2)甲货轮先到达C 港.【25题答案】【答案】(1)234y x x =--+;(2)AM MN NF ++2+; (3)符合条件的点Q 的坐标为()1,2--或1943,416⎛⎫-⎪⎝⎭.【26题答案】【答案】(1)60α︒+(2)CG = (3。

重庆中考数学25题二次函数专项训练:平行四边形的存在性

重庆中考数学25题二次函数专项训练:平行四边形的存在性

第二讲 平行四边形的存在性例1、(2022•重庆A )如图,在平面直角坐标系中,抛物线c bx x y ++=221与直线AB 交于点A (0,4-),B (4,0).(1)求该抛物线的函数表达式;(2)点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作y 轴的平行线交x 轴于点D ,求PC+PD 的最大值及此时点P 的坐标;(3)在(2)中PC+PD 取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,M 为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N ,使得以点E ,F ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.练习1、(2022•重庆B )如图,在平面直角坐标系中,抛物线c bx x y ++-=243与x 轴交于点A (4,0),与y 轴交于点B (0,3).(1)求抛物线的函数表达式;(2)点P 为直线AB 上方抛物线上一动点,过点P 作PQ⊥x 轴于点Q ,交AB 于点M ,求PM+56AM 的最大值及此时点P 的坐标; (3)在(2)的条件下,点P′与点P 关于抛物线c bx x y ++-=243的对称轴对称.将抛物线c bx x y ++-=243向右平移,使新抛物线的对称轴l 经过点A .点C 在新抛物线上,点D 在l 上,直接写出所有使得以点A 、P′、C 、D 为顶点的四边形是平行四边形的点D 的坐标,并把求其中一个点D 的坐标的过程写出来.练习2、如图1,抛物线)0(2≠++=a c bx ax y 与x 轴交于A (4-,0),B (1,0)两点,交y 轴于点C (0,3).(1)求抛物线的解析式;(2)如图2,点P 为直线AC 上方且抛物线对称轴左侧的抛物线上一点,过点P 作x 轴的平行线交抛物线于点D ,过点P 作y 轴的平行线交AC 于点H ,求PD+PH 的最大值及此时点P 的坐标;(3)把抛物线)0(2≠++=a c bx ax y 向右平移23个单位,再向上平移165个单位得新抛物线,在新抛物线对称轴上找一点M ,在新抛物线上找一点N ,直接写出所有使得以点A ,C ,M ,N 为顶点的四边形是平行四边形的点M 的坐标,并把求其中一个点M 的坐标的过程写出来.练习3、(选讲)在平面直角坐标系中,抛物线)0(32≠++=a bx ax y 与x 轴的交点为A(1-,0),B(3,0),与y 轴交于点C .(1)求抛物线的函数解析式;(2)如图1,连接AC ,BC ,P 是第一象限内抛物线上一动点,过点P 作PT ⊥x 轴交BC 于点T ,过点P 作PR//AC 与BC 交于点R .求△PRT 的周长的最大值以及此时点P 的坐标;(3)如图2,将抛物线沿CA 方向平移,使得新抛物线'y 刚好经过点A ,设M 为新抛物线上一点,N 为原抛物线对称轴上一点,当点B ,C ,M ,N 组成的四边形为平行四边形时,直接写出点N 的纵坐标.自我巩固1、(2021•重庆B )如图,在平面直角坐标系中,抛物线)0(42≠-+=a bx ax y 与x 轴交于点A (1-,0),B (4,0),与y 轴交于点C .(1)求该抛物线的解析式;(2)直线l 为该抛物线的对称轴,点D 与点C 关于直线l 对称,点P 为直线AD 下方抛物线上一动点,连接PA ,PD ,求⊥PAD 面积的最大值.(3)在(2)的条件下,将抛物线)0(42≠-+=a bx ax y 沿射线AD 平移24个单位,得到新的抛物线1y ,点E 为点P 的对应点,点F 为1y 的对称轴上任意一点,在1y 上确定一点G ,使得以点D ,E ,F ,G 为顶点的四边形是平行四边形,写出所有符合条件的点G 的坐标,并任选其中一个点的坐标,写出求解过程.。

重庆2012数学中考题的24、25、26题

重庆2012数学中考题的24、25、26题

24.(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为.其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)26.(2012•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC 交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.24.(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.25.解答:解:(1)根据表格中数据可以得出xy=定值,则y1与x之间的函数关系为反比例函数关系:y1=,将(1,12000)代入得:k=1×12000=12000,故y1=(1≤x≤6,且x取整数);根据图象可以得出:图象过(7,10049),(12,10144)点,代入得:,解得:,故y2=x2+10000(7≤x≤12,且x取整数);(2)当1≤x≤6,且x取整数时:W=y1•x1+(12000﹣y1)•x2=•x+(12000﹣)•(x﹣x2),=﹣1000x2+10000x﹣3000,∵a=﹣1000<0,x=﹣=5,1≤x≤6,∴当x=5时,W最大=22000(元),当7≤x≤12时,且x取整数时,W=2×(12000﹣y1)+1.5y2=2×(12000﹣x2﹣10000)+1.5(x2+10000),=﹣x2+1900,∵a=﹣<0,x=﹣=0,当7≤x≤12时,W随x的增大而减小,∴当x=7时,W最大=18975.5(元),∵22000>18975.5,∴去年5月用于污水处理的费用最多,最多费用是22000元;(3)由题意得:12000(1+a%)×1.5×[1+(a﹣30)%]×(1﹣50%)=18000,设t=a%,整理得:10t2+17t﹣13=0,解得:t=,∵≈28.4,∴t1≈0.57,t2≈﹣2.27(舍去),∴a≈57,答:a的值是57.26.解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB′﹣B′N=t﹣1,∴当2<t≤时,S=S梯形GNMF﹣S△FKL=×2×(t﹣1+t)﹣(t﹣)(t﹣1)=﹣t2+2t ﹣,④如图⑥,当<t≤4时,∵B′L=B′C=(6﹣t),EK=EC=(4﹣t),B′N=B′C=(6﹣t)EM=EC=(4﹣t),S=S梯形MNLK=S梯形B′EKL﹣S梯形B′EMN=﹣t+.综上所述:当0≤t≤时,S=t2,当<t≤2时,S=﹣t2+t﹣;当2<t≤时,S=﹣t2+2t﹣,当<t≤4时,S=﹣t+.。

2022年重庆市中考数学试卷和答案解析(a卷)

2022年重庆市中考数学试卷和答案解析(a卷)

2022年重庆市中考数学试卷和答案解析(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的相反数是()A.﹣5B.5C.﹣D.2.(4分)下列图形是轴对称图形的是()A.B.C.D.3.(4分)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°4.(4分)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m 5.(4分)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.166.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.417.(4分)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.(4分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2429.(4分)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°10.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC =3,则AB的长度是()A.3B.4C.3D.411.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是()A.﹣26B.﹣24C.﹣15D.﹣13 12.(4分)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z ﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:|﹣4|+(3﹣π)0=.14.(4分)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是.15.(4分)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)16.(4分)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.三、参考答案题:(本大题2个小题,每小题8分,共16分)参考答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将参考答案过程书写在答题卡中对应的位置上.17.(8分)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.18.(8分)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.四、参考答案题:(本大题7个小题,每小题10分,共70分)参考答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将参考答案过程书写在对应的位置上.19.(10分)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,参考答案下列问题:(1)填空:a=,b=,m=;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).20.(10分)已知一次函数y=kx+b(k≠0)的图象与反比例函数y =的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC 的面积.21.(10分)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.22.(10分)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)23.(10分)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=,P(M)=.当G(M),P(M)均是整数时,求出所有满足条件的M.24.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD 的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N 的坐标的其中一种情况的过程.Ⅷ25.(10分)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF 的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC 所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.参考答案与解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【参考答案】解:5的相反数是﹣5,故选:A.【解析】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【参考答案】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意.故选:D.【解析】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【参考答案】解:∵AB∥CD,∴∠1+∠C=180°,∴∠1=180°﹣∠C=180°﹣50°=130°.故选:C.【解析】本题考查了平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.4.【参考答案】解:观察图象,当t=3时,h=13,∴这只蝴蝶飞行的最高高度约为13m,故选:D.【解析】本题考查了函数的图象,掌握函数的图象的最高点对应的函数值即为这只蝴蝶飞行的最高高度是解题的关键.5.【参考答案】解:∵△ABC与△DEF位似,相似比为2:3.∴C△ABC:C△DEF=2:3,∵△ABC的周长为4,∴△DEF的周长是6,故选:B.【解析】本题考查位似变换,参考答案本题的关键是明确相似三角形的周长比等于相似比.6.【参考答案】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.【解析】本题主要考查图形的变化规律,根据图形的变化得出第n 个图形中有4n+1个正方形是解题的关键.7.【参考答案】解:原式=+=6+,∵9<15<16,∴3<<4,∴9<6+<10.故选:B.【解析】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.8.【参考答案】解:设该快递店揽件日平均增长率为x,根据题意,可列方程:200(1+x)2=242,故选:A.【解析】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.9.【参考答案】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.【解析】本题考查正方形的性质、全等三角形的判定与性质,参考答案本题的关键是求出∠ADF的度数.10.【参考答案】解:如图,连接OB,∵AB是⊙O的切线,B为切点,∴OB⊥AB,∴AB2=OA2﹣OB2,∵OB和OD是半径,∴∠D=∠OBD,∵∠A=∠D,∴∠A=∠D=∠OBD,∴△OBD∽△BAD,AB=BD,∴OD:BD=BD:AD,∴BD2=OD•AD,即OA2﹣OB2=OD•AD,设OD=x,∵AC=3,∴AD=2x+3,OB=x,OA=x+3,∴(x+3)2﹣x2=x(2x+3),解得x=3(负值舍去),∴OA=6,OB=3,∴AB2=OA2﹣OB2=27,∴AB=3,故选:C.【解析】本题主要考查圆的相关计算,涉及切线的定义,等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,得出△OBD∽△BAD是解题关键.11.【参考答案】解:解不等式组得:,∵不等式组的解集为x≤﹣2,∴>﹣2,∴a>﹣11,解分式方程=﹣2得:y=,∵y是负整数且y≠﹣1,∴是负整数且≠﹣1,∴a=﹣8或﹣5,∴所有满足条件的整数a的值之和是﹣8﹣5=﹣13,故选:D.【解析】本题考查了分式方程的解,解一元一次不等式组,正确求解分式方程和一元一次不等式组是解决问题的关键.12.【参考答案】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,∴2×2×2=8种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D.【解析】本题属于新定义问题,涉及整式的加减运算,加法原理与乘法原理的知识点和对加法原理的理解能力,利用原式中只有加减两种运算求解是解题关键.二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.【参考答案】解:原式=4+1=5.故答案为:5.【解析】本题考查实数的运算,熟练掌握实数的运算法则是解题关键.14.【参考答案】解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,所以抽取的两张卡片上的字母相同的概率为=,故答案为:.【解析】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.【参考答案】解:如图,连接BD交AC于点O,则AC⊥BD,∵四边形ABCD是菱形,∠BAD=60°,∴∠BAC=∠ACD=30°,AB=BC=CD=DA=2,在Rt△AOB中,AB=2,∠BAO=30°,∴BO=AB=1,AO=AB=,∴AC=2OA=2,BD=2BO=2,∴S菱形ABCD=AC•BD=2,∴S阴影部分=S菱形ABCD﹣2S扇形ADE=2﹣=,故答案为:.【解析】本题考查扇形面积的计算,菱形的性质,掌握扇形面积的计算方法以及菱形的性质是正确参考答案的前提.16.【参考答案】解:根据题意,如表格所设:香樟数量红枫数量总量甲4x5y﹣4x5y乙3x6y﹣3x6y丙9x7y﹣9x7y∵甲、乙两山需红枫数量之比为2:3,∴,∴y=2x,故数量可如下表:香樟数量红枫数量总量甲4x6x10x乙3x9x12x丙9x5x14x所以香樟的总量是16x,红枫的总量是20x,设香樟的预算单价为a,红枫的预算单价为b,由题意得,[16x•(1﹣6.25%)]•[a•(1﹣20%)]+20x•[b•(1+25%)]=16x•a+20x •b,∴12a+25b=16a+20b,∴4a=5b,设a=5k,b=4k,∴=,故答案为:.【解析】本题考查了用字母表示数,根据相等关系列方程进行化简等知识,解决问题的关键是设需要的量,列出关系式,进行数据处理.三、参考答案题:(本大题2个小题,每小题8分,共16分)参考答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将参考答案过程书写在答题卡中对应的位置上.17.【参考答案】解:(1)原式=x2+4x+4+x2﹣4x=2x2+4;(2)原式=(﹣)÷=•=.【解析】本题主要考查分式的混合运算和整式的混合运算,解题的关键是掌握完全平方公式和单项式乘多项式法则及分式的混合运算顺序和运算法则.18.【参考答案】解:根据题意作图如下:由题知,在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD,故答案为:①∠A=∠EFB,②∠AEB=∠FBE,③BE=EB,④△EDC≌△CFE(AAS).【解析】本题主要考查全等三角形的判定和性质,熟练掌握三角形的判定和性质是解题的关键.四、参考答案题:(本大题7个小题,每小题10分,共70分)参考答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将参考答案过程书写在对应的位置上.19.【参考答案】解:(1)在83,84,84,88,89,89,95,95,95,98中,出现次数最多的是95,∴众数a=95,10台B型扫地机器人中“良好”等级有5台,占50%,“优秀”等级所占百分比为30%,∴“合格”等级占1﹣50%﹣30%=20%,即m=20,把B型扫地机器人的除尘量从小到大排列后,第5个和第6个数都是90,∴b=90,故答案为:95,90,20;(2)该月B型扫地机器人“优秀”等级的台数3000×30%=900(台);(3)A型号的扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A型号的扫地机器人除尘量的众数>B型号的扫地机器人除尘量的众数(理由不唯一).【解析】本题考查数据的整理,涉及众数、中位数、平均数、方差等,解题的关键是掌握数据收集与整理的相关概念.20.【参考答案】解:(1)∵反比例函数y=的图象过点A(1,m),B(n,﹣2),∴,n=,解得m=4,n=﹣2,∴A(1,4),B(﹣2,﹣2),∵一次函数y=kx+b(k≠0)的图象过A点和B点,∴,解得,∴一次函数的表达式为y=2x+2,描点作图如下:(2)由(1)中的图象可得,不等式kx+b>的解集为:﹣2<x<0或x>1;(3)由题意作图如下:由图知△ABC中BC边上的高为6,BC=4,∴S△ABC==12.【解析】本题主要考查反比例函数和一次函数交点的问题,熟练掌握反比例函数的图象和性质,一次函数的图象和性质,三角形面积公式等知识是解题的关键.21.【参考答案】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.【解析】本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出分式方程.22.【参考答案】解:(1)过D作DF⊥AE于F,如图:由已知可得四边形ACDF是矩形,∴DF=AC=200米,∵点D在点E的北偏东45°,即∠DEF=45°,∴△DEF是等腰直角三角形,∴DE=DF=200≈283(米);(2)由(1)知△DEF是等腰直角三角形,DE=283米,∴EF=DF=200米,∵点B在点A的北偏东30°,即∠EAB=30°,∴∠ABC=30°,∵AC=200米,∴AB=2AC=400米,BC==200米,∵BD=100米,∴经过点B到达点D路程为AB+BD=400+100=500米,CD=BC+BD=(200+100)米,∴AF=CD=(200+100)米,∴AE=AF﹣EF=(200+100)﹣200=(200﹣100)米,∴经过点E到达点D路程为AE+DE=200﹣100+200≈529米,∵529>500,∴经过点B到达点D较近.【解析】本题考查解直角三角形﹣方向角问题,解题的关键是掌握含30°、45°角的直角三角形三边的关系.23.【参考答案】解:(1)∵22+22=8,8≠20,∴2022 不是“勾股和数”,∵52+52=50,∴5055 是“勾股和数”;(2)∵M为“勾股和数”,∴10a+b=c2+d2,∴0<c2+d2<100,∵G(M)为整数,为整数,∴c+d=9,∴P(M)==为整数,∴c2+d2=81﹣2cd为3的倍数,∴cd为3的倍数.∴①c=0,d=9或c=9,d=0,此时M=8109或8190;②c=3,d=6或c=6,d=3,此时M=4536或4563.【解析】本题以新定义为背景考查了因式分解的应用,考查了学生应用知识的能力,解题关键是要理解新定义,表示出“勾股和数”,能根据条件找出合适的“勾股和数”.24.【参考答案】解:(1)把A(0,﹣4),B(4,0)代入y=x2+bx+c 得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)设直线AB解析式为y=kx+t,把A(0,﹣4),B(4,0)代入得:,解得,∴直线AB解析式为y=x﹣4,设P(m,m2﹣m﹣4),则PD=﹣m2+m+4,在y=x﹣4中,令y=m2﹣m﹣4得x=m2﹣m,∴C(m2﹣m,m2﹣m﹣4),∴PC=m﹣(m2﹣m)=﹣m2+2m,∴PC+PD=﹣m2+2m﹣m2+m+4=﹣m2+3m+4=﹣(m﹣)2+,∵﹣1<0,∴当m=时,PC+PD取最大值,此时m2﹣m﹣4=×()2﹣﹣4=﹣,∴P(,﹣);答:PC+PD的最大值为,此时点P的坐标是(,﹣);(3)∵将抛物线y=x2﹣x﹣4向左平移5个单位得抛物线y=(x+5)2﹣(x+5)﹣4=x2+4x+,∴新抛物线对称轴是直线x=﹣=﹣4,在y=x2+4x+中,令x=0得y=,∴F(0,),将P(,﹣)向左平移5个单位得E(﹣,﹣),设M(﹣4,n),N(r,r2+4r+),①当EF、MN为对角线时,EF、MN的中点重合,∴,解得r=,∴r2+4r+=×()2+4×+=,∴N(,);②当FM、EN为对角线时,FM、EN的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);③当FN、EM为对角线时,FN、EM的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);综上所述,N的坐标为:(,)或(﹣,)或(﹣,).【解析】本题考查二次函数的综合应用,涉及待定系数法,二次函数、一次函数图象上点坐标的特征,平行四边形的性质及应用等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.25.【参考答案】解:(1)如图1中,在射线CD上取一点K,使得CK=BE,在△BCE和△CBK中,,∴△BCE≌△CBK(SAS),∴BK=CE,∠BEC=∠BKD,∵CE=BD,∴BD=BK,∴∠BKD=∠BDK=∠ADC=∠CEB,∵∠BEC+∠AEF=180°,∴∠ADF+∠AEF=180°,∴∠A+∠EFD=180°,∵∠A=60°,∴∠EFD=120°,∴∠CFE=180°﹣120°=60°;(2)结论:BF+CF=2CN.理由:如图2中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=CB,∠A=∠CBD=60°,∵AE=BD,∴△ABE≌△BCD(SAS),∴∠BCF=∠ABE,∴∠FBC+∠BCF=60°,∴∠BFC=120°,如图2﹣1中,延长CN到Q,使得NQ=CN,连接FQ,∵NM=NF,∠CNM=∠FNQ,CN=NQ,∴△CNM≌△QNF(SAS),∴FQ=CM=BC,延长CF到P,使得PF=BF,则△PBF是等边三角形,∴∠PBC+∠PCB=∠PCB+∠FCM=120°,∴∠PFQ=∠FCM=∠PBC,∵PB=PF,∴△PFQ≌△PBC(SAS),∴PQ=PC,∠CPB=∠QPF=60°,∴△PCQ是等边三角形,∴BF+CF=PC=QC=2CN.(3)由(2)可知∠BFC=120°,∴点F的运动轨迹为红色圆弧(如图3﹣1中),∴P,F,O三点共线时,PF的值最小,此时tan∠APK==,∴∠HPK>45°,∵QK⊥PF,∴∠PKH=∠QKH=45°,如图3﹣2中,过点H作HL⊥PK于点L,设PQ交KH题意点J,设HL=LK=2,PL=,PH=,KH=2,∵S△PHK=•PK•HL=•KH•PJ,∴PQ=2PJ=2×=2+∴==.【解析】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会利用面积法解决问题,属于中考压轴题.。

2022中考数学专题25 命题与证明(专项训练)(解析版)

2022中考数学专题25 命题与证明(专项训练)(解析版)

专题25 命题与证明一、单选题1.(2021·河南九年级)能说明命题“关于x 的方程240x x n -+=一定有实根”是假命题的反例为( )A .2n =-B .1n =-C .0n =D . 6.8n =【答案】D【分析】计算一元二次方程根的判别式即可【详解】依题意“关于x 的方程240x x n -+=一定有实根”是假命题则:2(4)40n ∆=--< 解得:4n >故选D.【点睛】本题考查了一元二次方程根的判别式,命题与假命题的概念,熟悉概念是解题的关键.2.(2021·沙坪坝区·重庆八中)下列命题,真命题是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一个角为直角的四边形为矩形C .对角线互相垂直的四边形是菱形D .一组邻边相等的矩形是正方形【答案】D【分析】由题意根据平行四边形的判定定理、矩形、菱形、正方形的判定定理判断即可.【详解】解:A 、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,本选项说法是假命题;B 、有一个角为直角的平行四边形为矩形,本选项说法是假命题;C 、对角线互相垂直的平行四边形是菱形,本选项说法是假命题;D 、一组邻边相等的矩形是正方形,本选项说法是真命题;故选:D .【点睛】本题考查的是命题的真假判断,注意掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.(2021·山西九年级)《几何原本》是欧几里得的一部不朽之作,本书以公理和原始概念为基础,推演出更多的结论,这种做法为人们提供了一种研究问题的方法.这种方法所体现的数学思想是()A.数形结合思想B.分类讨论思想C.转化思想D.公理化思想【答案】D【分析】结合题意,根据公理化思想的性质分析,即可得到答案.【详解】根据题意,这种方法所体现的数学思想是:公理化思想故选:D.【点睛】本题考查了公理化思想的知识;解题的关键是熟练掌握公理化思想的性质,从而完成求解.4.(2021·湖南九年级)下列各命题是真命题的是()A.矩形的对称轴是两条对角线所在的直线B.平行四边形一定是中心对称图形C.有一个内角为60 的平行四边形是菱形D.三角形的外角等于它的两个内角之和【答案】B【分析】根据矩形的性质、轴对称图形和中心对称图形的概念、三角形的外角性质判断即可.【详解】解:A、矩形的对称轴是任意一边的垂直平分线,两条对角线所在的直线不一定是矩形的对称轴,本选项是假命题;B、平行四边形一定是中心对称图形,本选项是真命题;C、有一个内角为60°的平行四边形不一定是菱形,本选项是假命题;D、三角形的外角等于与它不相邻的两个内角之和,本选项是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.(2021·广西九年级)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④等边三角形既是轴对称图形又是中心对称图形.其中真命题共有( )A .1个B .2个C .3个D .4个【答案】B【详解】①一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;②对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如筝形,筝形的对角线垂直但不相等,不是正方形),故该命题错误;③因为矩形的对角线相等,所以连接矩形的中点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;④等边三角形是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故该命题错误;故选B .6.(2021·浙江)下列选项中,可以用来证明命题“若a >b ,则1a <1b ”是假命题的反例是( )A .a =2,b =1B .a =2,b =﹣1C .a =﹣2,b =1D .a =﹣2,b =﹣1 【答案】B【分析】把各选项提供的数据代入计算,进行比较即可求解.【详解】解:A.当 a =2,b =1时,111,12a b ==,则11a b <,无法说明原命题为假命题,不合题意; B. 当a =2,b =﹣1时,111,12a b ==-,则11a b>,说明原命题为假命题,符合题意; C.当 a =﹣2,b =1时,a <b ,条件错误,无法说明原命题为假命题,不合题意.D.当 a =﹣2,b =﹣1时,a <b ,条件错误,无法说明原命题为假命题,不合题意. 故选:B【点睛】本题考查了命题真假的判断,要说明一个命题是真命题,一般需要推理、论证,而判断一个命题是假命题,只需要举出一个反例即可.7.(2021·辽宁九年级)下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .同位角相等,两直线平行C .对顶角相等D .若0a >,0b >,则0a b +>【答案】B【分析】 分别写出原命题的逆命题,然后判断真假即可.【详解】解:A 、若a b =,则||||a b =的逆命题是若||||a b =,则a b =,逆命题是假命题,不符合题意;B 、同位角相等,两直线平行的逆命题是两直线平行,同位角相等,逆命题是真命题,符合题意;C 、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,不符合题意;D 、若0a >,0b >,则0a b +>的逆命题是若0a b +>,则0a >,0b >,逆命题是假命题,不符合题意;故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.8.(2021·辽宁九年级)下列说法错误..的是( ) A .“对顶角相等”的逆命题是真命题B .通过平移或旋转得到的图形与原图形全等C .“经过有交通信号灯的路口,遇到红灯”是随机事件D .函数1y x=-的图象经过点()1,1- 【答案】A【分析】根据平移、旋转的性质、对顶角的性质、反比例函数图象上点的坐标特征、随机事件的概念判断即可.【详解】解:“对顶角相等”的逆命题是相等的角是对顶角,是假命题,A 错误,符合题意; 通过平移或旋转得到的图形与原图形全等,B 正确,不符合题意;“经过有交通信号灯的路口,遇到红灯”是随机事件,C 正确,不符合题意;因为1x =时,11y x =-=-,所以函数1y x=-的图象经过点(1,1)-,D 正确,不符合题意; 故选:A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.(2021·湖南九年级)下列说法正确的是( )A .有两条边和一个角对应相等的两个三角形全等B .平分弦的直径垂直于这条弦C .正方形既是轴对称图形又是中心对称图形D .一组对边平行,另一组对边相等的四边形是平行四边形【答案】C【分析】根据全等三角形的判定、垂径定理、正方形的性质、平行四边形的判定定理判断即可.【详解】解:A 、有两条边和其夹角对应相等的两个三角形全等,原命题是假命题;B 、平分弦(非直径)的直径垂直于这条弦,原命题是假命题;C 、正方形既是轴对称图形又是中心对称图形,是真命题;D 、一组对边平行且相等的四边形是平行四边形,原命题是假命题;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(2021·重庆九年级)下列命题中,是真命题的是( )A .对角线相等的四边形是平行四边形B .对角线互相垂直的平行四边形是矩形C .菱形的对角线相等D .有一组邻边相等的平行四边形是菱形【答案】D【分析】由平行四边形的判定得出A 错误;由矩形的判定得出B 不正确;由菱形的定义得出C 正确;由菱形的判定得出D 正确;即可得出答案.【详解】解:A. 对角线互相平分的四边形是平行四边形,∴A 不正确;B. 对角线互相垂直的平行四边形是菱形,∴B 不正确;C. 菱形的对角线互相垂直平分∴C 不正确;D. 有一组邻边相等的平行四边形是菱形∴不正确;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题,正确的命题称为真命题,错误的命题称为假命题,经过推理论证的真命题称为定理.二、填空题11.(2021·山西九年级)若举反例说明命题“若a b <,则ac bc <”是假命题时,令a 的值为5,b -的值为2-,则可给c 取一个具体的值为_______.【答案】1c =-(答案不唯一)【分析】“若a b <时,则ac bc <”是假命题,则a b <时,ac ≥bc ,即可.【详解】解:ac -bc ≥0,c (a -b )≥0-3c ≥0c ≤0即可.故答案为:1c =-(答案不唯一).【点睛】本题考查了命题,掌握真假命题是解题的关键.12.(2021·江苏无锡市·)请写出“两直线平行,同位角相等”的逆命题:_____________________________.【答案】如果同位角相等,那么两直线平行【分析】命题是由题设和结论两部分组成的,把原命题的题设作结论,原命题的结论作题设,这样就将原命题变成了它的逆命题.【详解】解:原命题是:两直线平行,同位角相等.改成如果…那么…的形式为:如果两直线平行,那么同位角相等.∴逆命题为:如果同位角相等,那么两直线平行,故答案为:如果同位角相等,那么两直线平行.【点睛】本题是一道命题与定理的概念试题,考查了命题的组成,原命题与逆命题的关系.13.(2021·安徽合肥·)直角三角形斜边上的中线等于斜边的一半逆命题________________【答案】如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【分析】把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【详解】解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.【点睛】本题考查了互逆命题的知识及命题的真假判定,两个命题中,如果第一个命题的条件是第二个命题结论,而第一个命题的结论是第二个命题条件,那么这两个命题叫做互逆命题,其中一个命题成为另一个命题的逆命题.14.(2021·安徽九年级)命题“对顶角相等”的逆命题是__________.【答案】相等的角是对顶角【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:相等的角是对顶角.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15.(2021·江苏九年级)命题“等腰三角形两底角相等”的逆命题是_______【答案】有两个角相等的三角形是等腰三角形【分析】根据逆命题的条件和结论分别是原命题的结论和条件写出即可.【详解】∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.【点睛】本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.三、解答题16.(2021·贵州九年级)同学们,你们知道吗?三角形的内角和不一定是180°.德国数学家黎曼创立的黎曼几何中描述:在球面上选三个点连线构成一个三角形,这个三角形的内角和大于180°.黎曼几何开创了几何学的新领域,近代黎曼几何在广义相对论里有着重要的应用.同样,在俄国数学家罗巴切夫斯基发表的新几何(简称罗氏几何)中,描述了在双曲面里画出的三角形,它的内角和永远小于180°.罗氏几何在天体理论中有着广泛的应用.而我们所学习的欧氏几何中描述“在平面内,三角形的内角和等于180°”是源于古希腊数学家欧几里得编写的《原本》.欧几里得创造的公理化体系影响了世界2000多年,是整个人类文明史上的里程碑.请你证明:在平面内,三角形的内角和等于180°.要求画出图形....,写出已知....、求证和证明...... 【答案】见解析【分析】过点A 作//EF BC ,由两直线平行,内错角相等得到1B ∠=∠,2C ∠=∠,再根据平角的定义解题.【详解】已知:如图,ABC .求证:180A B C ∠+∠+∠=︒.证明:过点A 作//EF BC ,∴1B ∠=∠,2C ∠=∠,∵12180BAC ∠+∠+∠=︒,∴180B BAC C ∠+∠+∠=︒.【点睛】本题考查三角形内角和定理的证明,涉及平行线性质、平角定义等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.(2021·潍坊市寒亭区教学研究室九年级)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票的数量分别为5张,4张,3张,2张.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小.(1)如果按“甲、乙、丙、丁”的先后顺序购票,那么他们4人是否都能购买到满足条件的票?如果能,请写出每人购买的座位号;如果不能,请说明理由.(2)若乙第一个购票,要使其他3人也能购买到满足条件的票,甲、丙、丁应该按怎样的顺序购票?写出所有符合要求的购票顺序.【答案】(1)甲:1,2,3,4,5;乙:6,8,10,12;丙:7,9,11;丁:13,15;(2)甲丙丁、甲丁丙、丙甲丁、丁甲丙,共4种情况【分析】(1)由所选的座位号之和最小和购票的先后顺序即可推理.(2)根据题意可确定乙的购票结果.再结合所选的座位号之和最小并利用分类讨论的思想确定甲、丙、丁的购票顺序即可得出结果.【详解】(1)由所选的座位号之和最小可知,甲先选:5,3,1,2,4;则乙选:6,8,10,12;丙选11,9,7;丁选15,13.(2)根据题意可确定乙选的座位号为3,1,2,4.①若甲在乙选完之后选,则甲选的座位号为13,11,9,7,5.Ⅰ若丙在甲选完之后选,则丙选的座位号为6,8,10.此时丁可选的座位号为12,14.即在乙选完之后的顺序为:甲、丙、丁.Ⅱ若丁在甲选完之后选,则丁选的座位号为6,8.此时丙可选的座位号为10,12,14.即在乙选完之后的顺序为:甲、丁、丙.②若丙在乙选完之后选,则丙选的座位号为9,7,5.Ⅰ若甲在丙选完之后选,则甲可选的座位号为6,8,10,12,14.此时丁可选的座位号为13,11.即在乙选完之后的顺序为:丙、甲、丁.Ⅱ若丁在丙选完之后选,则丁选的座位号为6,8.此时没有5个相邻的座位的票可供甲选择,此顺序不成立.③若丁在乙选完之后选,则丁选的座位号为7,5.Ⅰ若甲在丁选完之后选,则甲可选的座位号为6,8,10,12,14.此时丙可选的座位号为13,11,9.即在乙选完之后的顺序为:丁、甲、丙.Ⅱ若丙在丁选完之后选,则丙选的座位号为6,8,12.此时没有5个相邻的座位的票可供甲选择,此顺序不成立.综上可知,甲、丙、丁的购票顺序可以为:甲、丙、丁或甲、丁、丙或丙、甲、丁或丁、甲、丙.【点睛】本题考查推理与论证,理解题意并利用分类讨论的思想是解答本题的关键.18.(2021·河南九年级)阅读下列相关材料,并完成相应的任务.婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:“若圆内接四边形的对角线互相垂直,则垂直于一边且过对角线交点的直线平分对边”.任务:(1)按图(1)写出了这个定理的已知和求证,并完成这个定理的证明过程;已知:__________________求证:_________________证明:(2)如图(2),在O 中,弦AB CD ⊥于M ,连接,,,,,AC CB BD DA E F 分别是,AC BC 上的点,EM BD ⊥于,G FM AD ⊥于H ,当M 是AB 中点时,直接写出四边形EMFC 是怎样的特殊四边形:__________.【答案】(1)见解析;(2)菱形【分析】(1)先写出已知、求证,先证明BMF MAF ∠=∠,再证明DE ME =,DE CE =即可证明 (2)先证明CE CF =,再证明AC BC =,由布拉美古塔定理证明ME EC CF FM ===即可证明 【详解】(1)已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥于点M ,过点M 作AB 的垂线分别交AB DC 、于点,F E . 求证:点E 是DC 的中点 证明:,AC BD EF AB ⊥⊥9090BMF AMF MAF AMF ∴∠+∠=︒∠+∠=︒,,BMF MAF ∴∠=∠,EDM MAF EMD BMF ∠=∠∠=∠,, EDM EMD ∴∠=∠, DE ME ∴=,同理可证ME CE =,DE CE ∴=, ∴点E 是DC 的中点故答案为:已知:如图,在圆内接四边形ABCD 中,对角线AC BD ⊥于点M ,过点M 作AB 的垂线分别交AB DC 、于点,F E . 求证:点E 是DC 的中点 (2)四边形EMFC 是菱形理由:由布拉美古塔定理可知,,E F 分别是,AC BC 的中点, 11,22CE AC CF CB ∴== AB CD ⊥ 11,22ME AC MF CB ∴== AB CD M ⊥,是AB 中点AC BC ∴=ME EC CF FM ∴===∴四边形EMFC 是菱形 故答案为:四边形EMFC 是菱形 【点睛】本题考查菱形的判定、根据题意写已知求证、灵活进行角的和差关系的转换是解题的关键 19.(2020·江苏鼓楼区·)点E 、F 分别是菱形ABCD 边BC 、CD 上的点. (1)如图,若CE =CF ,求证AE =AF ;(2)判断命题“若AE =AF ,则CE =CF ”的真假.若真,请证明;若假,请在备用图上画出反例.【答案】(1)见解析;(2)假命题,见解析 【分析】(1)连接AC ,利用菱形的性质和全等三角形的判定和性质解答即可; (2)举出反例解答即可. 【详解】解:(1)连接AC ,∵四边形ABCD 是菱形, ∴∠ACE =∠ACF , 在△ACE 与△ACF 中CE CF ACE ACF AC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△ACF (SAS ), ∴AE =AF ,(2)当AE =AF =AF'时,CE ≠CF',如备用图,∴命题“若AE =AF ,则CE =CF ”是假命题. 【点睛】此题考查命题与定理,关键是根据菱形的性质和全等三角形的判定和性质解答.20.(2020·丰台·北京十八中)某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:(1)则甲同学错的是第题;(2)丁同学的得分是;(3)如果有一个同学得了1分,他的答案可能是(写出一种即可).【答案】(1)5;(2)3;(3)A【分析】(1)分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙,丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论;(2) 分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论.(3)由(1)先得出五道题的正确选项,然后留一个正确,其他都错误即可得出结论.【详解】解:(1)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以此种情况不符合题意,当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分,针对于丁来看,第1,3题错了,做对了3道,得分3分,故答案为5;(2)当甲选错了第1题,那么,其余四道全对, 针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,针对于乙来看,第5道错了,而乙的得分是3分,所以,乙只能做对3道,即:第3题乙也选错,即:第3题的选项C正确,针对于丙来看,第1题错了,做对4道,此时,丙的得分为4分,而丙的得分为2分,所以,此种情况不符合题意,当甲选错第4题,那么其余四道都对, 针对于乙来看,第3,4,5道错了,做对了2道,此时,得分2分,而乙的得分为3分,所以,此种情况不符合题意,当甲选错第5题,那么其余四道都对,针对于乙来看,第3道错了,而乙的得分为3分,所以,乙只能做对3道,所以,乙第5题也错了,所以,第5题的选项A是正确的,针对于丙来看,第1,3,5题错了,做对了2道,得分2分,针对于丁来看,第1,3题错了,做对了3道,得分3分,故答案为3;(3)由(1)知,五道题的正确选项分别是:CCABA, 如果有一个同学得了1分,那么,只选对1道, 即:他的答案可能是CACCC或CBCCC或CABAB或BBBBB等,故答案为:CACCC或BBBBB(答案不唯一).【点睛】本题主要考查是推理与论证问题和分类讨论的思想,确定出甲选错的题号是解本题的关键. 21.(2020·浙江台州·九年级期末)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点,则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED .(2)如图2,菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点. ①求AE ,DE 的长;②AC ,BD 交于点O ,求tan ∠DBC 的值.【答案】(1)见解析;(2)①DEtan ∠DBC. 【分析】(1)①证明△ABE ≌△DCE (SAS ),得出△ABE ∽△DCE 即可; ②连接AC ,由自相似菱形的定义即可得出结论; ③由自相似菱形的性质即可得出结论; (2)①由(1)③得△ABE ∽△DEA ,得出AB BE AEDE AE AD==,求出AE =,DE =②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,则四边形DMEN 是矩形,得出DN =EM ,DM =EN ,∠M =∠N =90°,设AM =x ,则EN =DM =x +4,由勾股定理得出方程,解方程求出AM =1,EN =DM =5,由勾股定理得出DN =EM,求出BN =7,再由三角函数定义即可得出答案. 【详解】解:(1)①正方形是自相似菱形,是真命题;理由如下: 如图3所示:∵四边形ABCD 是正方形,点E 是BC 的中点, ∴AB =CD ,BE =CE ,∠ABE =∠DCE =90°, 在△ABE 和△DCE 中 AB CD ABE DCE BE CE =⎧⎪=⎨⎪=⎩∠∠, ∴△ABE ≌△DCE (SAS ), ∴△ABE ∽△DCE , ∴正方形是自相似菱形,故答案为:真命题;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形,故答案为:假命题;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C >90°,且∠ABC +∠C =180°,△ABE 与△EDC 不能相似, 同理△AED 与△EDC 也不能相似, ∵四边形ABCD 是菱形, ∴AD ∥BC , ∴∠AEB =∠DAE ,当∠AED =∠B 时,△ABE ∽△DEA ,∴若菱形ABCD 是自相似菱形,∠ABC =α(0°<α<90°),E 为BC 中点, 则在△ABE ,△AED ,△EDC 中,相似的三角形只有△ABE 与△AED , 故答案为:真命题;(2)①∵菱形ABCD 是自相似菱形,∠ABC 是锐角,边长为4,E 为BC 中点, ∴BE =2,AB =AD =4, 由(1)③得:△ABE ∽△DEA , ∴AB BE AEDE AE AD== ∴AE 2=BE •AD =2×4=8,∴AE DE =AB AE BE ⋅,故答案为:AE DE②过E 作EM ⊥AD 于M ,过D 作DN ⊥BC 于N ,如图2所示:则四边形DMEN 是矩形, ∴DN =EM ,DM =EN ,∠M =∠N =90°, 设AM =x ,则EN =DM =x +4,由勾股定理得:EM 2=DE 2﹣DM 2=AE 2﹣AM 2,即2﹣(x +4)22﹣x 2, 解得:x =1, ∴AM =1,EN =DM =5,∴DN =EM = 在Rt △BDN 中, ∵BN =BE +EN =2+5=7,∴tan ∠DBC =DN BN =【点睛】本题考查了自相似菱形的定义和判定,菱形的性质应用,三角形全等的判定和性质,相似三角形的判定和性质,勾股定理的应用,锐角三角函数的定义,掌握三角形相似的判定和性质是解题的关键.22.(2020·渠县崇德实验学校九年级)某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:)则丁同学的得分是;(2)如果有一个同学得了1分,他的答案可能是(写出一种即可)【答案】(1)3;(2)CACCC【分析】(1)分甲从第1题到第5题依次错一道,进而得出其余四道的正确选项,再根据乙,丙的选项和得分判断,进而得出甲具体选错的题号,即可得出结论;(2)由(1)先得出五道题的正确选项,然后留一个正确,其他都错误即可得出结论.【详解】解:(1)当甲选错了第1题,那么,其余四道全对,针对于乙来看,第1,3,5道错了,做对两道,此时,得分为2,而乙得分3,所以,此种情况不符合题意,当甲选错了第2题,那么其余四道全对,针对于乙来看,第2,3,5道错了,做对2道,此时,得分为2分,而乙得分3分,所以,此种情况不符合题意,当甲选错第3题时,那么其余四道都对,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市中考数学专题
1、(一中2019级初三下入学考试)
《见微知著》读到,从一个简单的经典问题出发,从特殊到一般,由简单到复杂;从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思维阀门发现新问题、新结论的重要方法。

阅读材料一:
利用整体思想解题,运用代数式的恒等变形,使不少依照常规思维难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体带入;(4)整体求和等。

例如:11111,1=+++=b
a a
b 求证:
证明:111111=+++=+++=b b b b a ab ab 原式 波利亚在《怎样解题》中指出:“当你找到一个蘑菇或者作出第一个发现后,再四处看看,他们总是成群生长”类似问题:我们有更多的式子满足以上特征。

阅读材料二: 基本不等式()0,02 b a b a ab +≤
,当且仅当b a =时等号成立,它是解决最值问题的有力工具;
例如:在0 x 的条件下,当x 为何值时,x
x 1+有最小值,最小值是多少? 解:∵0 x ,01 x ,∴x
x x x 121
⋅≥+,即2121=⋅≥+x x x x ,∴21≥+x x 当且仅当x x 1=,即1=x 时,x x 1+有最小值,最小值为2. 请根据阅读材料解答下列问题:
(1)已知1=ab ,求下列各式的值: ①
=+++221111b a ; ②=+++n n b a 1111 ;
(2)若1=abc ,解方程
.1151515=++++++++c ca cx b bc bx a ab ax
(3)若正数b a 、满足1=ab ,求b
a M 21111+++=
的最小值。

2、(巴蜀2019级初三下开学考试)
材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子。

在解某些特殊方程时,使用换元法常常可以达到转化与划归的目的。

例如在求解一元四次方程,012,0122224=+-==+-t t t x x x 则原方程变为时,令解得,1=t ,从而解得原方程的解为.1±=x
材料二:杨辉三角形是中国数学史上的一个伟大成就,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现。

它呈现了某些特定系数在三角形中的一种有规律的几何排列。

下图为杨辉三角形;
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
………………………………
………………………………
(1)利用换元法解方程:()()
313213222=-++-+x x x x
(2)在杨辉三角形中,按照由上至下、从左到右的顺序观察,设n a 是第n 行的第2个数(其中n ≥4),n b 是第n 行的第三个数,n c 是第(n-1)行的第3个数。

请利用换元法因式分解:()14+⋅-n n n c a b
3、(一外2019级初三下开学考试)
我国著名的数学家秦九昭在《数书九章》提出了三斜求积术”,即已知三角形的三边长,求他的面积用现代式子表示即为:
① ⎥⎥⎦
⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-=222222241c b a b a S (其中a 、b 、c 为三角形的三边长,S 为面积。

) 而另一个文明古国古希腊也有求三角形管面积的海伦公式: ()()()② c p b p a p p S ---=(其中a 、b 、c 为三角形的三边长,2c b a p ++=
) (1)若已知三角形的三边长分别为5、7、8,请在上述两种公式中选择一种你喜欢的公式,计算该三角形的面积; (2)事实上,“三斜求积术”与海伦公式是等价的,可以由“三斜求积术”直接推导出海伦公式,其部分推导过程如下:
()[] =-+-=⎥⎥⎦⎤⎢⎢⎣
⎡⎪⎪⎭⎫ ⎝⎛-+-2
222222222224161241c b a b a c b a b a
请将上述推导过程补充完整:
(3)如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB >1,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设A B=x
,试利用海伦公式求△ABC 的最大面积?。

相关文档
最新文档