MATLAB在结构力学分析中的应用
Matlab在力学中的应用

Matlab在力学中的应用【摘要】倘若是在传统的手算方法里解超静定的结构工作是非常的繁琐麻烦,甚至是有时候是不可能的,所以我们运用结构一般的有限元编程方法,通过两个实例的对比方法,就能够直观的展示Matlab 在结构力学分析中的应用,Matlab 具有极高的性能,方法具有普遍的实用性和适用性,可以实现弯矩图自动绘制,这将大大的提高工作效率,减少工程师的负担,并且计算精准。
【关键字】Matlab ;结构有限元弯矩图;精准;一、前言Matlab可能很多人都会好奇,这是一个什么东西。
其实它是由美国的一家公司推出的新型的计算系统,主要用于材料力学,数学等学科的科学计算,还有一些其他的高科技用途。
他将许多的数学运算做了简化,特别是那些复杂的线性代数运算。
有巨大的数学贡献。
也给高级计算机语言的研究提供了窗口和可能。
Matlab的成功运用让太多的数学计算就变得简单。
但是Matlab是一个新的技术,所以我们对Matlab还是有很多的研究空间。
二、MATLAB-PDEtool介绍MATLAB-PDEtool提供了一个功能强大的并且是使用灵活的二维有限元偏微分方程求解环境,其图形用户界面更是使用十分方便、直观一般来说,MATLAB-PDEtool包括3个步骤:定义一个PDE的问题,它包括确定二维求解区域、边界条件和PDE系数。
MATLAB-PDEtool能够求解的PDE型式有:椭圆型、抛物线型、双曲线型、特征值型。
当使用GUI时,可以在画图模式下确定求解区域;在边界模式下选择方程形式和设置方程系数。
数值的求解,它包括剖分、离散方程和得到一个数值解。
在GUI中,在剖分模式下形成满意的网格;在求解模式下通过选择数值计算方法求解。
图形化显示结果。
通常用于的就是在表现有限元计算结果的图形有:比如说变形网格图、云图、等值线图、矢量图、网格图、表面图、流线图等。
三、MATLAB在麦克斯韦速率分布中的应用而在气体动力学理论中麦克斯韦速率分布律是大学物理讲授与学习中的一个难点和重点。
MATLAB在工程设计中的应用与实例

MATLAB在工程设计中的应用与实例概述:MATLAB(矩阵实验室)是一种高级的数值计算和数据可视化软件,广泛应用于科学、工程和工业。
它的功能强大,可以通过编写算法和脚本来进行数据处理、模拟和分析。
在工程设计中,MATLAB的应用非常广泛,可以帮助工程师解决各种实际问题。
本文将介绍MATLAB在工程设计中的应用,并结合实例进行详细说明。
一、信号处理与滤波器设计在工程设计中,经常需要处理来自传感器或其他设备的信号。
MATLAB提供了丰富的信号处理工具箱,可以进行信号滤波、频域分析、谱估计等一系列操作。
例如,在音频处理中,我们可以使用MATLAB对音频信号进行去噪、降噪、特征提取等操作,以改善音频质量。
另外,在无线通信中,信号调制、解调和通道估计等操作也需要使用到MATLAB的信号处理工具箱。
二、控制系统设计与仿真控制系统设计是工程设计的重要组成部分,它涉及到自动化、机械、电子等多个领域。
MATLAB提供了专业的控制系统工具箱,可以进行控制系统建模、系统辨识、控制器设计等工作。
例如,在飞行器的姿态控制中,我们可以使用MATLAB进行系统模型的建立,并设计合适的控制器来实现飞行器的稳定飞行。
此外,MATLAB还支持对控制系统进行仿真,可以通过模拟系统动态响应来验证设计的效果。
三、电路与电子设计在电路与电子设计中,MATLAB可以辅助工程师进行电路分析、模拟和优化。
MATLAB提供了电路设计工具箱,包括电路拓扑分析、参数优化、电路模型生成等功能。
例如,在功率电子领域,我们可以使用MATLAB对电子变流器进行建模,并通过优化算法找到最佳的拓扑结构,以提高功率转换效率。
此外,MATLAB还支持混合信号电路设计和可编程逻辑器件(FPGA)设计等领域。
四、结构力学与有限元分析结构力学是工程设计的重要组成部分,它涉及到物体的力学性质和结构响应。
MATLAB提供了结构力学分析工具箱和有限元分析工具箱,可以进行静力学和动力学分析、结构模态分析、应力/应变分布等工作。
工程构件受力和刚度计算的MATLAB分析法

工程构件受力和刚度计算的MATLAB分析法工程构件受力和刚度计算是结构设计和分析中非常重要的一部分,它涉及到对构件受力和刚度进行计算的理论基础和方法。
而MATLAB作为一种广泛应用于科学计算和工程领域的软件工具,其强大的数学和算法功能使得其成为进行工程构件受力和刚度计算的理想选择。
在进行工程构件的受力和刚度计算时,首先需要建立合适的受力与形变模型。
其次,需要根据受到的外力和形变条件,建立构件的力平衡方程和形变方程。
最后,利用MATLAB的数值计算功能,对这些方程进行求解,以获得构件的受力和刚度。
在进行受力计算时,常用的方法包括静力方法、动力方法和有限元方法等。
其中,静力方法基于构件的受力平衡条件,通过求解受力方程组得到构件的受力分布。
动力方法则基于构件的振动特性,利用动力学方程求解得到构件的受力状态。
而有限元方法则是将结构离散为有限数量的单元,通过求解单元的刚度矩阵和载荷矩阵得到整个结构的受力情况。
在进行刚度计算时,常用的方法包括弹性刚度法和刚度矩阵法等。
其中,弹性刚度法是基于构件材料的弹性行为,通过求解弹性力学方程得到构件的刚度。
刚度矩阵法则是将结构离散为有限数量的节点,通过求解节点的刚度矩阵和载荷矩阵得到整个结构的刚度。
利用MATLAB进行工程构件受力和刚度计算时,用户可以编写自定义的函数和脚本来实现对受力和刚度方程的求解。
MATLAB提供了丰富的数学函数和工具箱,包括线性方程组的求解、特征值和特征向量的计算、矩阵运算等功能,这些功能可以大大简化受力和刚度计算的过程。
用户可以使用MATLAB的函数库来进行构件的受力和刚度计算,也可以根据实际需要进行函数的编写和修改。
总之,MATLAB分析法在工程构件受力和刚度计算中具有广泛的应用前景。
它通过提供强大的数学和算法功能,简化了受力和刚度计算的过程,并且可以根据实际需要进行函数的编写和修改。
工程师和科研人员可以利用MATLAB进行受力和刚度计算,以实现对工程构件的准确设计和分析。
力学的MATLAB的研究方法

力学的MATLAB的研究方法力学是研究物体运动和相互作用的科学领域,它可以应用于各种领域,例如力学工程、机械工程和天体物理学等。
MATLAB是一种功能强大的数值计算软件,它提供了许多工具和函数,使得力学研究更加便捷高效。
下面将介绍一些力学的MATLAB研究方法。
1.数值求解在力学研究中,我们通常需要求解微分方程或者偏微分方程来描述系统的运动。
MATLAB提供了各种数值求解方法,例如欧拉法、中点法、四阶龙格-库塔法等。
可以通过编写相应的程序,利用MATLAB提供的数值求解工具对方程进行数值求解,并得到系统的运动轨迹和其他相关结果。
2.绘制图形图形是力学研究中不可或缺的一部分,它可以直观地展示物体的运动和相互作用过程。
MATLAB提供了丰富的绘图函数,可以用来绘制二维和三维图形。
例如,可以使用plot函数来绘制物体随时间变化的位置或速度曲线,使用mesh函数来绘制三维物体的形状或运动轨迹。
3.数据处理和分析在力学研究中,常常需要对实验数据进行处理和分析,以获得有关系统性能的更多信息。
MATLAB提供了丰富的数据处理和分析工具,例如滤波、傅里叶变换、峰值检测等。
通过使用MATLAB的数据处理和分析函数,可以对实验数据进行处理和提取有用的信息,从而加深对系统的理解。
4.优化和参数估计在力学研究中,我们通常需要通过最小化一些目标函数或者拟合实验数据来优化系统设计或者估计参数。
MATLAB提供了许多优化和参数估计函数,例如fmincon、lsqcurvefit等。
通过使用这些函数,可以编写相应的优化或参数估计程序,利用MATLAB提供的算法求解最优化问题,并得到最优的系统设计或者参数估计结果。
5.建立模型和仿真在力学研究中,我们经常需要建立数学模型来描述系统的运动和相互作用过程。
MATLAB提供了Simulink工具箱,可以方便地建立动力学模型以及控制系统模型,并进行仿真分析。
Simulink提供了丰富的模块库,包括力学系统、电路系统、控制系统等,可以通过图形化界面进行模型的建立和仿真,并得到系统的动态响应和性能分析结果。
MATLAB中常见的结构动力学分析技巧

MATLAB中常见的结构动力学分析技巧引言:结构动力学是工程领域中重要的研究分支,它主要涉及结构物在外界作用下的运动和响应。
而在 MATLAB 软件中,我们可以通过各种功能强大的工具和函数来进行结构动力学的分析和模拟。
本文将介绍一些 MATLAB 中常见的结构动力学分析技巧,帮助读者更好地利用 MATLAB 进行结构工程相关研究。
一、模型建立与导入1. 建立结构模型在 MATLAB 中,我们可以使用各种方法建立结构模型,比如使用节点和单元建立有限元模型。
通过确定节点的坐标和连接关系,我们可以使用有限元方法对结构进行分析和计算。
除了有限元法,还有其他建模方法,如刚体或连续参数模型等,可以根据实际需要选择。
2. 导入外部模型如果我们已经在其他软件中建立好了结构模型,并希望在 MATLAB 中进行进一步的分析,可以通过导入外部模型来实现。
在 MATLAB 中,可以使用函数如“importgeometry”或“importFiniteElementModel”等,将已有的模型导入到 MATLAB 中进行后续处理。
二、动力学分析1. 自由振动分析自由振动是指结构在没有外力作用下的振动情况,通过这种分析可以得到结构的固有频率和模态形式。
在 MATLAB 中,我们可以使用函数“eig”或“eigs”来计算结构的特征值和特征向量。
进一步,通过可视化这些特征向量,我们可以观察到结构在不同固有频率下的振动模式。
2. 强迫振动响应分析强迫振动响应分析是指结构在外力作用下的振动情况,可以通过求解结构的动力学方程来获得。
在 MATLAB 中,我们可以使用函数如“ode45”、“ode23”等,通过数值解法求解二阶或高阶动力学方程。
这些函数可以根据结构的特定运动方程和边界条件,计算出结构的响应。
三、频域分析1. 傅里叶变换傅里叶变换是一种将信号从时域转换到频域的方法。
在结构动力学中,我们可以使用傅里叶变换来分析结构的振动特性。
matlab中的strength函数

【正文】一、引言matlab是一种用于高级技术计算和可视化的强大软件工具。
在matlab中,strength函数是一种用于计算力学结构的强度和应力分析的重要工具。
本文将详细介绍strength函数的用法和功能,以帮助读者更好地理解和应用这一功能。
二、strength函数简介1. strength函数是matlab中的一个用于力学结构分析的函数,主要用于计算材料的强度和应力分布。
2. 该函数可以根据给定的材料参数、载荷条件和几何形状,计算出结构在受力时的强度和应力分布情况,为工程设计和分析提供重要参考。
三、strength函数的使用方法1. 输入参数:strength函数的输入参数包括材料的弹性模量、泊松比、屈服强度等力学参数,以及结构的几何尺寸和受力条件等。
2. 计算过程:strength函数根据给定的参数,利用力学理论和数值计算方法,对结构的强度和应力进行分析和计算。
3. 输出结果:strength函数的输出结果包括结构的最大应力、应力分布图、强度分析报告等,为工程设计和结构优化提供重要参考。
四、strength函数的应用场景1. 工程设计:strength函数可以帮助工程师在设计结构时,对材料的强度和负载承受能力进行分析和评估,以保证结构的安全可靠。
2. 结构优化:strength函数可以作为结构优化的重要工具,帮助工程师在设计过程中进行强度分析,找到结构的薄弱环节并进行改进。
3. 教学研究:strength函数也常常用于教学和科研工作中,帮助学生和研究人员更好地理解和应用力学分析的基本原理和方法。
五、strength函数的优势和局限1. 优势:strength函数能够快速、准确地分析结构的强度和应力分布情况,为工程设计和分析提供重要参考。
2. 局限:strength函数在应用过程中需要合理选择材料参数和边界条件,且对结构的复杂性和非线性行为分析能力有限。
六、结语总体来说,strength函数作为matlab中的一种重要工程分析工具,具有非常广泛的应用前景和研究价值。
MATLAB在建筑工程与结构分析中的应用实践

MATLAB在建筑工程与结构分析中的应用实践一、引言MATLAB(Matrix Laboratory)是一种高级的技术计算软件,被广泛应用于工程和科学领域。
在建筑工程与结构分析领域,MATLAB不仅可以提供强大的数学计算和数据处理能力,还可以帮助工程师快速设计、分析和优化建筑结构。
本文将探讨MATLAB在建筑工程与结构分析中的应用实践,包括结构优化、地震响应分析以及结构设计等方面。
二、结构优化结构优化是建筑工程中的一个重要环节,通过改变结构参数和材料性能,以最大限度地满足设计要求。
MATLAB提供了多种数学优化算法,如遗传算法、模拟退火算法和粒子群算法等,可以对结构参数进行优化设计。
例如,对于悬臂梁的设计,可以通过编写MATLAB代码,定义设计变量、目标函数和约束条件,然后使用遗传算法对梁的跨度、截面尺寸进行优化。
通过不断调整参数,可以得到最优的结构方案。
三、地震响应分析地震是建筑结构的主要灾害载荷之一,了解结构在地震作用下的动态响应是十分重要的。
MATLAB提供了强大的信号处理和数值计算工具,可以用于地震响应分析。
例如,可以利用MATLAB中的频域分析工具来计算结构在地震中的加速度响应谱。
通过调整地震波的频率和振幅,可以预测结构的动态响应情况,为地震设计和防护提供科学依据。
四、结构设计MATLAB还可以用于建筑结构的设计和优化。
例如,在混凝土结构设计中,可以利用MATLAB编写代码,自动计算混凝土材料的强度和变形等性能,并根据结构的受力情况,自动生成合理的截面尺寸。
此外,还可以利用MATLAB进行钢结构的设计和优化。
通过定义设计变量、约束条件和目标函数,可以生成满足强度和刚度要求的钢结构方案。
MATLAB的优势在于,工程师可以自定义计算模块,灵活地进行结构设计。
五、实例应用为了更好地理解MATLAB在建筑工程与结构分析中的应用实践,下面将分享一个实例应用。
假设有一个跨度为30m的钢桁架桥需要进行设计优化。
MATLAB在机械设计方面的应用

MATLAB在机械设计方面的应用MATLAB是一种强大的数学计算软件,广泛应用于科学和工程领域。
在机械设计方面,MATLAB可以提供多种功能和工具,用于解决机械设计中的各种问题。
本文将介绍MATLAB在机械设计中的应用,并简单介绍一些相应的功能和工具。
一、运动学和动力学分析MATLAB提供了丰富的工具箱,用于机械系统的运动学和动力学分析。
用户可以使用这些工具箱来模拟和分析机械系统的运动和力学特性。
例如,用户可以使用SimMechanics工具箱来建立机械系统的多体动力学模型,并进行系统的运动学和动力学分析。
用户可以利用这些工具进行机械系统的运动模拟、力学特性分析和设计优化。
二、结构分析MATLAB还提供了一些工具和函数,用于机械结构的分析和设计。
例如,用户可以使用Structural Analysis工具箱来进行机械结构的静力学和动力学分析。
用户可以建立机械结构的有限元模型,并通过对结构施加加载,计算结构的应力、应变和变形等。
用户还可以使用这些工具进行结构的优化设计和材料选择。
三、控制系统设计MATLAB在控制系统设计方面也有很多应用。
机械系统通常需要控制系统来保持其性能和稳定性。
用户可以使用Control System工具箱来进行机械系统的控制系统设计。
用户可以进行系统的建模和仿真,设计和调整控制器的参数,进行系统的响应和稳定性分析等。
用户还可以使用这些工具进行机械系统的自动控制和优化设计。
四、信号处理和图像处理信号处理和图像处理在机械设计中也是非常重要的。
MATLAB提供了丰富的信号处理和图像处理工具箱,用于机械系统中信号和图像的获取、处理和分析。
用户可以利用这些工具进行机械系统中传感器信号的滤波、噪声去除、频谱分析等。
用户还可以使用这些工具进行机械系统中图像的处理、特征提取、目标检测等。
五、优化设计MATLAB还提供了一些优化算法和函数,用于机械系统的优化设计。
用户可以使用这些算法和函数对机械系统的设计参数进行优化,以达到设计目标和约束条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB在结构力学分析中的应用
摘要:传统的手算方法解超静定结构工作量繁重,有时甚至是不可能,运用结构有限元编程的一般方法,通过两个实例的对照,展示MATLAB在结构力学分析中的应用,MATLAB具有高性能,方法具有普遍的适用性,实现弯矩图自动绘制。
关键词: MATLAB结构有限元弯矩图
Abstract:While using the traditional manual method to resolve complex statically indeterminate structures, it is heavy workloads, sometimes even impossible,using finite element programming of the general method, Based on two examples, This paper introduces a method of application of MATLAB in structure mechanics, MATLAB has the advantages of high performance, it can be applied to many kinds of structures, realization of automatic drawing bending moment diagram.
Key words: MATLAB; Finite element; Bend moment diagram
引言
结构力学[3]中,常利用传统的力法与位移法求解超静定结构,力法是几何问题,位移法把复杂的几何图乘转化为代数运算,但它们基本未知量很多时,系数构成的矩阵计算巨大,两者都不能满足科研工作者的需要。
应用MATLAB 软件丰富可靠的矩阵运算、数据处理、图形绘制等便利工具,可使得计算和图象一体化。
对于结构力学计算是十分有利的工具。
1基本方法
MATLAB结构有限元编程的基本思路是先分后合,即将结构分成各个单元和节点,桁架与刚架已经离散化,对于连续系统这一步极其重要,然后进行单元分析,集成整体刚度矩阵,引入边界条件,最后解方程。
在求解平面桁架结构,虽然结构简单,用手算可得各杆件的轴力,但重复的过程太多,现在使用MATLAB语言来编制有限元位移法的程序时,则编程的难度明显降低,对有限元位移法的概念的理解更加深入,编程所需时间也大大减少。
图1为一平面桁架,各杆E=70GPaA=0.004,试用矩阵位移法求解各杆轴力
图1
解:平面桁架元是既有局部坐标又有总体坐标的二维有限元;对各结点
和单元进行编号,建立结构坐标系( 图1 )
第一步,利用MATLAB函数
y=Plane Truss Element Length(x1, y1, x2, y2)
L=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)); %局部坐标中杆件长度
第二步, MATLAB函y=Plane Truss Element Stiffness(E ,A ,L ,theta)
x=theta*pi/180; C= cos (x); S=sin(x);
y=E*A/L*[C*C C*S -C*C -C*S; C*S S*S -C*S -S*S;-C*C -C*S C*C C*S;-C*S -S*S C*S S*S];% 总体坐标中建立各单元的刚度矩阵
第三步,建立整体刚度阵。
该结构有4个节点,每个节点有两个自由度(可考虑支座沉降),为了得到整体刚度阵K,首先利用生成一个8×8的0矩阵,因为该结构有4个单元,所以4次调用M a t lab的Plane Truss Assemble函数;其中K为整体刚度阵, k为单元刚度阵, i j为单元两端在整体节点上的编号。
y=Plane Truss Assemble (K, k, i , j)
K (2*i-1, 2*i-1) =K (2*i-1, 2*i-1) +k (1, 1);
K (2*i-1, 2*i) =K (2*i-1, 2*i) + k (1, 2);
K (2*i-1, 2*j-1) = K (2*i-1, 2*j-1)+ k (1,3);
K (2*i-1, 2*j) =K (2*i-1, 2*j) +k (1, 4);
K (2* i , 2*i-1) =K (2* i, 2*i-1) +k (2, 1);
K (2*i, 2*i) =K (2*i, 2*i) +k (2, 2);
K (2*i , 2*j-1)=K(2*i,2*j-1)+k(2,3);
K (2*i, 2*j) =K (2*i, 2*j) + k (2, 4);
K (2*j-1, 2*i-1) =K (2*j, 2*i-1) +k (3, 1);
K (2*j-1, 2*i) =K (2*j-1, 2*i) + k (3, 2);
K (2*j-1, 2*j-1) =K (2*j-1, 2*j-1) +k (3, 3);
K (2*j-1, 2*j) =K (2*j-1, 2*j) + k (3, 4);
K (2*j, 2*i-1) =K (2*j, 2*i-1) + k (4, 1);
K (2*j, 2*i) =K (2*j, 2*i) +k (4, 2);
K (2*j, 2 *j-1) =K (2*j,2*j-1)+k (4,3);
K (2*j, 2*j) = K (2*j, 2*j) +k (4, 4);
y=K;
第四步k=K(3:6,3:6);%边界条件下刚度矩阵
f=[0;30;30;0];%形成荷载向量
u=k\f;%分解法和高斯消去法,得到结点位移
u = [0.00100.0006 ;0.0011-0.0003]
%结点2、3的结点位移
U=[0;0;u;0;0]; %结构各节点位移矢量
第五步,M a t lab函数
Plane Truss Element Force (E, A ,L ,theta ,u)
x=theta*pi/180;C=cos(x);S=sin(x); y=E*A/L*[-C -S C S]*u;
可得:F1 =39.8018F2=0F3 = 28.5646 F4 = -13.8618 F5 = 9.801F6 = -20.1982 %各杆件的轴力
图2E=210GPa, I=5*10-6 q=7KN/M,绘制弯矩图。
图2
解:对连续结构单元进行编号十分重要,梁单元是既有局部坐标又有总体坐标的二维有限元,用线性函数表示,主程序根据交互输入的原始数据形成单元刚度矩阵,再根据整体刚度矩阵集成规则,将单元刚度矩阵形成整体刚度矩阵。
通过引人支承条件,然后分解和高斯消去法解方程,得到结点位移,进而求出各单元杆端弯矩。
第一步,MATLAB函数k=Beam Element Stiffness(E,I,L)
y=E*I/(L*L*L)*[12 6*L -12 6*L; 6*L 4*L*L -6*L 2*L*L;-12 -6*L 12 -6*L; 6*L 2*L*L -6*L 4*L*L]; %单元刚度
第二步,整体刚度的建立,两者都是二维有限元,程序相同,根据划分单元数,多次调用函数。
第三步,计算等效节点载荷。
按照结构力学的方法可以求得
M = [-9.333 9.333]
第四步,引入边界条件,节点2,3 的转角为a1 a2;其余为0;得出边界条件下结构刚度矩阵k
第五步,MATLAB函数
f=Beam Element Forces(k ,u)求得杆端弯矩
M1 (3.111,-6.222)M2= (-6.222, -6.222) M3= (-6.222,3.111);%杆端弯矩
绘制弯矩图:在命令窗口输入如下命令:
q=7
l1=linspace (0, 4);
M1=linspace (3.111,-6.2 22);
l= [4, 6, 8];
mid=q*4 /8-(6.222+6.222)/2
M= [ -6.222 , mid,-6.222]
P= polyfit (l, M, 2)
l2=4:0.1:8
M2=P (1)*l2. +P(2)*l2+P(3);
l3=linspace (8, 12);
M3=linspace (-6.222, 3.111);
plot (l1,M1,l2,M2,l3,M3) 自动生成弯矩图3:
2.结束语
通过两个例子表明, 在结构力学中引入MATLAB,简单的分步编程,即可完成有关问题的过程分析、大量计算和绘图,平面桁架与连续梁单元调用同一函数,即可求出整体刚度矩阵,大大提高了效率。
更多地了解和掌握MATLAB,对于我们的教学和科研工作将是十分有益的。
参考文献:
[1]P. I. Kattan著, 韩来彬译. MATLAB有限元分析与应用[M].北京:清华大学出版社,2004.
[2]马晓光,于国清.MATLAB在结构力学中的应用.白城师范学院学报[J]2006,
20(4)99-102.
[3]龙驭球,包世华.结构力学I (第二版)[M].北京:高等教育出版社,2006.
作者简介:
吴小希(1987-),男(汉族),湖南新化,湖南科技大学研究生,主要研究领域为桥梁的振动控制。
单位:湖南科技大学土木工程学院桥梁研究所
注:文章内所有公式及图表请用PDF形式查看。