高三数学 专题35 不等式与线性规划课件 理
高考数学文(二轮复习)课件《不等式与线性规划》

2.解不等式的四种策略 (1) 解一元二次不等式的策略:先化为一般形式 ax2 + bx + c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二 次不等式的解集. (2)解简单的分式不等式的策略:将不等式一边化为 0,再将 不等式等价转化为整式不等式(组)求解. (3)解含指、对数不等式的策略:利用指、对数函数的单调性 将其转化为整式不等式求解. (4)解含参数不等式的策略:根据题意确定参数分类的标准, 依次讨论求解.
2.(2014· 全国新课标Ⅱ)设集合 M={0,1,2},N={x|x2-3x+ 2≤0},则 M∩N=( A.{1} C.{0,1} ) B.{2} D.{1,2}
答案:D
解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又 M={0,1,2}, 所以 M∩N={1,2}.故选 D.
基础记忆
试做真题
基础要记牢,真题须做熟
基础知识不“背死” ,就不能“用活” ! 1.牢记四类不等式的解法 (1)一元二次不等式的解法. 先化为一般形式 ax2+bx+c>0(a≠0),再求相应一元二次方 程 ax2+bx+c=0(a≠0)的根, 最后根据相应二次函数图象与 x 轴 的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法.
a+b 2 (4)ab≤ 2 (a,b∈R).
(5)
a2+b2 a+b ≥ ≥ ab(a>0,b>0). 2 2
3.快速判断二元一次不等式表示的平面区域
不等式 B>0 Ax+By+ C>0 Ax+By+ C<0
区域 B<0
直线 Ax+By 直线 Ax+By+ +C=0 上方 C=0 下方
不等式与线性规划
线性不等式与线性规划的解法

线性不等式与线性规划的解法线性不等式和线性规划是数学中常见的问题类型,它们在日常生活和各个领域都有广泛的应用。
本文将介绍线性不等式与线性规划的定义、解法和一些应用示例。
一、线性不等式的定义和解法线性不等式是指一个或多个变量的线性函数与一个常数之间的不等关系。
其表达形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b其中,a₁, a₂, ..., aₙ是系数,x₁, x₂, ..., xₙ是变量,b是常数。
要解决线性不等式,我们需要确定变量的取值范围,使得不等式成立。
常用的解法有以下几种:1. 图形法:将线性不等式转化为几何图形,通过观察图形与坐标轴的交点来确定解集。
2. 代入法:将线性不等式转化为等式,找到其中一个变量的解,代入到不等式中求解其他变量。
重复此过程直至得到所有解。
3. 增减法:通过增减变量值来确定解集的上下界,进而找到满足不等式的解集。
二、线性规划的定义和解法线性规划是指在一定约束条件下,通过线性函数的优化求解最大值或最小值的问题。
其表达形式为:Maximize (or Minimize) f(x₁, x₂, ..., xₙ) = c₁x₁ + c₂x₂ + ... +cₙxₙsubject to:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b₁d₁x₁ + d₂x₂ + ... + dₙxₙ ≤ b₂e₁x₁ + e₂x₂ + ... + eₙxₙ ≥ b₃...x₁, x₂, ..., xₙ ≥ 0其中,f(x₁, x₂, ..., xₙ)是目标函数,表示需要最大化或最小化的线性函数;约束条件由不等式给出,b₁, b₂, b₃是常数。
线性规划的解法主要有以下两种:1. 几何法:将约束条件转化为几何图形,通过观察图形与目标函数的相对位置关系,找到最优解。
2. 单纯形法:通过转化为标准形式,并利用单纯形表来进行迭代计算,逐步逼近最优解。
三、线性不等式和线性规划的应用示例线性不等式和线性规划广泛应用于经济学、管理学、工程学等领域。
人教A版高中数学必修5《三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题》示范课教案_1

利用Excel 求解数学规划问题1、 线性规划 例1⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≥≥≤+++≤+++≤++++++=4,3,2,10105000452110001001401101401100101461680..6001180310460max 214321432143214321j x x x x x x x x x x x x x x x t s x x x x z j利用Excel 求解其步骤如下:1、选择“工具”菜单中的“加载宏”选项,装入“规划求解”宏,此时,“工具”菜单中便出现“规划求解”选项。
如果“工具”菜单中已有“规划求解”选项,则直接进行第2步。
2、 按下表格式输入线性规划模型表中3、 在目标函数所在行的G3单元格内输入公式: =$B$2*B3+$C$2*C3+$D$2*D3+$E$2*E3此公式即为目标函数表达式,将该公式复制到G4,G5,G6,G7,G8单元格,即得约束条件左端表达式。
4、选择“工具”菜单的“规划求解”选项,弹出“规划求解参数”对话框,依次选定符合模型要求的项目。
(1)单击“设置目标单元格”框,将光标定位于框内,然后单击目标函数值单元格G3。
(2)在“规划求解参数”对话框的“等于”栏内,选择“最大值”选项。
(3)在“可变单元格”栏输入处,从表中选择$B$2:$E$2区域,使之出现$B$2:$E$2。
(4)在“约束”栏,单击“添加”按钮,弹出“添加约束”对话框,依次输入约束条件。
在“单元格引用位置”处,点击G4单元格,从“约束值”位置处选择约束类型“>=,<=,=,int,bin ”中的“<=”,在后面的框内点击F4单元格,按“添加”按钮,产生第一个约束条件。
类似地,添加第二、第三、第四、第五个约束条件后,按“确定”按钮,返回“规划求解参数”对话框。
(5)点击“选项”按钮,根据需要选择“假定非负”等项目后,按“确定”按钮,返回“规划求解参数”对话框(6)按“求解”按钮,弹出“规划求解结果”对话框,可根据需要选择“运算结果报告、敏感性报告、极限值报告”。
1-1-3第三讲 不等式、线性规划、计数原理与二项式定理

菜 单
隐 藏
高考新课标专题复习 ·数学(理)
研热点 聚 焦 突 破
析典题 预 测 高 考 重演练 素 能 提 升
[例4]
(2012年高考北京卷)从0,2中选一个数字,从1,3,5中选 )
两个数字,组成无重复数字的三位数,其中奇数的个数为(
A.24
C.12
B.18
D.6
[解析] 根据所选偶数为0和2分类讨论求解. 当选0时,先从1,3,5中选2个数字有C 种方法,然后从选中的2 个数字中选1个排在末位有C种方法,剩余1个数字排在首位,共有C C=6(种)方法;当选2时,先从1,3,5中选2个数字有C 种方法,然后 从选中的2个数字中选1个排在末位有C 种方法,其余2个数字全排列, 共有C C A =12(种)方法.依分类加法计数原理知共有6+12=18(个) 奇数. [答案] B
菜 单 隐 藏
高考新课标专题复习 ·数学(理)
研热点 聚 焦 突 破
析典题 预 测 高 考 重演练 素 能 提 升
[解析] 利用线性规划知识,求解目标函数的取值范围. 如图,
根据题意得C(1+ ,2). 作直线-x+y=0,并向左上或右下平移, 过点B(1,3)和C(1+ ,2)时, z=-x+y取范围的边界值, 即-(1+ )+2<z<-1+3,∴1-<z<2.
析典题 预 测 高 考 重演练 素 能 提 升
1.加法计数原理与乘法计数原理针对的分别是“分类”与“分 步”问题.
2.排列数
m An =
n! . (n-m)!
山 东 金 太 阳 书 业 有 限 公 司
组合数 Cm= n
n! . m!(n-m)!
3.组合数性质
【高中数学】不等式与 线性规划

回扣5 不等式与线性规划1.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0、Δ=0、Δ<0三种情况;③在有根的条件下,要比较两根的大小. 2.一元二次不等式的恒成立问题 (1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.3.分式不等式f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0. 4.基本不等式(1)①a 2+b 2≥2ab (a ,b ∈R )当且仅当a =b 时取等号. ②a +b 2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号.(2)几个重要的不等式:①ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );②a 2+b 22≥a +b 2≥ab ≥2aba +b(a >0,b >0,当a =b 时等号成立). ③a +1a≥2(a >0,当a =1时等号成立);④2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立). 5.可行域的确定“线定界,点定域”,即先画出与不等式对应的方程所表示的直线,然后代入特殊点的坐标,根据其符号确定不等式所表示的平面区域. 6.线性规划(1)线性目标函数的最大值、最小值一般在可行域的顶点处取得;(2)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f (x )g (x )≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.4.容易忽视使用基本不等式求最值的条件,即“一正、 二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值;求解函数y =x +3x (x <0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.1.下列命题中正确的个数是( )①a >b ,c >d ⇔a +c >b +d ;②a >b ,c >d ⇒a d >b c ;③a 2>b 2⇔|a |>|b |;④a >b ⇔1a <1b .A.4B.3C.2D.12.设M =2a (a -2)+4,N =(a -1)(a -3),则M ,N 的大小关系为( ) A.M >N B.M <N C.M =N D.不能确定3.若不等式2kx 2+kx -38≥0的解集为空集,则实数k 的取值范围是( )A.(-3,0)B.(-∞,-3)C.(-3,0]D.(-∞,-3)∪(0,+∞)4.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p是q 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件D.既不充分也不必要条件5.不等式1x -1≥-1的解集为( )A.(-∞,0]∪[1,+∞)B.[0,+∞)C.(-∞,0]∪(1,+∞)D.[0,1)∪(1,+∞)6.设第一象限内的点(x ,y )满足约束条件⎩⎪⎨⎪⎧2x -y -6≤0,x -y +2≥0,目标函数z =ax +by (a >0,b >0)的最大值为40,则5a +1b 的最小值为( )A.256B.94C.1D.47.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m 等于( )A.6B.5C.4D.38.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( ) A.(-∞,-1) B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)9.已知实数x ∈[-1,1],y ∈[0,2],则点P (x ,y )落在区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内的概率为( )A.34B.14C.18D.3810.函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为________.11.已知ab =14,a ,b ∈(0,1),则11-a +21-b 的最小值为________.12.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,mx -y ≤0,若z =2x -y 的最大值为2,则实数m =______.13.(2016·上海)若x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y ≥0,y ≥x +1,则x -2y 的最大值为________.14.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则y -6x -5的取值范围是________. 回扣5 不等式与线性规划1.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0、Δ=0、Δ<0三种情况;③在有根的条件下,要比较两根的大小. 2.一元二次不等式的恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0. 3.分式不等式f xg x >0(<0)⇔f (x )g (x )>0(<0);f xg x ≥0(≤0)⇔⎩⎪⎨⎪⎧f xg x ≥0≤0,g x ≠0.4.基本不等式(1)①a 2+b 2≥2ab (a ,b ∈R )当且仅当a =b 时取等号. ②a +b2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号.(2)几个重要的不等式:①ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); ②a 2+b 22≥a +b2≥ab ≥2aba +b(a >0,b >0,当a =b 时等号成立).③a +1a≥2(a >0,当a =1时等号成立);④2(a 2+b 2)≥(a +b )2(a ,b ∈R ,当a =b 时等号成立). 5.可行域的确定“线定界,点定域”,即先画出与不等式对应的方程所表示的直线,然后代入特殊点的坐标,根据其符号确定不等式所表示的平面区域. 6.线性规划(1)线性目标函数的最大值、最小值一般在可行域的顶点处取得;(2)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错.2.解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f xg x≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.4.容易忽视使用基本不等式求最值的条件,即“一正、 二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值;求解函数y =x +3x(x <0)时应先转化为正数再求解.5.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.6.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.1.下列命题中正确的个数是( )①a >b ,c >d ⇔a +c >b +d ;②a >b ,c >d ⇒a d >bc;③a 2>b 2⇔|a |>|b |;④a >b ⇔1a <1b.A.4B.3C.2D.1 答案 C解析 ①a >b ,c >d ⇔a +c >b +d 正确,不等式的同向可加性;②a >b ,c >d ⇒a d >bc错误,反例:若a =3,b =2,c =1,d =-1,则a d >bc不成立;③a 2>b 2⇔|a |>|b |正确;④a >b ⇔1a <1b 错误,反例:若a =2,b =-2,则1a <1b不成立.故选C.2.设M =2a (a -2)+4,N =(a -1)(a -3),则M ,N 的大小关系为( ) A.M >N B.M <N C.M =N D.不能确定 答案 A解析 M -N =2a (a -2)+4-(a -1)(a -3)=a 2+1>0.故选A. 3.若不等式2kx 2+kx -38≥0的解集为空集,则实数k 的取值范围是( ) A.(-3,0) B.(-∞,-3) C.(-3,0] D.(-∞,-3)∪(0,+∞) 答案 C解析 由题意可知2kx 2+kx -38<0恒成立,当k =0时成立,当k ≠0时需满足⎩⎪⎨⎪⎧k <0,Δ<0,代入求得-3<k <0,所以实数k 的取值范围是(-3,0].4.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案 A解析 如图,(x -1)2+(y -1)2≤2,①表示圆心为(1,1),半径为2的圆内区域的所有点(包括边界);⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,②表示△ABC 内部区域的所有点(包括边界).实数x ,y 满足②则必然满足①,反之不成立.则p 是q 的必要不充分条件.故选A.5.不等式1x -1≥-1的解集为( )A.(-∞,0]∪[1,+∞)B.[0,+∞)C.(-∞,0]∪(1,+∞)D.[0,1)∪(1,+∞)答案 C解析 由题意得,1x -1≥-1⇒1x -1+1=xx -1≥0,解得x ≤0或x >1,所以不等式的解集为(-∞,0]∪(1,+∞),故选C.6.设第一象限内的点(x ,y )满足约束条件⎩⎪⎨⎪⎧2x -y -6≤0,x -y +2≥0,目标函数z =ax +by (a >0,b >0)的最大值为40,则5a +1b的最小值为( )A.256B.94 C.1 D.4 答案 B解析 不等式表示的平面区域如图中阴影部分,直线z =ax +by 过点(8,10)时取最大值,即8a +10b =40,4a +5b =20,从而5a +1b =(5a +1b )4a +5b 20=120(25+4a b +25b a )≥120(25+24a b ×25b a )=94,当且仅当2a =5b 时取等号,因此5a +1b 的最小值为94,故选B.7.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m 等于( )A.6B.5C.4D.3 答案 B解析 作出不等式组对应的平面区域,如图所示,由目标函数z =x -y 的最小值为-1,得y =x -z ,及当z =-1时,函数y =x +1,此时对应的平面区域在直线y =x +1的下方,由⎩⎪⎨⎪⎧ y =x +1y =2x -1⇒⎩⎪⎨⎪⎧x =2,y =3,即A (2,3),同时A 也在直线x +y =m 上,所以m = 5.8.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k x -1-1表示一个三角形区域,则实数k的取值范围是( ) A.(-∞,-1) B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)答案 A解析 易知直线y =k (x -1)-1过定点(1,-1),画出不等式组表示的可行域示意图,如图所示.当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,表示的是一个三角形区域,所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).9.已知实数x ∈[-1,1],y ∈[0,2],则点P (x ,y )落在区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内的概率为( )A.34B.14C.18D.38 答案 D解析 不等式组表示的区域如图所示,阴影部分的面积为12×(2-12)×(1+1)=32,则所求的概率为38,故选D.10.函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n的最小值为________.答案 8解析 由已知可得定点A (-2,-1),代入直线方程可得2m +n =1,从而1m +2n =(1m+2n)(2m +n )=n m+4mn+4≥2n m ·4m n+4=8.当且仅当n =2m 时取等号.11.已知ab =14,a ,b ∈(0,1),则11-a +21-b 的最小值为________.答案 4+423解析 因为ab =14,所以b =14a , 则11-a +21-b =11-a +21-14a=11-a +8a 4a -1=11-a +24a -1+24a -1 =11-a +24a -1+2 =2(14a -1+24-4a)+2 =23(14a -1+24-4a)[(4a -1)+(4-4a )]+2 =23[3+4-4a 4a -1+24a -14-4a]+2 ≥23(3+22)+2=4+423(当且仅当4-4a 4a -1=24a -14-4a ,即a =32-24时,取等号). 12.变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≥0,x -2y +2≥0,mx -y ≤0,若z =2x -y 的最大值为2,则实数m =______.答案 1 解析 由可行域知,直线2x -y =2必过直线x -2y +2=0与mx -y =0的交点,即直线mx -y =0必过直线x -2y +2=0与2x -y =2的交点(2,2),所以m =1.13.(2016·上海)若x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y ≥0,y ≥x +1,则x -2y 的最大值为________.答案 -2 解析 令z =x -2y ,则y =12x -z 2.当在y 轴上截距最小时,z 最大.即过点(0,1)时,z 取最大值,z =0-2×1=-2.14.已知实数x ,y 满足⎩⎪⎨⎪⎧ x -y +5≥0,x ≤3,x +y ≥0,则y -6x -5的取值范围是________.答案 [-1,92] 解析 作出可行域,如图△ABC 内部(含边界),y -6x -5表示可行域内点(x ,y )与P (5,6)连线斜率,k PA =8-63-5=-1,k PC =-3-63-5=92,所以-1≤y -6x -5≤92.。
高考数学第3讲 不等式性质与线性规划、基本不等式

大二轮复习 数学(文)
得 f(2a)-12(2a+2)2<f(12-a)-12(12-a+2)2, 即 g(2a)<g(12-a),所以 2a>12-a,所以 a>4, 又 2a>-2,12-a>-2,所以 4<a<14. 故选 B.
核心知识 核心考点 高考押题 限时规范训练
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
考点一 不等式性质及求解
——清楚条件,等价转化
(1)[考题打磨]设 a=2ln 3,b=2-0.1,c=ln 8,则 a,b,c
的大小关系是( A )
A.a>c>b
B.a>b>c
C.b>a>c
D.c>a>b
解析:选 A.a=2ln 3=ln 9>ln 8>1. b=2-0.1<1,∴a>c>b,选 A.
的最大值为 的最小值为
___2__S______.
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
3.不等式 y>kx+b 表示直线 y=kx+b 上方的区域;y<kx+b 表示 直线 y=kx+b 下方的区域.
4.绝对值不等式:|x|>a(a>0)⇔ __x_>__a__或__x_<__-__a___, |x|<a(a>0)⇔ _-__a_<__x_<__a__.
(5)形如 y=ax+bx(a>0,b>0),x∈(0,+∞)取最小值时,ax=bx⇒x b
=______a_____,即“对号函数”单调变化的分界点;
__P2__2_(6_)_a_>_0_,_ ;b>若0,a若b =a
+b=P,当且仅当 S,当且仅当 a=
a b
线性规划课件ppt

详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。
线性规划与线性不等式

线性规划与线性不等式线性规划和线性不等式是运筹学中的重要概念和工具。
线性规划是一种数学方法,用于在一组线性约束条件下,寻找使目标函数最大或最小化的最佳解决方案。
而线性不等式则是用于描述一个或多个变量之间的约束关系,其形式为线性不等式表达式。
一、线性规划线性规划的基本形式可以表示为:$max\{c^Tx|Ax≤b, x≥0\}$其中,$c$是一个n维列向量,$A$是一个m×n矩阵,$b$是一个m维列向量。
这个问题的目标是找到一个n维向量$x$,使得目标函数$c^Tx$最大化,同时满足$Ax≤b$和$x≥0$。
线性规划的解可以通过各种算法获得,例如单纯形法和内点法等。
这些算法通过迭代的方式逐步逼近最优解,并且可以应用于许多实际问题,如资源分配、生产优化和投资组合等。
二、线性不等式线性不等式是一种形式为$Ax≤b$的约束条件,其中$A$是一个m×n矩阵,$b$是一个m维列向量。
线性不等式描述了变量$x$的取值范围,满足不等式条件的解集称为不等式的可行域。
线性不等式在很多领域都有广泛的应用,例如经济学中的供需关系、运输领域中的货物流动以及生产过程中的资源分配等。
通过分析线性不等式的解集,可以得到问题的可行解范围,为实际问题的决策提供参考。
三、线性规划与线性不等式的关系线性规划问题可以通过引入线性不等式约束来求解。
在线性规划中,约束条件$Ax≤b$可以包含各种不等式,如大于等于(≥)、小于等于(≤)和等于(=)等。
线性规划的最优解可以通过与约束条件$Ax≤b$的可行域相交,找到目标函数$c^Tx$最大化或最小化的解。
这意味着线性规划的最优解必须满足线性不等式约束条件。
例如,考虑一个线性规划问题:求解最大化目标函数$4x_1+3x_2$的最优解,同时满足以下约束条件:$2x_1+x_2≤8$$x_1+2x_2≤6$$x_1,x_2≥0$可以通过绘制不等式约束的可行域,并找到与目标函数相交的最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析 由已知条件 0<10x<12p,pt精解选 得 x<lg12=-lg 2.
11
(2)已知函数f(x)=(x-2)(ax+b)为偶函数,且在(0,
+∞)单调递增,则f(2-x)>0的解集为( )
A.{x|x>2或x<-2}
B.{x|-2<x<2} C.{x|x<0或x>4}
思维启迪 利 用 f(x) 是 偶 函 数
a+b (3) 2 ≥ ab(a>0,b>0).
(4)ab≤(a+2 b)2(a,b∈R).
(5)
a2+b2 a+b ≥≥
22
apbp≥t精选a2+abb(a>0,b>0).
7
3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线 性目标函数、可行域、最优解等. (2)解不含实际背景的线性规划问题的一般步骤: ①画出可行域;②根据线性目标函数的几何意义确 定最优解;③求出目标函数的最大值或者最小值.
ppt精选
5
(4)简单对数不等式的解法 ①当a>1时,logaf(x)>logag(x)⇔f(x)>g(x)且f(x)>0, g(x)>0; ②当0<a<1时,logaf(x)>logag(x)⇔f(x)<g(x)且f(x)>0, g(x)>0.
ppt精选
6
2.五个重要不等式 (1)|a|≥0,a2≥0(a∈R). (2)a2+b2≥2ab(a、b∈R).
ppt精选4Biblioteka (2)简单分式不等式的解法
①变形⇒ fx >0(<0)⇔f(x)g(x)>0(<0); gx
②变形⇒ ≥0(≤0)⇔f(x)g(x)≥0(≤0)且g(x)≠0.
(3)简单指数fx不 等式的解法 ①当a>1时g,xaf(x)>ag(x)⇔f(x)>g(x);
②当0<a<1时,af(x)>ag(x)⇔f(x)<g(x).
76 000v v2+18v+20l.
ppt精选
17
① 如 果 不 限 定 车 型 , l = 6.05 , 则 最 大 车 流 量 为 ________辆/时; ②如果限定车型,l=5,则最大车流量比①中的最 大车流量增加________辆/时.
思维启迪 把所给l值代入,分子分母同除以v,构造基本不等式的
专题35
不等式与线性规划
ppt精选
1
不等式与线性规划
主干知识梳理 热点分类突破
真题与押题
ppt精选
2
1.在高考中主要考查利用不等式的性质进行两数
的大小比较、一元二次不等式的解法、基本不
等式及线性规划问题.基本不等式主要考查求最
考 值问题,线性规划主要考查直接求最优解和已
情 知最优解求参数的值或取值范围问题.
ppt精选
8
4.两个常用结论
(1)ax2+bx+c>0(a≠0)恒成立的条件是 a>0,
Δ<0.
(2)ax2+bx+c<0(a≠0)恒成立的条件是
a<0,
Δ<0.
ppt精选
9
热点分类突破
➢ 热点一 一元二次不等式的解法 ➢ 热点二 基本不等式的应用 ➢ 热点三 简单的线性规划问题
ppt精选
10
热点一 一元二次不等式的解法
形式求最值;
ppt精选
18
解析 (1)①当 l=6.05 时,F=v2+76180v0+0v121
= 76 000 ≤ v+1v21+18 2
7v6·10v2010+18=2726+00108=1 900.
当且仅当v=11 米/秒时等号成立,此时车流量最 大为1 900辆/时.
ppt精选
19
②当
l=5
时
,
F
=
76 000v v2+18v+100
=
76 000 v+1v00+18
≤ 2
7v6·10v0000+18=2706+00108=2 000.
当且仅当v=10 米/秒时等号成立,此时车流量最大
解析 原不等式等价于(x-1)(2x+1)<0或x-1=0,
即- 1 <x<1或x=1,
2
所以不等式的解集为(- 1,1],选A.
2ppt精选
15
(2)已知p:∃x0∈R,mx
2 0
+1≤0,q:∀x∈R,x2+mx+
1>0.若p∧q为真命题,则实数m的取值范围是( C )
A.(-∞,-2) B.[-2,0)
ppt精选
13
二次函数、二次不等式是高中数学的基础知识,
思 维
也是高考的热点,“三个二次”的相互转化体现
升 华
了转化与化归的数学思想方法.
ppt精选
14
变式训练 1
x-1 (1)不等式2x+1≤0 的解集为( A )
A.(-12,1]
B.[-12,1]
C.(-∞,-12)∪[1,+∞) D.(-∞,-12]∪[1,+∞)
解 读
2.多与集合、函数等知识交汇命题,以选择、填
空题的形式呈现,属中档题.
ppt精选
3
主干知识梳理
1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax2+bx+c>0(a≠0),再求相应一 元二次方程ax2+bx+c=0(a≠0)的根,最后根据相 应二次函数图象与x轴的位置关系,确定一元二次 不等式的解集.
C.(-2,0)
D.[0,2]
解析 p∧q为真命题,等价于p,q均为真命题. 命题p为真时,m<0; 命题q为真时,Δ=m2-4<0,解得-2<m<2. 故p∧q为真时,-2<m<0.
ppt精选
16
热点二 基本不等式的应用
例2 (1)(2014·湖北)某项研究表明:在考虑行车安 全的情况下,某路段车流量F(单位时间内经过测量 点的车辆数,单位:辆/时)与车流速度v(假设车辆 以相同速度v行驶,单位:米/秒)、平均车长l(单位: 米)的值有关,其公式为F=
D.{x|0<x<4}
求b,再解f(2-x)>0.
ppt精选
12
解析 由题意可知f(-x)=f(x). 即(-x-2)(-ax+b)=(x-2)(ax+b),(2a-b)x=0恒成 立, 故2a-b=0,即b=2a,则f(x)=a(x-2)(x+2). 又函数在(0,+∞)单调递增,所以a>0. f(2-x)>0即ax(x-4)>0,解得x<0或x>4. 故选C. 答案 C
例1 (1)(2013·安徽)已知一元二次不等式f(x)<0的解集
为A.{xx|x|x<<--11或或xx>>-12,lg 则2}f(10x)>0的解集为( D )
B.{x|-1<x<-lg 2} C.{x|x>-lg 2} D.{x|x<-lg 2}
思维启迪 利用换元思想,设
10x=t,先解f(t)>0.