考点35 离散型随机变量的分布列、期望与方差

合集下载

离散型随机变量的期望与方差及正态分布

离散型随机变量的期望与方差及正态分布

离散型随机变量的期望与方差、正态分布教学目标:1更好地理解并会求解简单问题的离散型随机变量的分布列,特别是要重点把握二项分布;2.理解正态分布的σ3原则;3.掌握离散型随机变量的均值及方差的计算方法。

重、难点:实际问题中恰当定义随机变量,求离散型随机变量的分布列及其期望。

教学过程: [知识梳理] 一、均值:一般地,若离散型随机变量X 的分布列如下:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称∑==+⋅⋅⋅+++=ni ii n n px p x p x p x p x X E 1332211)(为离散型随机变量X 的均值..或数学..期望..。

数学期望简称为期望。

离散型随机变量X 的均值..[E (X)]也称为X 的概率分布的均值,它反映了X 取值的平均水平,并且它与X 有相同的单位。

E (X)是一个常数,不依赖于样本的抽取。

样本平均值是一个随机变量,它随着抽取的样本的不同而不同。

对随机抽取的样本,随着样本容量的增大,样本平均值越来越接近于总体的均值。

E (X)越大,说明总体的平均数越大,反之,就越小。

性质:1. E (C)=C (C 为常数) 2. E (aX)=a E (X) 3. E (aX+b)=a E (X)+b 4. E (X+η)= E (X)+ E (η) 5. E (X ·η)= E (X)·E (η) (X ,η相互独立时) 6.若X 服从二点分布,则E (X)=p 7.若X ~B (n ,p ),则E (X)=n p 8.若X 服从参数为N 、M 、n 的超几何分布,则E (X)=nM/N 。

(如果X ~B (n ,p ),则由11--=k n k n nC kC ,可得np q p C np qpnpCqp kC X E n k kn k k n nk k n k k n nk kn kk n====∑∑∑-=---=------=-1111)1(1111)() 二、方差:设离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则2)(EX x i -描述了x i (i=1,2,…,n)相对于均值EX 的偏离程度。

离散型随机变量的分布列与期望和方差

离散型随机变量的分布列与期望和方差

离散型随机变量的分布列与期望和方差考点一:离散型随机变量的分布列 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量 (2)方差:称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,其算术平方根()X D 为随机变量X 的标准差.(3)均值与方差的性质 1.E(aX +b)=aE(X)+b. 2.D(aX +b)=a2D(X)(a ,b 为常数). 考点二:超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k=0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,如果随机变量X 的分布列具有下表形式,考点三:二项分布二项分布;在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 基础练习1.在某公司的两次投标工作中,每次中标可以获利14万元,没有中标损失成本费8000元.若每次中标的概率为0.7,每次投标相互独立,设公司这两次投标盈利为X 万元,则EX =( ) A .18.12B .18.22C .19.12D .19.222.设服从二项分布B (n ,p )的随机变量X 的期望与方差分别是10和8,则n ,p 的值分别是( ) A .B .C .D .3.已知X 的分布列为X ﹣1 0 1 P且Y =aX +3,E (Y )=,则a 为( ) A .1B .2C .3D .44.设随机变量X ∼N(1,δ2),且P(X>2)=51,则P(0<X<1)=___.5.已知离散型随机变量x 的取值为0,1,2,且()()(),2,1,410b x p a x p x p ======若()1=X E ,则 ()=X D .6.若随机变量,且,,则当 .(用数字作答)7.已知随机变量X 满足(23)7E X +=,(23)16D X +=,则下列选项正确的是( ) A .7()2E X =,13()2D X = B .()2E X =,()4D X = C .()2E X =,()8D X = D .7()4E X =,()8D X = 超几何分布VS 二项分布1.“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望;(2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望.2.某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50~(,)X B n p 52EX =54DX =(1)P X ==条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:(1)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(2)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X ,求x 的分布列和数学期望.3.假设某种人寿保险规定,投保人没活过65岁,保险公司要赔偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概率都为0.9,随机抽取4个投保人,设其中活过65岁的人数为X ,保险公司支出给这4人的总金额为Y 万元(参考数据:40.90.6561=) (1)指出X 服从的分布并写出Y 与X 的关系; (2)求(22)≥P Y .(结果保留3位小数)考点四:正太分布1.已知随机变量ξ服从正态分布)9,5(N ,若)2()2(-<=+>c p c p ξξ,则c 的值为( )A .4B .5C .6D .72.已知随机变量服从正态分布即,且,若随机变量,则( )A .0.3413B .0.3174C .0.1587D .0.15863.已知随机变量X ∼N (2,1),其正态分布密度曲线如图所示,若向长方形OABC 中随机投掷1点,则该点恰好落在阴影部分的概率为( )A .0.1359B .0.7282C .0.8641D .0.932054.某市高三年级第二次质量检测的数学成绩X 近似服从正态分布N (82,σ2),且P (74<X <82)=0.42.已知我市某校有800人参加此次考试,据此估计该校数学成绩不低于90分的人数为( ) A .64B .81C .100D .1215.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .X 2~(,)X N μσ()0.6826P X μσμσ-<≤+=~(5,1)X N (6)P X ≥=①利用该正态分布,求(187.8212.2)P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求()E X .12.2≈.若2(,)Z N μσ~,则()0.6826P Z μσμσ-<<+=,(22)P Z μσμσ-<<+0.9544=.。

离散型随机变量分布列期望及方差

离散型随机变量分布列期望及方差

离散型随机变量分布列、期望及方差高三数学徐建勋2010-1-30教学目标:1、理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性2、理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题教学重点:(1)离散型随机变量及其分布列(2)条件概率及事件的独立性(3)离散型随机变量的期望与方差教学难点:离散型随机变量及其分布列及其两个基本性质教学过程:【知识梳理】1、随机变量的概念如果随机试验的结果可以用一个变量X表示,并且X是随着试验的结果的不同而变化的,那么这样的变量X叫随机变量,随机变量常用希腊字母X、Y、…表示。

如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.2、离散型随机变量的分布列设离散型随机变量X可能取得的值为,X取得每一个值的概率为,则称表为离散型随机变量X的概率分布,或称为离散型随机变量X的分布列.离散型随机变量X的分布列的性质:(1)(2)一般的,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

3、二点分布如果随机变量X的分布列为,其中,则称离散型随机变量X服从参数为的二点分布.4、超几何分布一般的,设有总数为N件的两类物品,其中一类有n件,从所有物品中任取M件(M ≤N),这M件中所含这类物品的件数X是一个离散型随机变量,它取值为m时的概率为我们称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n的超几何分布.5、条件概率一般地,设A,B为两个事件,且,在事件A发生的条件下,事件B发生的条件概率记为6、独立重复试验一般地,在相同条件下,重复地做n次试验称为n次独立重复试验.在n次独立重复试验中,事件A恰好发生k次的概率为,,1,2,…,n,其中p是一次试验中该事件发生的概率。

7、二项分布若将事件A发生的次数设为X ,事件A不发生的概率设为,那么在n次独立重复试验中,事件A恰好发生k次的概率是(其中k = 0,1,2,…,n),于是得到X的分布列:则称这样的离散型随机变量X服从参数为n,p的二项分布,记为。

离散型随机变量的期望与方差

离散型随机变量的期望与方差

点评:当ξ的所有可能取值为x1,x2,…,xn这n个值时,若p1= p2=…=pn= ,则x1,x2,…,xn的方差就是我们初中学过 的方差.因此,现在学的方差是对初中学过的方差作了进一步 拓展.
4.方差的性质 (1)D(C)=0(C 为常数). (2)D(aξ+b)=a2Dξ. (3)Dξ=Eξ2-(Eξ)2. (4)如果 ξ~B(n,p),那么 Dξ=npq.这里 q=1-p. (5)如果随机变量 ξ 服从几何分布,且 P(ξ=k)=g(k,p),q=1 -p,那么 Dξ=pq2.
B.1
C.2
D.4
解析:由ξ=2η+3得Dξ=4Dη,而Dξ=4,Dη=1.故选B.
答案:B
5.(2011·安徽蚌埠二中练习)若随机变量 ξ 的分布列为:P(ξ
=m)=13,P(ξ=n)=a,若 Eξ=2,则 Dξ 的最小值等于(
)
A.0 B.2
C.4 D.无法计算
解析:由题意得13+a=1,m×13+n×a=2, a=23,m+2n=6,Dξ=13×(2-m)2+23×(2-n)2=13×(2n-4)2 +23×(2-n)2=2(n-2)2≥0,则 Dξ 的最小值等于 0.故选 A.

考点陪练 1.下面说法中正确的是( ) A.离散型随机变量ξ的期望Eξ反映了ξ取值的概率的平均值 B.离散型随机变量ξ的方差Dξ反映了ξ取值的平均水平 C.离散型随机变量ξ的期望Eξ反映了ξ取值的平均水平 D.离散型随机变量ξ的方差Dξ反映了ξ取值的概率的平均值 答案:C
【典例2】 编号1,2,3的三位学生随意入座编号为1,2,3的三个 座位,每位学生坐一个座位,设与座位编号相同的学生的个数 是ξ.
(1)求随机变量ξ的概率分布;

高中离散型随机变量的分布列、期望与方差

高中离散型随机变量的分布列、期望与方差

第51讲离散型随机变量的分布列、期望与方差【学习目标】1.了解离散型随机变量的期望、方差、标准差的概念,会求某些简单的离散型随机变量的概率分布.2.会根据离散型随机变量的分布列求期望、方差或标准差,并能解决一些实际问题.3.理解超几何分布、二项分布的试验模型,会将某些特殊离散型随机变量的分布列、期望与方差转化化归为二项分布求解.【知识要点】1.离散型随机变量的分布列(1)随机变量如果随机试验的每一个试验结果都可以用一个确定的数字表示,数字随着试验结果的变化而变化的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等来表示.(2)离散型随机变量对于随机变量可能取到的值,可以按一定顺序一一列出,这样的变量就叫离散型随机变量.(3)分布列设离散型随机变量X可能取的值为x1,x2,…,x i,…,x n,而每一个值的概率为P(X=x i)=p i (i=1,2,…,n).则称表为随机变量X的概率分布列.(4)分布列的两个性质①0≤p i≤1,i=1,2,…,n. ②p1+p2+…+p n=1.2.两点分布如果随机变量X 的分布列为(其中0<p<1),q=1-p,则称离散型随机变量X服从参数为p的两点分布列.3.超几何分布列在含有M件次品数的N件产品中,任取n件,其中含有X件次品数,则事件{X=k}发生的概率为P(X=k)=C M k C N-M n-kC N n,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称此分布列:P148.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.P13为超几何分布列.、4.离散型随机变量的均值与方差若离散型随机变量ξ的分布列为:(1)均值:称Eξ=x1p1+x2p2+…+x n p n为随机变量ξ的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差:称Dξ=∑ni=1(x i-Eξ)2p i为随机变量ξ的方差,它刻画了随机变量ξ与其均值Eξ的平均偏离程度,其算术平方根Dξ为随机变量ξ的标准差.5.均值与方差的性质(1)E(aξ+b)=aEξ+b.(2)D(aξ+b)=a2Dξ.6.基本性质若ξ服从两点分布,则Eξ=p,Dξ=p(1-p)若X服从二项分布,即ξ~B(n,p),则Eξ=np,Dξ=np(1-p).典型例题考点一、超几何分布及其应用例题1.某校校庆,各届校友纷至沓来,某班共来了n位校友(n>10且n∈N*),其中女校友6位,组委会对这n位校友制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率等于12,求n的值;(2)当n=12时,设选出的2位校友中女校友人数为ξ,求ξ的分布列和Eξ.考点二、二项分布及其应用例题2. (2013福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?7.某公司规定:员工的销售津贴按季度发放,如果员工没有完成季度销售任务,则在其相应季度的销售津贴中扣除500元,但每个员工全年最多扣除1000元销售津贴.设某员工完成季度销售任务的概率为0.8,且每个季度是否完成销售任务是相互独立的,计算(结果精确到0.01):(1)一年内该员工连续两个季度扣销售津贴的概率;(2)一年内该员工恰好两个季度扣销售津贴的概率;(3)一年内该员工平均扣多少销售津贴.6.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计数据如下:将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.P4 考点三、离散型随机变量的分布列、数学期望与方差例题3. (2013浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a∶b∶c.P54.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=____(结果用最简分数表示).5.设p为非负实数,随机变量X的概率分布列为:则EX的最大值为____;DX的最大值为____.P10考点集训1.已知X~B(n,p),E(X)=8,D(X)=1.6,则n和p值分别为( )A.100和0.08 B.20和0.4C.10和0.2 D.10和0.82.设随机变量ξ的分布列为P(ξ=k)=ck(k+1),k=1,2,3,c为常数,则P(0.5<ξ<2.5)=____.3.随机变量ξ的分布列如下:则:(1)x=____;(2)P(ξ>3)=____;(3)P(1≤ξ<4)=____.考点四、期望与方差的实际应用例题4.(2013重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X).【基础检测】1.设ξ是服从二项分布B(n,p)的随机变量,又E(ξ)=15,D(ξ)=454,则n与p的值为( )A.60,34B.60,14C.50,34 D.50,142.已知袋中装有6个白球、2个黑球,从中任取3个球,则取到白球个数ξ的期望E(ξ)=( )A.2 B.5928 C.6128 D.943.已知随机变量X的分布列为:则E(6X+8)等于____.4.已知随机变量ξ的分布列如下:其中a,b,c成等差数列,若E(ξ)=13,则D(ξ)的值是____.方法总结1.关于离散型随机变量分布列的计算方法如下:(1)写出ξ的所有可能取值.(2)用随机事件概率的计算方法,求出ξ取各个值的概率.(3)利用(1)(2)的结果写出ξ的分布列.2.常见的特殊离散型随机变量的分布列.(1)两点分布.它的分布列为(p0q1),其中0<p<1,且p+q=1;(2)二项分布.它的分布列为(0p01p12p2……k p k……n p n),其中p k=C n k p k q n-k,k=0,1,2,…,n,且0<p<1,p+q=1,p k=C n k p k q n-k可记为b(k;n,p).3.对离散型随机变量的期望应注意:(1)期望是算术平均值概念的推广,是概念意义下的平均.(2)Eξ是一个实数,由ξ的分布列唯一确定,即作为随机变量ξ是可变的,可取不同值,而Eξ是不变的,它描述ξ取值的平均状态.(3)Eξ=x1p1+x2p2+…+x n p n+…直接给出了Eξ的求法,即随机变量取值与相应概率值分别相乘后相加4.对离散型随机变量的方差应注意:(1)Dξ表示随机变量ξ对Eξ的平均偏离程度,Dξ越大表明平均偏离程度越大,说明ξ的取值越分散;反之Dξ越小,ξ的取值越集中,在Eξ附近,统计中常用Dξ来描述ξ的分散程度.(2)Dξ与Eξ一样也是一个实数,由ξ的分布列唯一确定.。

离散型随机变量的期望值和方差

离散型随机变量的期望值和方差

12.2 离散型随机变量的期望值和方差一、知识梳理1.期望:若离散型随机变量ξ,当ξ=x i的概率为P(ξ=x i)=P i (i=1,2,…,n,…),则称Eξ=∑x i p i为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定.2.方差:称Dξ=∑(x i-Eξ)2p i为随机变量ξ的均方差,简称方差. D叫标准差,反映了ξ的离散程度.3.性质:(1)E(aξ+b)=aEξ+b,D(aξ+b)=a2Dξ(a、b 为常数).(2)二项分布的期望与方差:若ξ~B(n,p),则Eξ=np,D ξ=npq(q=1-p).Dξ表示ξ对Eξ的平均偏离程度,Dξ越大表示平均偏离程度越大,说明ξ的取值越分散.二、例题剖析【例1】设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、Dξ.拓展提高 既要会由分布列求E ξ、D ξ,也要会由E ξ、D ξ求分布列,进行逆向思维.如:若ξ是离散型随机变量,P (ξ=x 1)=53,P (ξ=x 2)=52,且x 1<x 2,又知E ξ=57,D ξ=256.求ξ的分布列.解:依题意ξ只取2个值x 1与x 2,于是有E ξ=53x 1+52x 2=57, D ξ=53x 12+52x 22-E ξ2=256. 从而得方程组⎪⎩⎪⎨⎧=+=+.1123,723222121x x x x【例2】 人寿保险中(某一年龄段),在一年的保险期内,每个被保险人需交纳保费a 元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元.经统计此年龄段一年内意外死亡的概率是p 1,非意外死亡的概率为p 2,则a 需满足什么条件,保险公司才可能盈利?【例3】 把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求E ξ、D ξ.特别提示求投球的方法数时,要把每个球看成不一样的.ξ=2时,此时有两种情况:①有2个空盒子,每个盒子投2个球;②1个盒子投3个球,另1个盒子投1个球.【例4】 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D ξ的最大值;(2)求ξξE D 12-的最大值. 【例5】 袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n 的球n 个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.【例6】(湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。

随机变量及其分布-离散型随机变量的数学期望和方差

离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望 1.定义一般地,如果离散型随机变量的分布列为则称n n i i p x p x p x p x X E +++++= 2211)(为随机变量X 的数学期望或均值。

2.意义:反映离散型随机变量取值的平均水平。

3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义一般地,如果离散型随机变量的分布列为则称∑=-=ni i ip X E x X D 12))(()(为随机变量的方差。

2.意义:反映离散型随机变量偏离均值的程度。

3.性质:)()(2X D a b aX D =+ 三、二项分布的均值与方差如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。

题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()X0123P0.1a b0.1A.0.2 B.0.1C.-0.2 D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为()A.0.6 B.1C.3.5 D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E (ξ)等于( ) A .0.765 B .1.75 C .1.765D .0.222.某射手射击所得环数ξ的分布列如下:3.已知随机变量ξ的分布列为则x =______,P (1≤ξ<3)=4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中p ∈(0,1),则( ) A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2D .D (X )=pq 2【例2】设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k .⎝⎛⎭⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24, 则D (ξ)的值为( ) A .8 B .12 C.29D .16【例3】若D (ξ)=1,则D (ξ-D (ξ))=________.【例4】若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)=( )A .0.5 B. 1.5 C. 2.5D .3.5【例5】根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为( ) A .0.48 B .1.2 C .0.72D .0.62.设投掷一个骰子的点数为随机变量X ,则X 的方差为________.3.盒中有2个白球,3个黑球,从中任取3个球,以X 表示取到白球的个数,η表示取到黑球的个数.给出下列结论:①E (X )=65,E (η)=95;②E (X 2)=E (η);③E (η2)=E (X );④D (X )=D (η)=925.其中正确的是________.(填上所有正确结论的序号)4.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:课后练习【补救练习】1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为()A.2×0.44B.2×0.45C.3×0.44D.3×0.642.已知ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则n与p的值分别为()A.100和0.08 B.20和0.4C.10和0.2 D.10和0.83.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是() A.6 B.7.8C.9 D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44 B.3.376C.2.376 D.2.43.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4 B.2,2.4C.2,5.6 D.6,5.64.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.7.某城市出租汽车的起步价为6元,行驶路程不超出3 km 时按起步价收费,若行驶路程超出3 km ,则按每超出 1 km 加收3元计费(超出不足 1 km 的部分按 1 km 计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程ξ是一个随机变量,司机收费为η(元),则η=3ξ-3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)为62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( ) A .0 B .1 C .2D .不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).3.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为:(1)在A ,B 两个项目上各投资10012A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.。

高中数学离散型随机变量的分布列、均值与方差


离散型随机变量的分布列、均值与方差 结 束
抓高考命题的“形”与“神” 离散型随机变量均值与方差的计算
1.均值与方差的一般计算步骤 (1)理解X的意义,写出X的所有可能取的值; (2)求X取各个值的概率,写出分布列; (3)根据分布列,由均值的定义求出均值E(X),进一步由公
n
式D(X)= xi-EX2pi=E(X2)-(E(X))2求出D(X).
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[易错提醒] 利用分布列中各概率之和为1可求参数的值,此 时要注意检验,以保证每个概率值均为非负数.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
求离散型随机变量的分布列 [例2] 某商店试销某种商品20天,获得如下数据:
i=1
了随机变量X与其均值E(X)的_平__均__偏__离__程__度__,其算术平方根 DX为随机变量X的标准差. 2.均值与方差的性质 (1)E(aX+b)=_a_E__(X__)+__b__, (2)D(aX+b)=_a_2_D_(_X_)_ (a,b为常数).
突破点一
突破点二
课时达标检测
考点贯通
(2)设X为选出的2人参加义工活动次数之差的绝对值,求 随机变量X的分布列.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[解] (1)由已知,有P(A)=C31CC41+120 C23=13.
所以事件A发生的概率为13.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)=C23+CC21320+C24=145,
突破点一

分布列期望方差知识

离散型随机变量的分布列、数学期望、方差一. 离散型随机变量:若随机变量可能的取值可以按一定次序一一列出,这样的随机变量叫做离散型随机变量;若随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量。

二. 离散型随机变量的分布列、数学期望、方差 1. 设离散型随机变量ξ可能的取值为12,,,,i x x x ,ξ取每一个值()1,2,i x i =的概率为i p ,列表如下:叫做随机变量ξ的概率分布,简称分布列。

有如下性质: (1)()011,2,i p i ≤≤=(2)121i p p p ++++=2.数学期望:1122i i E x p x p x p ξ=++++叫做离散型随机变量ξ的数学期望,简称期望。

反映离散型随机变量ξ取值的平均水平。

若a b ηξ=+,则E aE b ηξ=+。

3.方差:()()()2221122i i D x E p x E p x E p ξξξξ=-+-++-+叫做离散型随机变量ξ的方叫做离散型随机变量ξ的标准差,记作σξ 若a b ηξ=+,则2D a D ηξ=。

方差反映随机变量ξ的取值与平均值的离散情况。

即稳定性。

三.几个典型的分布1.二项分布:n 次独立重复试验中,事件A 发生的次数(),B n p ξ,p 是一次试验A 发生的概率,设1q p =-。

则()()()();,0,1,,k k n kn n P k b k n p P k C p q k n ξ-=====2、几何分布:独立重复试验中事件A 第一次发生时的试验次数ξ服从几何分布,p 是一次试验A 发生的概率,设1q p =-。

()()11,2,k P k q p k ξ-===期望1E p ξ=,方差2q D pξ=。

3.两点分布:一次实验中,事件A 发生记为1,不发生记为0,p 是一次试验A 发生的概率,设1q p =-。

则期望E p ξ=,方差D pq ξ=。

练习1.已知随机变量(),B n p ξ,且6,3E D ξξ==,则()1;,b n p = .2.若随机变量ξ的分布列是:()()1,3P m P n a ξξ====.且2E ξ=,则D ξ的最小值是 .3.若随机变量ξ满足()(),P k g k p ξ==,2D ξ=,21ηξ=-,则E η= ,D η= 。

概率论,方差,分布列知识总结

分布列、期望、方差知识总结一、知识结构二、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类随机变量(如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量.随机变量常用大写字母X、Y等或希腊字母ξ、η等表示。

)离散型随机变量在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.连续型随机变量对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.3.离散型随机变量的分布列一般的,设离散型随机变量X可能取的值为x1,x2, ,x i , ,x nX取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表为离散型随机变量X 的概率分布,简称分布列性质:①pi≥0, i =1,2,…;②p1 + p2 +…+p n= 1.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

4.求离散型随机变量分布列的解题步骤例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列.解:用随机变量X表示“每次罚球得的分值”,依题可知,X可能的取值为:1,0且P(X=1)=0.7,P(X=0)=0.3因此所求分布列为:引出二点分布如果随机变量X的分布列为:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.超几何分布一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --===,其中{}min,m M n =,且*,,,,n N M N n M N N ∈≤≤ 则称随机变量X 的分布列为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量解题步骤:例题、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率解:设摸出红球的个数为X,则X 服从超几何分布,其中30,10,5N M n === X 可能的取值为0,1,2,3,4, 5. 由题目可知,至少摸到3个红球的概率为(3)(3)(4)(5)P X P X P X P X ==+=+=≥324150102010201020555303030C C C C C C C C C =++ ≈0.191答:中奖概率为0.191.nNn MN MCC C -0nNn MN MCC C 11--nNm n MN m MCC C --条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率P(B|A),读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积作D=A ∩B 或D=AB3.条件概率计算公式:P(B|A)相当于把A 看作新的基本事件空间,求A∩B发生的概率:解题步骤:例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二取到次品的概率.解:设 A = {第一个取到次品}, B = {第二个取到次品},所以,P(B|A) = P(AB) / P(A)= 2/9 答:第二个又取到次品的概率为2/9..0)(,)()()|(>=A P A P AB P A B P .1)|(0)()|()(0)A (P ≤≤⋅=>A B P A P A B P AB P (乘法公式);,则若.151)(21023==⇒C C AB P .103)(=A P相互独立事件2.相互独立事件同时发生的概率公式两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:
此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。

考点35 离散型随机变量的分布列、期望与方差
一、解答题
1.(2012·大纲版全国卷高考理科·T19)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;
(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.
【解题指南】本题考查独立事件概率的求解,及分布列、期望问题.解题时要弄清比赛规则,然后对事件的情况进行分析讨论,结合独立事件的概率求解,求期望关键是求出ξ的分布列,弄清ξ可能的取值,代入期望公式求期望.
【解析】记i A 表示事件:第1次和第2次两次发球,甲共得i 分,2,1,0=i . A 表示事件:第3次发球,甲得1分.
B 表示事件:开始第4
次发球时,甲、乙的比分为1比2. (Ⅰ)A A A A B ⋅+⋅=10.
4.0)(=A P ,16.04.0)(20==A P ,48.04.06.02)(1=⨯⨯=A P .
01P(B)P(A A A A)=⋂+⋂ =01P(A A)P(A A)⋂+⋂ =)()()()(10A P A P A P A P ⋅+⋅
)4.01(48.04.016.0-⨯+⨯=
352.0=.
(Ⅱ)36.06.0)(22==A P .
ξ可能的取值为0,1,2,3.
2P(0)P(A A)ξ==⋂144.04.036.0)()(2=⨯=⋅=A P A P .
352.0)()2(===B P P ξ,
0P(3)P(A A)ξ==⋂=096.06.016.0)()(0=⨯=⋅A P A P ,
)3()2()0(1)3`(=-=-=-==ξξξξP P P P
096.0352.0144.01---=
408.0=.
ξ的分布列为
故400.1096.03352.02408.01144.00=⨯+⨯+⨯+⨯=ξE .
2.(2012·重庆高考理科·T17)甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,31乙每次投篮投中的概率为,2
1且各次投篮互不影响.
(1)求甲获胜的概率;
(2)求投篮结束时甲的投球次数ξ的分布列与期望.
【解题指南】根据独立事件的概率公式及互斥事件的性质和离散型随机变量的分布列进行求解.
【解析】设k k B A ,分别表示甲、乙在第k 次投篮投中,则
k k 11P(A ),P(B )(k 1,2,3).32
===
(1)记“甲获胜”为事件C,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知
)()()()(322112111A B A B A P A B A P A P C P ++=
)()()()()()()()()(322112111A P B P A P B P A P A P B P A P A P ++=
27132719131312132312132312
2=++=⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⨯⨯+=. (2) ξ的所有可能值为3,2,1,由独立性知
3
2213231)()()1(111=⨯+=+==B A P A P P ξ, 922132312132)()()2(222211211=⎪⎭⎫ ⎝⎛⎪⎭
⎫ ⎝⎛+⨯⨯=+==B A B A P A B A P P ξ, 912132)()3(2
22211=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛===B A B A P P ξ. 综上知, ξ的分布列为
从而99
39232
1=⨯+⨯+⨯=ξE . 关闭Word 文档返回原板块。

相关文档
最新文档