高中物理:匀变速直线运动的规律及应用学案

合集下载

高中物理必修一第二章《匀变速直线运动》全章精品学案(新教材全章整理)

高中物理必修一第二章《匀变速直线运动》全章精品学案(新教材全章整理)

高中物理必修一第二章《匀变速直线运动》精品学案第1节速度变化规律一、匀变速直线运动的特点1.定义:物体加速度保持不变的直线运动.2.特点:物体的加速度大小和方向都不改变.3.分类(1)匀加速直线运动:加速度与速度方向相同;(2)匀减速直线运动:加速度与速度方向相反.[判断正误](1)物体的速度增大,则物体一定做匀加速直线运动.(×)(2)物体在一条直线上运动,若加速度恒定,则物体一定做匀变速直线运动.(√)(3)物体的加速度与速度同向,且a恒定不变,物体一定做匀加速直线运动.(√)二、匀变速直线运动的速度—时间关系1.公式速度公式:v t=v0+at.当初速度为零时,公式为:v t=at.2.图像描述v-t图像:匀变速直线运动的v-t图像是一条倾斜的直线,如图甲所示.a-t图像:如果以时间为横坐标,加速度为纵坐标可以得到加速度随时间变化的图像,通常称为a-t图像,如图乙所示.做匀变速直线运动的物体,其a-t图像为平行于时间轴的直线.[思考]有同学根据公式v t=v0+at提出“物体的加速度越大,速度一定增加得越快”的观点,你认为该说法正确吗?提示:不一定,当a与v同向时,a越大,速度会增加得越快;当a与v反向时,a越大,速度则会减小得越快.要点一匀变速直线运动的特点及v-t图像[探究导入] (1)某同学探究了小车在钩码牵引下的运动,并且用v -t 图像直观地描述了小车的速度随时间变化的规律.你能求出小车的加速度吗?(2)如图是一个物体运动的v -t 图像,物体的加速度怎样变化?该物体所做的运动是匀变速运动吗?提示:(1)如图所示,在v -t 图像上取一段时间Δt (尽可能大一些),找出对应的Δv ,根据a =Δv Δt可知,直线的斜率即为小车的加速度.(2)由图像可以看出相等时间内速度的变化量不相等,变化量逐渐减小(如图),加速逐渐减小.故该物体的运动不是匀变速运动,而是加速度逐渐减小的加速运动.1.几种直线运动的速度—时间图像(v -t 图像)2.图像关键信息说明(1)纵截距:表示物体的初速度.(2)横截距:表示物体在开始计时后过一段时间才开始运动,或物体经过一段时间速度变为零.(3)与横轴的交点:表示速度为零且方向改变的时刻.(4)图线折点:表示加速度改变的时刻.(5)两图线的交点:表示该时刻两物体具有相同的速度.[易错提醒](1)v -t 图像反映的是速度随时间变化的规律,并不是物体运动的轨迹.(2)由于v -t 图像中只能表示正、负两个方向,所以它只能描述直线运动,无法描述曲线运动.[典例1] (多选)甲、乙两物体从同一位置出发沿同一直线运动,两物体运动的v -t 图像如图所示,下列判断正确的是( )A .甲做匀速直线运动,乙做匀变速直线运动B .两物体两次速度相同的时刻分别在第1 s 末和第4 s 末C .乙在前2 s 内做匀加速直线运动,2 s 后做匀减速直线运动D .2 s 后,甲、乙两物体的速度方向相反[解析] 由v -t 图像知,甲以2 m/s 的速度做匀速直线运动,乙在0~2 s 内做匀加速直线运动,加速度a1=2 m/s2,2~6 s内做匀减速直线运动,加速度a2=-1 m/s2,A错误,C 正确;t=1 s和t=4 s时二者速度相同,B正确;0~6 s 内甲、乙的速度方向都沿正方向,D错误.[答案]BC1.(多选)(2019·山东青岛高一期末检测)一个沿直线运动的物体的v-t图像如图所示,则下列分析正确的是()A.图像OA段表示物体做非匀变速运动,AB段表示物体静止B.图像AB段表示物体做匀速直线运动C.在0~9 s内物体的运动方向相同D.在9~12 s内物体的运动方向与0~9 s内的运动方向相反解析:v-t图像是曲线,表示物体做非匀变速直线运动,图像与t轴平行表示物体做匀速直线运动,图像是倾斜直线表示物体做匀变速直线运动,A错误,B正确;0~9 s速度始终为正值,说明速度方向不变,C正确;9~12 s速度为负值,说明速度方向与正方向相反,D正确.答案:BCD要点二对匀变速直线运动速度公式的理解及应用[探究导入]如图是物体做匀加速直线运动的速度-时间图像(v-t图像).(1)匀变速直线运动的v-t图像与我们在数学里学的什么图像类似?(2)你能不能将图中所示的直线用一次函数的一般表达式写出来?提示:(1)一次函数图像y=kx+b.(2)加速度a表示斜率,v0表示与纵轴的截距,v=v0+at.1.公式v=v0+at中各量的物理意义v0是开始计时时的瞬时速度,称为初速度;v是经时间t后的瞬时速度,称为末速度;at 是在时间t 内速度的变化量,即Δv =at .2.公式的适用条件:做匀变速直线运动的物体.3.注意公式的矢量性公式中的v 0、v 、a 均为矢量,应用公式解题时,一般取v 0的方向为正方向,若物体做匀加速直线运动,a 取正值;若物体做匀减速直线运动,a 取负值.4.特殊情况(1)当v 0=0时,v =at ,即v ∝t (由静止开始的匀加速直线运动).(2)当a =0时,v =v 0(匀速直线运动).[易错提醒]应用匀变速直线运动速度与时间关系式时要注意实际情况,对于匀减速直线运动,应注意物体速度减为0之后能否加速返回,若不能返回,应注意题中所给时间与物体所能运动的最长时间t =v 0a的关系.[典例2] 一物体从静止开始以2 m/s 2的加速度做匀加速直线运动,经5 s 后做匀速直线运动,最后以大小为4 m/s 2的加速度做匀减速直线运动直至停止.求:(1)物体做匀速直线运动时的速度大小;(2)物体做匀减速直线运动到停止所用时间.[思路点拨] 解题关键是画出如下的示意图:[解析] 设思路点拨图中A →B 为匀加速直线运动,B →C 为匀速直线运动,C →D 为匀减速直线运动,BC 段的速度为AB 段的末速度,也为CD 段的初速度.(1)由速度与时间的关系式得v B =a 1t 1=2×5 m/s =10 m/s即做匀速直线运动时的速度大小为10 m/s.(2)由v =v 0+at 得t 2=v D -v C a 2=0-10-4s =2.5 s. [答案] (1)10 m/s (2)2.5 s[规律总结]速度公式v t =v 0+at 与加速度定义式a =v t -v 0t的比较 速度公式v t =v 0+at 虽然是加速度定义式a =v t -v 0t的变形,但两式的适用条件是不同的:(1)v t =v 0+at 仅适用于匀变速直线运动.(2)a =v t -v 0t还可适用于匀变速曲线运动.2.对于匀变速直线运动的速度与时间关系式v t =v 0+at ,以下理解正确的是( )A .v 0是时间间隔t 开始的速度,v t 是时间间隔t 内的平均速度B .v t 一定大于v 0C .at 在时间间隔t 内,可以是速度的增加量,也可以是速度的减少量,在匀加速直线运动中at 为正值,在匀减速直线运动中at 为负值D .a 与匀变速直线运动的v -t 图像的倾斜程度无关解析:v 0、v t 都是瞬时速度,at 是速度的变化量,A 错,C 对;在匀加速直线运动中v t >v 0,在匀减速直线运动中v t <v 0,B 错误;在v -t 图像中,v -t 图像的斜率表示加速度,D 错误.答案:C3.火车沿平直铁轨匀加速前进,通过某一路标时的速度为10.8 km/h,1 min 后变成了54 km/h ,又需经多少时间,火车的速度才能达到64.8 km/h?解析:三个不同时刻的速度分别为v 1=10.8 km/h =3 m/s 、v 2=54 km/h =15 m/s 、v 3=64.8 km/h =18 m/s时间t 1=1 min =60 s所以加速度a =v 2-v 1t 1=15-360m/s 2=0.2 m/s 2, 由v 3=v 2+at 2可得时间t 2=v 3-v 2a =18-150.2s =15 s. 答案:15 s匀变速直线运动速度与时间关系的实际应用——“刹车问题”实际交通工具刹车后,在摩擦力作用下的运动可认为是匀减速直线运动,且此运动过程不可逆,即当速度减小到零时,车辆就会停止运动, 不会反向加速.解答此类问题的常规思路是:(1)先确定刹车时间.若车辆从刹车到速度减到零所用的时间为T ,则刹车时间为T =v 0a. (2)将题中所给出的已知时间t 与T 比较.若T <t ,则在利用公式v t =v 0-at 进行计算时,公式中的时间应为T ;若T >t ,则在利用以上公式进行计算时,公式中的时间应为t .磁悬浮列车由静止开始加速出站,加速度为0.6 m/s 2,假设列车行驶在平直轨道上,则2 min 后列车速度为多大?列车匀速运动时速度为432 km/h ,如果以0.8 m/s 2的加速度减速进站,求减速160 s 时速度为多大?解析:取列车运动方向为正方向列车2 min 后的速度v =v 10+a 1t 1=0+0.6×2×60 m/s =72 m/s.列车匀速运动的速度v 20=432 km/h =120 m/s.列车进站过程减速至停止的时间t 0=v 20a 2=1200.8s =150 s 所以列车减速160 s 时已经停止运动,速度为零.答案:72 m/s 01.关于匀变速直线运动,下列说法正确的是( )A .是加速度不变、速度随时间均匀变化的直线运动B .是速度不变、加速度变化的直线运动C .是速度随时间均匀变化、加速度也随时间均匀变化的直线运动D .当速度不断减小时,其位移也一定不断减小解析:匀变速直线运动是速度均匀变化,而加速度不变的直线运动,故A 正确,B 、C 错误;当物体沿正方向做匀减速运动时,速度减小,但位移增大,故D 错误.答案:A2.(多选)在运用公式v t =v 0+at 时,关于各个物理量的符号下列说法中正确的是( )A .必须规定正方向,式中的v t 、v 0、a 才取正、负号B .在任何情况下a >0表示加速运动,a <0表示做减速运动C .习惯上总是规定物体开始运动的方向为正方向,a >0表示做加速运动,a <0表示做减速运动D .v 的方向总是与v 0的方向相同解析:习惯上我们规定v 0的方向为正方向,当a 与v 0方向相同时a 取正号,a 与v 0方向相反时a 取负号,像这种规定我们一般不做另外的声明,但不说不等于未规定,所以A 、C 正确,B 错误;由v t =v 0-at 可以看出v t 的方向与v 0方向有可能相反,D 错误.答案:AC3.(多选)质点做直线运动的v -t 图像如图所示,则下列说法正确的是( )A .在前4 s 内质点做匀变速直线运动B .在1~3 s 内质点做匀变速直线运动C .3 s 末质点的速度大小为5 m/s ,方向与规定的正方向相反D .1~2 s 内与2~3 s 内质点的加速度方向相反解析:由图像知,前4 s 内质点的加速度发生变化,不是匀变速直线运动,故A 项错;1~3 s 内质点加速度不变,故B 项对;3 s 末质点的速度为-5 m/s ,故C 项对;1~2 s 内加速度为负,2~3 s 内加速度也为负,故D 项错.答案:BC4.2018年4月12日上午10时,解放军海上阅兵式在南海举行, “辽宁舰”号航母等48艘战舰、76架战机,分列7个舰艇作战群、10个空中梯队接受检阅.若“辽宁舰”号航空母舰上装有帮助飞机起飞的弹射系统,已知“歼-15”型战斗机在跑道上加速时产生的最大加速度为6.0 m/s 2,起飞的最小速度是70 m/s ,弹射系统能够使飞机所具有的最大速度为40 m/s ,则飞机起飞至少需要加速的时间是 ( )A .3 sB .4 sC .5 sD .6 s解析:由v t =v 0+at 得t =v t -v 0a =70-406s =5 s. 答案:C5.(2019·陕西西安四校高一期末联考)在某汽车4S 店,一顾客正在测试汽车加速、减速性能.汽车以36 km/h 的速度匀速行驶,现以0.6 m/s 2的加速度加速,则 10 s 后速度能达到多少?若汽车以-0.6 m/s 2的加速度滑行,汽车到停下来需多长时间?解析:初速度v 0=36 km/h =10 m/s ,加速度a 1=0.6 m/s 2,a 2=-0.6 m/s 2,v 2=0. 由速度公式得v 1=v 0+a 1t 1=10 m/s +0.6 m/s 2×10 s =16 m/s ,汽车开始滑行到停下来所用时间由v 2=v 0+a 2t 2得:t 2=v 2-v 0a 2=0-10-0.6s ≈16.7 s. 答案:16 m/s 16.7 s[A 组 素养达标]1.下列关于匀变速直线运动的说法正确的是()A.匀加速直线运动的速度一定与时间成正比B.匀减速直线运动就是加速度为负值的运动C.匀变速直线运动的速度随时间均匀变化D.速度先减小再增大的运动一定不是匀变速直线运动解析:匀变速直线运动的速度是时间的一次函数,但不一定成正比,若初速度为零则成正比,所以A错;加速度的正、负仅表示加速度方向与规定的正方向相同还是相反,是否是减速运动还要看速度的方向,速度与加速度反向则为减速运动,所以B错;匀变速直线运动的速度随时间均匀变化,所以C对;加速度恒定,初速度与加速度方向相反的直线运动中,速度就是先减小再增大的,所以D错.答案:C2.一个质点做直线运动,其速度随时间变化的函数关系为v=kt,其中k=0.3 m/s2.下列说法正确的是()A.质点做匀速直线运动B.质点的速度变化量大小是0.3 m/sC.质点做匀加速直线运动D.质点的初速度为0.3 m/s解析:因为质点的速度随时间均匀变化,所以质点做匀加速直线运动,加速度a=0.3 m/s2.答案:C3.有两个做匀变速直线运动的质点,下列说法中正确的是()A.经过相同的时间,速度大的质点加速度必定大B.若初速度相同,速度变化大的质点加速度必定大C.若加速度相同,初速度大的质点末速度一定大D.相同时间内,加速度大的质点速度变化必定大解析:由v t=v0+at可知,v t的大小除与t有关之外,还与v0和a有关,所以v t大的其a未必一定大,故A错误;速度的变化Δv=v t-v0=at,由于不知道时间的关系,故B错误;若a相同,由于t未知,所以也无法判断v t的大小,故C错误;若t相同,则Δv=v t-v0=at,a大的Δv一定大,故D正确.答案:D4.一物体做匀加速直线运动,已知它的加速度为2 m/s2,那么在任何1 s内()A.物体的末速度一定等于初速度的2倍B.物体的末速度一定比初速度大2 m/sC.物体的初速度一定比前1 s的末速度大2 m/sD .物体的末速度一定比前1 s 的初速度大2 m/s解析:在任何1 s 内物体的末速度一定比初速度大2 m/s ,故A 错误,B 正确.某1 s 初与前1 s 末为同一时刻,速度相等,故C 错误.某1 s 末比前1 s 初多2 s ,所以速度的变化量Δv =4 m/s ,故D 错误.答案:B5.一小球在斜面上从静止开始匀加速滚下,进入水平面后又做匀减速直线运动,直至停止.在如图所示的v -t 图像中哪个可以反映小球的整个运动过程(v 为小球运动的速率)( )解析:A 、B 中的最后阶段表示的是匀速运动,所以A 、B 错;D 项中最后阶段表示匀加速直线运动,所以D 错;C 表示的恰为题干中小球的运动.答案:C6.如图所示是一物体做匀变速直线运动的v -t 图像,由图可知物体( )A .初速度为0B .2 s 末的速度大小为3 m/sC .5 s 内的位移为0D .加速度的大小为1.5 m/s 2解析:由题图可知,物体的初速度v 0=5 m/s ,末速度v t =0,由公式v t =v 0+at 可得a =0-5 m/s 5 s=-1 m/s 2,A 、D 错误.由题图知,2 s 末物体的速度大小为3 m/s ,B 正确.由于5 s 内v -t 图像面积不为零,所以C 错误.答案:B7.一辆沿直线匀加速行驶的汽车,经过路旁两根电线杆共用时5 s ,汽车的加速度为2 m/s 2,它经过第2根电线杆时的速度为15 m/s ,则汽车经过第1根电线杆时的速度为( )A .2 m/sB .10 m/sC .2.5 m/sD .5 m/s解析:根据v t =v 0+at ,得v 0=v t -at =15 m/s -2×5 m/s =5 m/s ,D 正确.答案:D8.歼-20飞机在第11届中国国际航空航天博览会上进行飞行展示,这是中国自主研制的新一代隐身战斗机首次公开亮相.在某次短距离起飞过程中,战机只用了10 s 就从静止加速到起飞速度288 km/h ,假设战机在起飞过程中做匀加速直线运动,则它的加速度大小为( )A .28.8 m/s 2B .10 m/s 2C .8 m/s 2D .2 m/s 2解析:飞机末速度v t =288 km/h =80 m/s ,飞机做初速度为零的匀加速直线运动,根据公式v t =v 0+at 可知v t =at ,即a =v t t =80 m/s10 s=8 m/s 2,选项C 正确.答案:C9.一颗子弹以600 m/s 的水平初速度击中一静止在光滑水平面上的木块,经过0.05 s 穿出木块时子弹的速度变为200 m/s.(1)若子弹穿过木块的过程中加速度恒定,求子弹穿过木块时加速度的大小和方向. (2)若木块在此过程中产生了恒为200 m/s 2的加速度,则子弹穿出木块时,木块获得的速度的大小为多少?解析:(1)设子弹的初速度方向为正方向,对子弹有 v 0=600 m/s ,v t =200 m/s ,t =0.05 s. 由v t =v 0+at 得a =v t -v 0t =200-6000.05 m/s 2=-8×103 m/s 2负号表示a 的方向与子弹初速度的方向相反. (2)设木块获得的速度为v ′,则 v ′=a ′t =200 m/s 2×0.05 s =10 m/s.答案:(1)8×103 m/s 2 方向与初速度方向相反 (2)10 m/s[B 组 素养提升]10.(多选)一物体做匀变速直线运动.当t =0时,物体的速度大小为12 m/s ,方向向东;当t =2 s 时,物体的速度大小为8 m/s ,方向仍向东.当物体的速度大小变为2 m/s 时,t 为( )A .3 sB .5 sC .7 sD .9 s解析:由题意可得物体运动的加速度a =8-122m/s 2=-2 m/s 2.若速度大小为2 m/s 时,方向向东,则由v t =v 0+at 解得t =v t -v 0a =2-12-2s =5 s ;若速度大小为2 m/s 时,方向向西,则t =v t -v 0a =-2-12-2s =7 s.答案:BC11.(多选)给滑块一初速度v 0,使它沿足够长的光滑斜面向上做匀减速运动,加速度大小为a ,当滑块速度大小变为v 02时,所用时间可能是( )A.v 04a B.v 02a C.3v 02aD.3v 0a解析:以初速度方向为正方向,当末速度与初速度方向相同时,v 02=v 0-at ,得t =v 02a ;当末速度与初速度方向相反时,-v 02=v 0-at ′,得t ′=3v 02a,B 、C 正确.答案:BC12.卡车原来以10 m/s 的速度在平直公路上匀速行驶,因为道口出现红灯,司机从较远的地方即开始刹车,使卡车匀减速前进,当车减速到2 m/s 时,交通灯转为绿灯,司机当即放开刹车,并且只用了减速过程的一半时间卡车就加速到原来的速度,从刹车开始到恢复原速过程用了12 s .求:(1)减速与加速过程中的加速度大小; (2)开始刹车后2 s 末及10 s 末的瞬时速度. 解析:(1)设加速过程的时间为t ,依题意有 2t +t =12 s 得t =4 s所以减速过程的加速度a 1=v 2-v 12t =2-108m/s 2=-1 m/s 2加速过程的加速度a 2=v 3-v 2t =10-24 m/s 2=2 m/s 2.(2)刹车后2 s 末的速度v =v 0+a 1t 1=10 m/s +(-1)×2 m/s =8 m/s 10 s 末的速度v ′=v 2+a 2t ′=2 m/s +2×(10-8) m/s =6 m/s. 答案:(1)1 m/s 2 2 m/s 2 (2)8 m/s 6 m/s[C 组 学霸冲刺]13.一辆汽车在平直的公路上从静止开始运动,先后经历匀加速、匀速、匀减速直线运动,最后停止.从汽车启动开始计时,下表记录了汽车某些时刻的瞬时速度,根据数据可判断出汽车运动的v -t 图像是( )解析:由题中表格里的数据可得汽车做匀加速直线运动的加速度a 1=6.0-3.02.0-1.0 m/s 2=3m/s 2,故汽车做匀加速直线运动的时间t 1=va 1=4 s ,选项B 、D 错误;当汽车做匀减速直线运动时a 2=3.0-9.011.5-10.5m/s 2=-6 m/s 2,故汽车做匀减速直线运动的时间t 2=-va 2=2 s ,故选项A 错误,选项C 正确.答案:C第2节 位移变化规律一、匀变速直线运动的位移—时间关系 1.位移在v -t 图像中的表示如图所示,做匀变速直线运动的物体的位移大小可以用v -t 图像中的图线和时间轴包围的梯形的面积来表示.2.位移与时间的关系 (1)推导:⎭⎪⎬⎪⎫面积大小等于位移大小:s =12(v 0+v t )×t 速度公式:v t =v 0+at ―→s =v 0t +12at 2.(2)特例:如果匀变速直线运动的初速度为零,公式可简化为s =12at 2.[判断正误](1)位移公式s =v 0t +12at 2仅适用于匀加速直线运动. (×)(2)初速度越大,时间越长,匀变速直线运动物体的位移一定越大. (×) (3)匀变速直线运动的位移与初速度、加速度、时间三个因素有关. (√) 二、匀变速直线运动的位移—速度关系1.速度与位移关系式:v 2t -v 20=2as .2.推导:3.速度与位移关系的应用条件:所研究的问题中,已知量和未知量都不涉及时间. [思考]如果你是机场跑道设计师,若已知飞机的加速度为a ,起飞速度为v t ,你应该如何来设计飞机跑道的长度?提示:根据公式v 2t -v 20=2as得v 2t =2aL ,所以L =v 2t 2a ,即应使飞机跑道的长度大于v 2t2a.要点一 匀变速直线运动位移公式的理解及应用[探究导入] (1)甲同学把物体的运动分成几个小段,如图甲所示,每段位移≈每段起始时刻速度×每段的时间=对应矩形面积.所以,整个过程的位移≈各个小矩形面积之和.乙同学把运动过程分为更多的小段,如图乙所示,各小矩形的面积之和可以表示物体在整个过程的位移.比较以上两种分法,哪种更能精确的表示物体运动的位移?(2)结合甲、乙两同学的做法,丙同学认为,当Δt →0时,各矩形面积之和趋近于v -t 图线下面的面积(如图丙).试根据梯形面积推导匀变速直线运动的位移公式.提示:(1)乙同学的做法更能精确的表示物体运动的位移. (2)由图可知:梯形OABC 的面积S =(OC +AB )×OA 2,代入各物理量得:s =12(v 0+v t )t ,又v t =v 0+at ,得s =v 0t +12at 2.1.公式的适用条件:位移公式s =v 0t +12at 2只适用于匀变速直线运动.2.公式的矢量性:s =v 0t +12at 2为矢量公式,其中s 、v 0、a 都是矢量,应用时必须选取统一的正方向.一般选v 0的方向为正方向.(1)匀加速直线运动中,a 与v 0同向,a 取正值;匀减速直线运动中,a 与v 0反向,a 取负值.(2)若位移的计算结果为正值,说明位移方向与规定的正方向相同;若位移的计算结果为负值,说明位移方向与规定的正方向相反.3.两种特殊形式(1)当v 0=0时,s =12at 2,即由静止开始的匀加速直线运动,位移s 与t 2成正比.(2)当a =0时,s =v 0t ,此即为匀速直线运动的位移公式.[典例1] 一物体做初速度为零的匀加速直线运动,加速度为a =2 m/s 2,求:(1)第5 s 末物体的速度多大? (2)前4 s 的位移多大? (3)第4 s 内的位移多大?[解析] (1)第5 s 末物体的速度由v 1=v 0+at 1 得v 1=0+2×5 m/s =10 m/s. (2)前4 s 的位移由s 1=v 0t 1+12at 21得s 1=0+12×2×42 m =16 m.(3)物体第3 s 末的速度v 2=v 0+at 2=0+2×3 m/s =6 m/s则第4 s 内的位移s 2=v 2t 3+12at 23=6×1 m +12×2×12m =7 m. [答案] (1)10 m/s (2)16 m (3)7 m1.(2019·陕西渭南尚德中学高一第一学期物理月考)某物体做匀变速直线运动的位移跟时间的关系式是s =0.5t +t 2,则该物体 ( )A .初速度为1 m/sB .加速度为1 m/s 2C .前2 s 内位移为5 mD .第2 s 内位移为5 m解析:根据位移时间公式s =v 0t +12at 2与s =0.5t +t 2比较系数可得v 0=0.5 m/s ,a =2 m/s 2,故A 、B 错误;前2 s 内位移为s 1=(0.5×2+22)m =5 m ,故C 正确;第2 s 内位移为s 2=(0.5×2+22-0.5×1-12)m =3.5 m ,故D 错误.答案:C2.(2019·辽宁葫芦岛第一中学高一上学期第一次月考)一列火车从静止开始做匀加速直线运动,一个人站在第一节车厢前端的站台上,观测到第一节车厢通过他历时2 s ,全部列车车厢通过他历时6 s ,则此列车的车厢数目为( )A .7节B .8节C .9节D .10节解析:设一节车厢的长度为L ,火车从静止开始做匀加速直线运动,第一节车厢经过他历时为:t 1=2 s ,由位移和时间的关系列出方程可得:L =12at 21=12a ·22=42a ①,然后再列t 2=6秒内位移s表达式:s=12at22=362a②,由①②两式解得:s=9L即火车共有9节车厢,故C正确.答案:C要点二位移—速度关系式的理解及应用[探究导入]在高速公路上,有时会发生“追尾”事故——后面的汽车撞上前面的汽车.造成追尾的主要因素是超速和精力不集中,如图所示是交警在处理一起事故.(1)交警同志在干什么呢?他们这样做的目的是什么?(2)为什么通过测量刹车距离就能知道是否超速?提示:(1)他们在测量刹车距离,目的是看看车是否超速.(2)因为速度和位移存在一定的关系,即v2t-v20=2as.1.适用条件速度与位移的关系v2t-v20=2as仅适用于匀变速直线运动.2.意义公式v2t-v20=2as反映了初速度v0、末速度v t、加速度a、位移s之间的关系,当其中三个物理量已知时,可求另一个未知量.3.公式的矢量性公式中v0、v t、a、s都是矢量,应用时必须选取统一的正方向,一般选v0方向为正方向.(1)物体做加速运动时,a取正值,做减速运动时,a取负值.(2)s>0,说明物体通过的位移方向与初速度方向相同;s<0,说明位移的方向与初速度的方向相反.4.两种特殊形式(1)当v0=0时,v2=2as.(初速度为零的匀加速直线运动)(2)当v=0时,-v20=2as.(末速度为零的匀减速直线运动)[典例2]某高速列车在某段距离中做匀加速直线运动,速度由5 m/s增加到10 m/s时位移为s.则当速度由10 m/s增加到15 m/s时,它的位移是()A.52s B.53s C .2sD .3s[解析] 由v 2t -v 20=2as 得102-52=2as ①,152-102=2as ′②,联立①②得s ′=53s ,故选项B 正确.[答案] B [易错警示]应用位移—速度关系的两点注意(1)若不涉及时间,优先选用v 2t -v 20=2as .(2)选用v 2t -v 20=2as .要注意符号关系,必要时应对计算结果进行分析,验证其合理性.3.(2019·南京市第十二中月考)一物体从A 点由静止开始做匀加速直线运动,到达B 点时速度为v ,再运动到C 点时的速度为2v ,则AB 与BC 的位移大小之比为( )A .1∶3B .1∶4C .1∶2D .1∶1解析:对AB 过程,由变速直线运动的速度与位移的关系式可得v 2=2as AB ,解得s AB =v 22a ,对BC 过程可得(2v )2-v 2=2as BC ,解得s BC =3v 22a,所以AB 与BC 的位移大小之比为1∶3,故A 正确.答案:A4.(2019·江西南昌八一中学、洪都中学高一联考)酒后驾车严重威胁交通安全.其主要原因是饮酒后会使人的反应时间(从发现情况到实施操作制动的时间)变长,造成反制距离(从发现情况到汽车停止的距离)变长,假定汽车以20 m/s 的速度匀速行驶,刹车时汽车的加速度大小为10 m/s 2,正常人的反应时间为0.5 s ,饮酒人的反应时间为1.5 s ,试问:(1)驾驶员正常的反制距离是多少米?(2)饮酒的驾驶员的反制距离比正常时多了多少米?解析:(1)在反应时间内汽车做匀速直线运动为: s 1=v 0t 1=20×0.5 m =10 m 汽车减速的距离为:2as 2=v 2t -v 20 代入数据解得: s 2=0-2022×(-10)m =20 m驾驶员正常的反制距离:s 1+s 2=30 m ;(2)饮酒的驾驶员的反制距离比正常时,主要是反应时间多1 s ,所以反制动距离比正常多:Δs =v 0Δt =20×1 m =20 m.答案:(1)30 m (2)20 m“数形结合法”的应用——利用v -t 图像求物体的位移根据“无限分割”“逐渐逼近”的思想可以利用v -t 图像与t 轴所围面积表示位移.这就提供了一种利用图像计算位移的方法,常称为数形结合法,应用时注意以下几点:(1)v -t 图像与t 轴所围的“面积”表示位移的大小.(2)面积在t 轴以上表示位移是正值,在t 轴以下表示位移是负值. (3)物体的总位移等于各部分位移(正、负面积)的代数和. (4)物体通过的路程为t 轴上、下“面积”绝对值的和.某一做直线运动的物体的v -t 图像如图所示,根据图像求:(1)0~4 s 内,物体距出发点的最远距离; (2)前4 s 内物体的位移; (3)前4 s 内物体通过的路程. 解析:(1)物体距出发点最远的距离 s m =12v 1t 1=12×4×3 m =6 m.(2)前4 s 内的位移s =s 1-s 2=12v 1t 1-12v 2t 2=12×4×3 m -12×2×1 m =5 m.(3)前4 s 内通过的路程x =s 1+s 2=12v 1t 1+12v 2t 2=12×4×3 m +12×2×1 m =7 m.答案:(1)6 m (2)5 m (3)7 m1.根据匀变速直线运动的位移公式s =v 0t +at 22,关于做匀加速直线运动的物体在t 秒。

高中物理《匀变速直线运动的规律及其应用》优质课教案、教学设计

高中物理《匀变速直线运动的规律及其应用》优质课教案、教学设计

【教学设计】
B.平均速度之比是3∶2∶1
C.平均速度之比是1∶(-1)∶(-)
D.平均速度之比是(+)∶(+1)∶1
课堂解决匀变速直线运动的常用方法
总结方法分析说明
一般公
式法平均速
度法中间
时刻
速度法比例法
逆向思
维法推论法v=v0+at,x=v0t+at2,v2-v=2ax,它们均为矢量式
定义式=对任何性质的运动都适用,而=(v0
+v)只适用于匀变速直线运动
利用“任一时间t 中间时刻的瞬时速度等于这段时间t 内的平均速度”即v=,适用于任何一个匀变速直
线运动
对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用
初速度为零的匀加速直线运动的重要特征的比例关系,用比例法求解
把运动过程的“末态”作为“初态”的反向研究问题的方法,一般用于末态已知的
情况
对一般的匀变速直线运动问题,若出现相等的时间间隔问题,应优先考虑用Δx=aT2 求解。

高一物理《匀变速直线运动规律的应用》教案

高一物理《匀变速直线运动规律的应用》教案

高一物理《匀变速直线运动规律的应用》教案一、教学目标1.了解匀变速直线运动的规律和公式;2.掌握匀变速直线运动的计算方法;3.能够应用匀变速直线运动的规律解决相关问题。

二、教学内容1.匀变速直线运动的基本概念;2.匀变速直线运动的规律和公式;3.匀变速直线运动的计算方法;4.匀变速直线运动的应用。

三、教学步骤步骤一:导入新知1.引入匀变速直线运动的概念,与学生一起回顾匀速直线运动的规律和公式,并对比二者的区别;2.引导学生思考匀变速直线运动的特点和规律。

步骤二:讲解匀变速直线运动的规律和公式1.教师通过示意图和实例,讲解匀变速直线运动的规律和公式;2.引导学生理解速度和时间的关系,加速度和时间的关系,以及位移和时间的关系。

步骤三:计算匀变速直线运动问题1.引导学生根据所给条件,利用匀变速直线运动的规律和公式,计算相关问题;2.教师和学生一起解答示例题,确保学生掌握计算方法。

步骤四:讨论匀变速直线运动的应用1.引导学生思考匀变速直线运动在现实生活中的应用,并列举相关例子;2.讨论匀变速直线运动的应用对日常生活和工程实践的影响。

步骤五:总结与拓展1.学生观看一段匀变速直线运动的视频,并进行讨论;2.教师对本节课的内容进行总结,并与学生一起拓展匀变速直线运动的相关知识。

四、教学手段1.多媒体教学工具:使用投影仪展示示意图和实例;2.实物演示:使用小车和直线轨道进行匀变速直线运动的模拟。

五、教学评估1.课堂练习:教师布置练习题,检验学生对匀变速直线运动规律和计算方法的掌握程度;2.教学反馈:教师与学生进行互动交流,了解学生对本节课内容的理解情况。

六、板书设计高一物理《匀变速直线运动规律的应用》教案一、教学目标1. 了解匀变速直线运动的规律和公式2. 掌握匀变速直线运动的计算方法3. 能够应用匀变速直线运动的规律解决相关问题二、教学内容1. 匀变速直线运动的基本概念2. 匀变速直线运动的规律和公式3. 匀变速直线运动的计算方法4. 匀变速直线运动的应用三、教学步骤1. 导入新知2. 讲解匀变速直线运动的规律和公式3. 计算匀变速直线运动问题4. 讨论匀变速直线运动的应用5. 总结与拓展四、教学手段- 多媒体教学工具- 实物演示五、教学评估- 课堂练习- 教学反馈七、教学延伸1.学生可以自主选择一个匀变速直线运动的实例,进行详细研究,并撰写实验报告;2.学生可以利用计算机编写一个匀变速直线运动的模拟程序,通过调整参数观察运动的变化。

高一物理学案:匀变速直线运动的规律及结论

高一物理学案:匀变速直线运动的规律及结论

高一物理新授课学案《匀变速直线运动的规律及结论》类型一匀变速直线运动的基本公式的应用1.匀变速直线运动基本公式的比较2公式列方程→解方程,必要时进行讨论(比如刹车问题)。

例1一个滑雪的人,从85 m长的山坡上匀加速滑下,初速度为1.8 m/s,末速度为5.0 m/s,他通过这段山坡需要多长时间?针对训练1.(多选)一个物体以v0=8 m/s的初速度沿光滑斜面向上滑,加速度的大小为2 m/s2,冲上最高点之后,又以相同的加速度往回运动,则()A.1 s末的速度大小为6 m/sB.3 s末的速度为零C.2 s内的位移大小是12 mD.5 s内的位移大小是15 m类型二匀变速直线运动的推论的应用1.平均速度公式:做匀变速直线运动的物体,在任意一段时间t内的平均速度等于这段时间内中间时刻的瞬时速度,还等于这段时间初、末速度矢量和的一半,即v=v0+v2=vt2。

推导:2.逐差相等公式(1)在任意两个连续相等的时间间隔T内,位移之差是一个常量,即Δx=xⅡ-xⅠ=aT2。

(2)对于不相邻的第m段、第n段位移x m和x n,则有x m-x n=(m-n)aT2。

推导:例2一物体做匀变速直线运动,在连续相等的两个时间间隔内,通过的位移分别是24 m 和64 m,每一个时间间隔为4 s,求物体的初速度、末速度及加速度大小。

针对训练2.一质点做匀变速直线运动,初速度v0=2 m/s ,4 s内位移为20 m,求:(1)质点4 s末的速度大小;(2)质点2 s末的速度大小。

类型三初速度为零的匀加速直线运动的比例式的应用1.按时间等分(设相等的时间间隔为T)的比例式(1)T末、2T末、3T末、…、nT末的瞬时速度之比为v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n。

(2)T内、2T内、3T内、…、nT内的位移之比为x1∶x2∶x3∶…∶x n=12∶22∶32∶…∶n2。

(3)第一个T内、第二个T内、第三个T内、…、第n个T内的位移之比为x1′∶x2′∶x3′∶…∶x n′=1∶3∶5∶…∶(2n-1)。

匀变速直线运动的规律及其应用(教案及教学反思)

匀变速直线运动的规律及其应用(教案及教学反思)

匀变速直线运动的规律及其应用新洲四中物理组王杏喜【教学内容分析】考纲对本节所涉及的知识点均为二级要求。

本节内容是高考考查的热点和重点,常与其他知识点结合考查,有时也单独考查,如实际生活中的直线运动问题。

其重点是考查学生的综合能力。

【教学目标】1.知识与能力(1)掌握匀变速直线运动的基本公式,并能恰当选择这些公式解决物理问题.(2)能够熟练应用匀变速直线运动的重要推论解决物理问题。

(3)培养学生运用方程组、图像等数学工具解决物理问题的能力。

(4)通过一题多解培养学生发散思维。

2.过程和方法(1)通过例题的分析,使学生形成解题思路,体会特殊解题技巧,即获得解决物理问题的认知策略。

(2)渗透物理思想方法的教育,如模型方法、等效方法等。

3.情感态度与价值观通过对实际生活中直线运动的研究,保持对运动世界的好奇心和探究欲。

【教学重难点】重点:熟练掌握匀变速直线运动的四个基本公式及其重要推论,并加以应用。

难点:灵活运用规律解决实际运动学问题。

【教学方法】复习提问、讲练结合。

【教具】幻灯片,投影仪。

【教学过程】(一) 复习提问师:请同学们写出匀变速直线运动的四个基本公式。

生:师分析讲解:1、四个公式,五个物理量知三求二.公式的选取原则是:在实际应用中要以方便快捷的原则,选用合适的公式.每个公式中都涉及了5个物理量v 0、v 、a 、t 、x 中的4个,我们选用涉及已知量和所求量的公式会简捷一些.例如已知初速度、末速度、位移,求加速度时,因为不涉及时间,我们选用v 2-v 02=2ax 。

2、四个公式均为矢量方程,应用时要选择正方向。

速度—时间关系式:v t =v 0+at ,位移—时间关系式:s =v 0t +1/2 at 2,位移—速度关系式:v 2-v 02=2ax 均为矢量式,所以应用时要选取正方向,一般情况取初速度的方向为正,则当物体做加速运动时a 取正值,当物体做减速运动时a 取负值.3、对匀减速直线运动,要注意单向速度减速为零后停止(加速度变为零)和双向可逆(加速度不为变)两种情况。

高一物理学案-第3讲-匀变速直线运动的规律

高一物理学案-第3讲-匀变速直线运动的规律

第三讲 匀变速直线运动的规律【 知识要点 】一、匀变速直线运动的规律(1)速度公式:vt =v0+at.(2)位移公式:s =v0t +12at2. (3)速度位移公式:vt2-v02=2aX二、由匀变速直线运动的v -t 图像可获得的信息(如图所示)(1)由图像可直接读出任意时刻的瞬时速度,图像与纵轴的交点(截距)表示初速度.(2)图线的斜率表示物体运动的加速度.(3)图线与横轴所包围的“面积”表示位移大小.三、初速度为零的匀变速直线运动的比例式1.初速度为零的匀加速直线运动,按时间等分(设相等的时间为T)的比例式(1)T 末、2T 末、3T 末、……、nT 末瞬时速度之比v1∶v2∶v3∶……∶vn =1∶2∶3∶……∶n(2)T 内、2T 内、3T 内、……、nT 内的位移之比s1∶s2∶s3∶……∶sn =12∶22∶32∶……∶n2(3)第一个T 内、第二个T 内、第三个T 内、……、第n 个T 内的位移之比s1′∶s2′∶s3′∶……∶sn ′=1∶3∶5∶……∶(2n -1)2.初速度为零的匀加速直线运动,按位移等分(设相等的位移为s)的比例式(1)通过前s 、前2s 、前3s ……、前ns 时的速度之比v1∶v2∶v3∶……∶vn =1∶2∶3∶……∶n(2)通过前s 、前2s 、前3s ……、前ns 的位移所用时间之比t1∶t2∶t3∶……∶tn =1∶2∶3∶……∶n(3)通过连续相等的位移所用时间之比t1′∶t2′∶t3′∶……∶tn ′=1∶(2-1)∶(3-2)∶……∶(n -n -1)注意 (1)以上比例式成立的条件是物体做初速度为零的匀加速直线运动.(2)对于末速度为零的匀减速直线运动,可把它看成逆向的初速度为零的匀加速直线运动,应用比例关系,可使问题简化.【典型例题】【例题1】 【题干】一物体做初速度为零的匀加速直线运动,加速度为a =2 m/s2,求:(1)第5 s 末物体的速度多大?(2)前4 s 的位移多大?(3)第4 s 内的位移多大?【解析】 (1)第5 s 末物体的速度由v1=v0+at1得v1=0+2×5 m/s=10 m/s(2)前4 s 的位移由s1=v0t +12at2 得s1=0+12×2×42 m=16 m (3)物体第3 s 末的速度v2=v0+at2=0+2×3 m/s=6 m/s则第4 s 内的位移s2=v2t3+12at32=6×1 m+12×2×12 m=7 m 【例题2】【题干】一个物体以v0=8 m/s 的初速度沿光滑斜面向上滑,加速度的大小为2 m/s2,冲上最高点之后,又以相同的加速度往回运动.则( )A .1 s 末的速度大小为6 m/sB .3 s 末的速度为零C .2 s 内的位移大小是12 mD .5 s 内的路程是15 m【解析】由t =vt -v0a,物体冲上最高点的时间是4 s ,又根据vt =v0+at ,物体1 s 末的速度为6 m/s ,A 对,B 错.根据s =v0t +12at2,物体2 s 内的位移是12 m,4 s 内的位移是16 m ,第5 s 内的位移沿斜面向下大小为1 m ,所以5 s 内的路程是17 m ,C 对,D 错.【答案】AC【例题3】【题干】一辆汽车从静止开始做匀加速直线运动,已知途中先后经过相距27 m 的A 、B 两点所用时间为2 s ,汽车经过B 点时的速度为15 m/s.求:(1)汽车经过A 点时的速度大小和汽车的加速度;(2)汽车的出发点O 到A 点的距离.【解析】(1)设汽车运动方向为正方向,过A 点时速度为vA ,故由s =v0+vt 2t 得sAB =vA +vB 2t 代入数据解得vA =12 m/s对AB 段有a =vB -vA t=1.5 m/s2 (2)对OA 段(v0=0),由vt2-v02=2as 得sOA =vt2/2a =48 m【答案】(1)12 m/s 1.5 m/s (2)48 m【例题4】【题干】质点从静止开始做匀加速直线运动,在第1个2 s 、第2个2 s 和第5个2 s 内的位移之比为( )A .1∶4∶25B .1∶3∶5C .1∶3∶9D .2∶2∶1【解析】质点做初速度为零的匀加速直线运动,在连续相等的时间内位移之比为1∶3∶5∶……∶(2n-1),所以质点在第1个2 s 、第2个2 s 和第5个2 s 内的位移之比为1∶3∶9,因此选C.【答案】C【课后作业】【基础】1、【题干】改革开放以来,人们的生活水平得到了很大的改善,快捷、方便、舒适的家用汽车作为代步工具正越来越多的走进寻常百姓家中.汽车起动的快慢和能够达到的最大速度,是衡量汽车性能的指标体系中的两个重要指标.在平直的公路上,汽车启动后在第10 s 末速度表的指针指在如图所示的位置,前10 s 内汽车运动的距离为150 m .下列说法中正确的是A. 第10 s 末汽车的瞬时速度大小是70 m/sB. 第10 s 末汽车的瞬时速度大小是70 km/hC. 第10 s内汽车的平均速度大小是70 m/sD. 前10 s内汽车的平均速度大小是35 m/s【答案】B【解析】A、汽车的速度表显示的是瞬时速度,由图可知在第10s末汽车的瞬时速度是70km/h,故A错误,B正确;C、10秒内汽车的位移是150m,则在10s内汽车的平均速度15m/s,故CD错误。

人教版高中物理必修12.5匀变速直线运动规律的应用导学案(教师版含解析)

人教版高中物理必修1§2.5匀变速直线运动规律的应用1.匀变速运动规律的一个推论 由基本规律v t =v 0+at 和s=v 0t+21at 2消去时间t 可导出公式v t 2=v 02+2as 。

这个推论在解决没有给出时间t 或不涉及运动时间t 的问题时比较方便。

此推论用于匀减速直线运动时,式中a 要代负值。

为避免这个麻烦,也可将它写为v t 2=v 02-2as ,式中a 只代数值即可。

2.一般匀变速直线运动的常规处理方法 处理匀变速直线运动的公式有v t =v 0+at ,s=v 0t+21at 2,v t 2=v 02+2as ,三个式子共涉及运动的五个主要物理量v t 、v 0、a 、s 、t ,若已知其中三个量,要求解另两个量,就要用到其中两个方程。

情况不外乎两种:(1)已知的三个量在同一个方程中,代入此方程,就求得第四个量,再代入另一方程便得第五个量;(2)要选用两个方程并列,解联立方程得其余两个未知量。

以上就是解运动学问题最基本的方法。

3.解匀变速直线运动的一些巧法 针对问题的一些特殊情况,有些运动学问题常可用其它巧法,使题解显得简洁明快。

这些方法大致有以下常用的几种:(1)充分利用匀变速运动的其它结论,它们是:①初速为零的匀加速运动,在连续相等的时间间隔里通过的位移之比等于从1开始的连续奇数之比,即s 1:s Ⅱ:s Ⅲ:…=1:3:5:…,[课本P 35练习七题(5)];②做匀变速运动的物体,在连续相等的时间内的位移分别是s 1:s 2:s 3……s n ,则s 2-s 1=s 3-s 2=…=s n -s n-1=aT 2[课本p 43习题(11)];③作匀变速运动的物体在某段时间内的平均速度等于该段时间中间时刻的瞬时速度[课本P 43习题(12)]。

当然,还可导出其它一些结论供使用,但这三项常用。

(2)充份利用匀变速运动的平均速度20 vv v t +=这个特点,结合s=t v 来解题。

(物理一轮复习资料)匀变速运动的规律

高二物理第二讲《匀变速运动的规律及应用》学案【知识梳理】 一、匀变速直线运动及基本规律1.匀变速直线运动(1)定义:物体沿一条直线运动,且 不变的运动.(2)分类:2.匀变速直线运动的规律 (1)三个基本公式①速度公式:v = . ②位移公式:x = .③位移速度关系式:=-202v v .(2)平均速度公式:v = .【理解要点】对匀变速直线运动规律的两点说明(1)匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v 0=0时,一般以a 的方向为正方向。

(2)物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,对这种情况可以将全程看做匀变速直线运动,应用基本公式求解。

例1.一物体在与初速度相反的恒力作用下做匀减速直线运动,v 0=20 m/s ,加速度大小为5 m/s 2,求:(1)物体经多少秒后回到出发点? (2)由开始运动算起,求6 s 末物体的速度.二、 匀变速直线运动的重要推论1.任意相邻两个连续相等的时间里的位移之差是一个恒量,即x 2-x 1=x 3-x 2=…=at 2.还可以推广到x m -x n =(m -n )aT 2。

2.某段时间内的平均速度,等于该时间的中间时刻的瞬时速度,即202tt v v v v +==. 3.某段位移中点的瞬时速度等于初速度v 0和末速度v t 平方和一半的平方根,即22202t x v v v +=. 4.初速度为零的匀加速直线运动的规律(设T 为等分时间间隔) (1)1T 内、2T 内、3T 内……位移之比x 1∶x 2∶x 3…= . (2)1 T 末、2T 末、3T 末……速度之比v 1∶v 2∶v 3…= .(3)第一个T 内、第二个T 内、第三个T 内……的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ…= .(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3…=例2.一观察者站在第一节车厢前端,当列车从静止开始做匀加速运动时,下列说法正确的是( ) A .每节车厢末端经过观察者的速度之比是3:2:1… B .每节车厢末端经过观察者的时间之比是1∶3∶5… C .在相等时间里经过观察者的车厢数之比是1∶3∶5…D .在相等时间里经过观察者的车厢数之比是1∶2∶3…例3. 一个质量为m 的物块由静止开始沿斜面下滑,拍摄此下滑过程得到的同步闪光(即第一次闪光时物块恰好开始下滑)照片如图1-2-1所示.已知闪光频率为每秒10次,根据照片测得物块相邻两位置之间的距离分别为AB =2.40 cm ,BC =7.30 cm ,CD =12.20 cm ,DE =17.10 cm.由此可知,物块经过D 点时的速度大小为________ m/s ;滑块运动的加速度为________ m/s 2.(保留三位有效数字) 巩固练习1.一物体做匀变速直线运动,某时刻速度大小为4 m/s,1 s 后速度的大小变为10 m/s ,在这1 s 内该物体的( )A .位移的大小可能小于3 mB .位移的大小可能大于10 mC .加速度的大小可能小于4 m/s 2D .加速度的大小可能大于10 m/s 22.飞机从停机坪沿直线滑出,在第1秒内、第2秒内、第3秒内的位移分别是2m、4 m、6 m,那么( )A.飞机做匀加速运动B.飞机做匀速运动C.3秒内的平均速度是2 m/sD. 3秒内的平均速度是4 m/s3.如图所示,以8 m/s匀速行驶的汽车即将通过路口,绿灯还有2 s将熄灭,此时汽车距离停车线18 m,该车加速时最大加速度大小为2 m/s2,减速时最大加速度大小为5 m/s2.此路段允许行驶的最大速度为12.5 m/s,下列说法中正确的有( )A.如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线B.如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速C.如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线D.如果距停车线5 m处减速,汽车能停在停车线处4.一个质点正在做匀加速直线运动,用固定的照相机对该质点进行闪光照相,闪光时间间隔为1 s.分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移动了2 m;在第3次、第4次闪光的时间间隔内移动了8 m,由此不可求得()A.第1次闪光时质点的速度B.质点运动的加速度C.从第2次闪光到第3次闪光这段时间内质点的位移D.质点运动的初速度5、如图所示,传送皮带的水平部分AB是绷紧的.当皮带不动时,滑块从斜面顶端由静止开始下滑,通过AB所用的时间为t1,从B端飞出时速度为v1.若皮带顺时针方向转动时,滑块同样从斜面顶端由静止开始下滑,通过AB所用的时间为t2,从B端飞出时的速度为v2,则t1和t2、v1和v2相比较,可能的情况是( )A.t1=t2B.t2>t1C.v1=v2D.v1>v26、质点做匀减速直线运动,在第1 s内位移为6 m,停止运动前的最后1 s内位移为2 m,求:(1)在整个减速运动过程中质点的位移大小;(2)整个减速过程共用多少时间.7、物体以一定的初速度冲上固定的光滑斜面,到达斜面最高点C时速度恰为零,如图所示。

_新教材高中物理第2章匀变速直线运动的规律4匀变速直线运动规律的应用学案教科版必修第一册

匀变速直线运动规律的应用学习目标:1.[物理观念]理解匀变速直线运动的位移与速度的关系. 2.[科学思维]了解匀变速直线运动的位移与速度关系的推导方法. 3.[科学思维]掌握匀变速直线运动的位移、速度、加速度和时间之间的相互关系,会用公式解决匀变速直线运动的问题.一、位移与速度的关系1.公式:v 2t -v 20=2ax ;若v 0=0,则v 2t =2ax . 2.推导:速度公式v t =v 0+at ,位移公式x =v 0t +12at 2由以上两式可得:v 2t -v 20=2ax . 二、匀变速直线运动的推论 中间位置的瞬时速度 1.公式:v x 2=v 20+v 2t 2.2.推导:在匀变速直线运动中,某段位移x 的初、末速度分别是v 0和v t ,加速度为a ,中间位置的速度为v x 2,则根据速度与位移关系式,对前一半位移:v 2x 2-v 20=2a ·x 2,对后一半位移v 2t -v 2x 2=2a ·x 2,即v 2x 2-v 20=v 2t -v 2x 2,所以v x 2=v 20+v 2t2.1.思考判断(正确的打“√”,错误的打“×”) (1)公式v 2t -v 20=2ax 适用于所有的直线运动.(×)(2)公式v 2t -v 20=2ax 中的四个物理量都是矢量,各量的正、负表示与规定的正方向相同还是相反.(√)(3)因为v 2t -v 20=2ax ,则v 2t =v 20+2ax ,所以物体的末速度v t 一定大于初速度v 0.(×) (4)只有初速度为零的匀加速直线运动,v x 2>v t2的关系才是成立的.(×)2.物体从长为L 的光滑斜面顶端由静止开始下滑,滑到底端时的速率为v ,如果物体以v 0=v2的初速度从斜面底端沿斜面上滑,上滑时的加速度与下滑时的加速度大小相同,则可以达到的最大距离为( )A .L 2B .L 3C .L4 D .2L C [对于下滑阶段有:v 2=2aL , 对于上滑阶段:0-⎝ ⎛⎭⎪⎫v 22=-2ax ,联立解得x =L4,A 、B 、D 错误,C 正确.]速度与位移的关系提示:由v 2-v 20=2ax 得x =v 22a=3240 m.2t 20(1)适用条件:公式表述的是匀变速直线运动的速度与位移的关系,适用于匀变速直线运动.(2)公式的矢量性:公式中v 0、v t 、a 、x 都是矢量,应用时必须选取统一的正方向,一般选v 0方向为正方向.①物体做加速运动时,a 取正值,做减速运动时,a 取负值.②x >0,说明物体位移的方向与初速度方向相同;x <0,说明物体位移的方向与初速度的方向相反.2.两种特殊形式(1)当v 0=0时,v 2t =2ax .(初速度为零的匀加速直线运动). (2)当v t =0时,-v 20=2ax .(末速度为零的匀减速直线运动).【例1】 我国多地出现的雾霾天气,给交通安全带来了很大的危害,某地雾霾天气中高速公路上的能见度只有72 m ,要保证行驶前方突发紧急情况下汽车的安全,汽车行驶的速度不能太大.已知汽车刹车时的加速度大小为5 m/s 2.(1)若前方紧急情况出现的同时汽车开始制动,汽车行驶的速度不能超过多大?(结果可以带根号)(2)若驾驶员从感知前方紧急情况到汽车开始制动的反应时间为0.6 s,汽车行驶的速度不能超过多大?思路点拨:①该问题中减速过程中,已知量和未知量都不涉及时间,可用速度和位移的关系式求解.②在驾驶员的反应时间内,汽车做匀速直线运动.[解析](1)汽车刹车的加速度a=-5 m/s2,要在x=72 m内停下,设行驶的速度不超过v1,由运动学公式有:0-v21=2ax代入题中数据可得v1=12 5 m/s.(2)设汽车行驶的速度不超过v2,在驾驶员的反应时间t0内汽车做匀速运动的位移为x1,则x1=v2t0刹车减速位移x2=-v222ax=x1+x2联立各式代入数据可得v2=24 m/s.[答案](1)12 5 m/s (2)24 m/s运动学问题的一般求解思路(1)弄清题意.建立一幅物体运动的图景,尽可能地画出草图,并在图中标明一些位置和物理量.(2)弄清研究对象.明确哪些是已知量,哪些是未知量,据公式特点选用恰当公式.(3)列方程、求解.必要时要检查计算结果是否与实际情况相符合.[跟进训练]1.美国“肯尼迪”号航空母舰上装有帮助飞机起飞的弹射系统.已知“F-15”型战斗机在跑道上加速时,产生的最大加速度为5 m/s2,起飞的最小速度是50 m/s,弹射系统能够使飞机具有的最大速度为30 m/s,则:(1)飞机起飞时在跑道上至少加速多长时间才能起飞?(2)航空母舰的跑道至少应该多长?[解析](1)飞机在跑道上运动的过程中,当有最大初速度、最大加速度时,起飞所需时间最短,故有t =v t -v 0a =50-305s =4 s则飞机起飞时在跑道上的加速时间至少为4 s. (2)由v 2t -v 20=2ax 得x =v 2t -v 202a =502-3022×5m =160 m ,即航空母舰的跑道至少为160 m.[答案] (1)4 s (2)160 m匀变速直线运动的几个推论汽车以2 m/s 2的加速度由静止开始启动,若汽车做匀加速直线运动.请分别计算汽车1 s 、2 s 、3 s 、4 s 末的速度,以及1 s 、2 s 、3 s 、4 s 末的速度比.你能发现什么规律?提示:v =at 知v 1=2 m/s ,v 2=4 m/s ,v 3=6 m/s ,v 4=8 m/s ,故v 1∶v 2∶v 3∶v 4=1∶2∶3∶4,速度比等于时间比.在匀变速直线运动中,某段位移x 的初末速度分别是v 0和v ,加速度为a ,中间位置的速度为v x 2,则根据速度与位移关系式,对前一半位移v 2x 2-v 20=2a ·x 2,对后一半位移v 2-v 2x2=2a ·x 2,即v 2x 2-v 2=v 2-v 2x 2,所以v x 2=v 20+v22.由数学知识知:v x 2>v t 2=v 0+v2.2.由静止开始的匀加速直线运动的几个重要比例 (1)1T 末、2T 末、3T 末……nT 末瞬时速度之比v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)1T 内、2T 内、3T 内……nT 内的位移之比x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2.(3)第一个T 内、第二个T 内、第三个T 内……第n 个T 内位移之比x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1).(4)通过前x 、前2x 、前3x ……位移时的速度之比v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(5)通过前x 、前2x 、前3x ……的位移所用时间之比t 1∶t 2∶t 3∶…∶t n =1∶2∶3∶…∶n .(6)通过连续相等的位移所用时间之比t Ⅰ∶t Ⅱ∶t Ⅲ∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1).【例2】 一小球沿斜面由静止开始匀加速滚下(斜面足够长),已知小球在第4 s 末的速度为4 m/s.求:(1)第6 s 末的速度; (2)前6 s 内的位移; (3)第6 s 内的位移.思路点拨:①小球做初速度为零的匀加速直线运动. ②注意区别前6 s 和第6 s 的确切含义. [解析] (1)由于第4 s 末与第6 s 末的速度之比v 1∶v 2=4∶6=2∶3故第6 s 末的速度v 2=32v 1=6 m/s.(2)由v 1=at 1得a =v 1t 1=44m/s 2=1 m/s 2. 所以第1 s 内的位移x 1=12a ×12 m =0.5 m第1 s 内与前6 s 内的位移之比x 1∶x 6=12∶62故前6 s 内小球的位移x 6=36x 1=18 m. (3)第1 s 内与第6 s 内的位移之比x Ⅰ∶x Ⅵ=1∶(2×6-1)=1∶11故第6 s 内的位移x Ⅵ=11x Ⅰ=5.5 m. [答案] (1)6 m/s (2)18 m (3)5.5 m有关匀变速直线运动推论的选取技巧(1)对于初速度为零,且运动过程可分为等时间段或等位移段的匀加速直线运动,可优先考虑应用初速度为零的匀变速直线运动的常用推论.(2)对于末速度为零的匀减速直线运动,可把它看成逆向的初速度为零的匀加速直线运动,然后用比例关系,可使问题简化.[跟进训练]2.(多选)如图所示,一冰壶以速度v 垂直进入两个相同矩形区域做匀减速运动,且刚要离开第二个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是(设冰壶可看成质点)( )A .v 1∶v 2=2∶1B .v 1∶v 2=2∶1C .t 1∶t 2=1∶ 2D .t 1∶t 2=(2-1)∶1BD [初速度为零的匀加速直线运动中连续两段相等位移的时间之比为1∶(2-1),故所求时间之比为(2-1)∶1,所以C 错误,D 正确;由v =at 可得初速度为零的匀加速直线运动中的速度之比为1∶2,则所求的速度之比为2∶1,故A 错误,B 正确.]1.物理观念:速度与位移关系v 2-v 20=2ax . 2.科学思维:v 0=0的匀加速直线运动的推论.1.做匀减速直线运动的物体经4 s 后停止,若在第1 s 内的位移是14 m ,则最后1 s 内的位移是 ( )A .3.5 mB .2 mC .1 mD .0B [物体做匀减速直线运动至停止,可以把这个过程看成逆向的初速度为零的匀加速直线运动,则相等时间内的位移之比为1∶3∶5∶7,所以由14 m 7=x 11得,所求位移x 1=2 m ,故B 正确.]2.A 、B 、C 三点在同一条直线上,一物体从A 点由静止开始做匀加速直线运动,经过B 点的速度是v ,到C 点的速度是3v ,则x AB ∶x BC 等于 ( )A .1∶8B .1∶6C .1∶5D .1∶3A [由公式v 2t -v 20=2ax ,得v 2=2ax AB ,(3v )2=2a (x AB +x BC ),两式相比可得x AB ∶x BC =1∶8.]3.一个做初速度为零的匀加速直线运动的物体,第1秒内位移和第3秒内位移的比为( )A .1∶9B .1∶5C .1∶4D .1∶316B [根据x =12at 2得1 s 内、2 s 内、3 s 内的位移之比为1∶4∶9,则第1 s 内、第3s 内的位移之比为1∶5,故B 正确,A 、C 、D 错误.]4.(新情境题)歼­31是中航工业沈阳飞机工业集团研制的第五代单座双发战斗机,某次该飞机起飞滑行时,从静止开始做匀加速运动,加速度大小为 4.0 m/s 2,飞机速度达到80 m/s 时离开地面升空.如果在飞机刚达到起飞速度时,突然接到命令停止起飞,飞行员立即使飞机紧急制动,飞机做匀减速运动,加速度的大小为5.0 m/s 2.请你为该类型的飞机设计一条跑道,使在这种特殊的情况下飞机停止起飞而不滑出跑道.那么,设计的跑道至少要多长?[解析] 由匀变速直线运动速度—位移关系式,可得飞机匀加速和匀减速阶段的位移分别为x 1=v 2t2a 1=8022×4.0 m =800 mx 2=v 2t2a 2=8022×5.0m =640 m所以,设计的跑道至少长x =x 1+x 2=(800+640)m =1 440 m.[答案] 1 440 m。

探究匀变速直线运动的规律——高一物理教案设计

探究匀变速直线运动的规律——高一物理教案设计一、教案设计目的1、了解匀变速直线运动的定义和公式。

2、探究匀变速直线运动的规律,让学生理解运动的本质和规律性。

3、提高学生的实验能力和团队合作意识。

二、教学内容及方法1、教学内容匀变速直线运动的规律探究。

2、教学方法实验教学法,让学生自主发掘知识。

三、教学过程1、导入教师向同学们展示一个简单的运动:从静止开始,自由落体运动。

请同学们思考,自由落体运动是否是一种匀变速直线运动?2、实验一:探究匀速直线运动的规律材料:直线轨道、小车、计时器、卡尺、手动振动器。

步骤:1)将直线轨道固定在水平地面上,用卡尺测量小车从轨道起点到终点的距离,记录在实验记录表中。

2)在轨道的起点放置手动振动器,将小车启动并用计时器停时记录小车通过轨道的时间,将时间记录在实验记录表中。

3)改变手动振动器的振动频率,重复以上步骤3次,将数据记录在实验记录表中。

分组讨论1)同组讨论并填写实验数据表格,画出速度-时间图像,计算小车的加速度,验证公式a =(v2-v1)/t。

2)小组内讲解图像的特点和结论,并与其他小组交流对比。

3)班级合作分析规律,列举运动的公式,让同学们自主探究匀变速直线运动的规律。

实验记录表:实验数据表:讨论分析表:实验结果表:3、实验二:探究变速直线运动的规律材料:直线轨道、小车、计时器、卡尺、手动振动器。

步骤:1)将直线轨道固定在水平地面上,用卡尺测量小车从轨道起点到终点的距离,记录在实验记录表中。

2)在轨道的起点放置手动振动器,将小车启动并用计时器停时记录小车通过轨道的时间,将时间记录在实验记录表中。

3)连续改变手动振动器的振动频率,重复以上步骤3次,将数据记录在实验记录表中。

4)根据计算方法计算出小车的加速度,验证匀变速直线运动的公式。

分组讨论1)同组讨论并填写实验数据表格,画出速度-时间图像,计算小车的加速度并验证公式a =(v2-v1)/t。

2)小组内讲解图像的特点和结论,并与其他小组交流对比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理:匀变速直线运动的规律及应用学案
一.知识点 速度公式 位移公式
速度与位移公式(无t 式) 平均速度 中时速度 中位速度 比例规律 逐差规律
二.典例解析
1.推导逐差规律:2x aT ∆= 方法1:(公式法——) 方法2:(分段逆向公式法——) 方法3:(图像法)
方法4:(分解法——分解成匀速直线运动和初速度为零的匀加速直线运动) 方法5:(公差法——比例公差为首项的两倍) 方法6:请你补充
【例1】已知O 、A 、B 、C 为同一直线上的四点,AB 间距离为L 1,BC 间距离为L 2,一物体自O 点由静止出发,沿此直线做匀加速运动,依次经过A 、B 、C 三点,已知物体通过AB 段与BC 段所用时间相等,求O 与A 的距离
(此题有多种解法,但没有人用过比例法,同学们可以试试。

另外本题与吴樵夫老师给我们出的题目异曲同工,我班有同学—— 对吴老师给的试题有特殊简捷的解法,即只看单位就可以得解)
解析一:(利用位移公式)设物体的加速度为a ,到达A 的速度为v 0,通过AB 段和BC 段所用的时间为t ,则有
20121
at t v l +=……………………………………………①
202122at t v l l +=+………………………………………② 联立①②式得
212at l l =-…………………………………………………③ t v l l 02123=-………………………………………………④ 设O 与A 的距离为l ,则有
a
v l 220
=………………………………………………………⑤
联立③④⑤式得
)
(8)3(122
21l l l l l --=
解析二:(利用利用时间相等)
解析三:(利用速度图像)
解析四:(利用平均速度)
解析五:(利用无t 式)
解析六:(利用比例式)
2.等时圆规律
【例2】试证明下面各轨道运动的时间相等(初速度为零,不计摩擦)
【例3】设计到斜面上用时最短的轨道并证明(初速度为零,不计摩擦) 图解法:
解析法:
【例4】图中多个轨道用时长短比较(初速度为零,不计摩擦)
三.对应练习
1.(刹车问题)一辆汽车以20m/s的速度沿平直公路匀速行驶,突然发现前方有障碍物,立即刹车,汽车以大小是5m/s2的加速度做匀减速直线运动,那么2s内与刹车后6s内汽车通过的位移之比为( )
A.1:1 B.4:3 C.3:1 D.3:4
2.(图像问题)一辆汽车以20m/s行驶,司机发现前面路面
有情况,采取了紧急刹车措施,汽车速度随时间变化如图所

(1)设汽车的速度为v,求刹车后与时间t之间的函数解析
式;
(2)求汽车从开始刹车到停止共滑行多少米?
(3)刹车后汽车滑行20米时,用了多少时间?
3.(比例法,逆向法)物体以一定的初速度从A点冲上固定的光滑的斜面,到达斜面最高点C 时速度恰好为零,如图所示。

已知物体运动到斜面长度3/4处的B点时,所用时间为t,求物体从B运动到C所用的时间。

4.(逐差律)如图所示,小球沿足够长的斜面向上做匀变速运动,依次经a、b、c、d到达最高点e.已知ab=bd=6 m,bc=1 m,小球从a到c和从c到d所用的时间都是2 s,设小球经b、c时的速度分别为v b、v c,则()
A.v b=10m/s
B.v c=3 m/s
C.de=3 m
D.从d到e所用时间为4 s
5.(多过程问题,公式法——无t式,图像法,能量法,补偿法)2012年6月1日.空降兵某部官兵使用新装备从260米超低空跳伞成功.如图所示,若跳伞空降兵在离地面224m高处.由静止开始在竖直方向做自由落体运动.一段时间后.立即打开降落伞,以12.5m/s2的平均加速度匀减速下降.为了空降兵的安全,要求空降兵落地速度最大不得超过5m/s(g取10m/s2).则()
A.空降兵展开伞时离地面高度至少为125m,相当于从2.5m高处自由落下
B.空降兵展开伞时离地面高度至少为125m,相当于从1.25m高处自由落下
C.空降兵展开伞时离地面髙度至少为99m,相当于从1.25m高处自由落下
D.空降兵展开伞时离地面高度至少为99m,相当于从2.5m高处自由落下
6.图中PA、PB、PC、PD四条轨道用
时最短的是?(初速度为零,不计摩擦)P
最小?
A
B
C
7.已知A、B两点在O点的正下方,用OA=h,AB=H,O点右侧等高处有一点P,从P架设两条光滑轨道PA、PB,两质点从P点由静止释放后沿PA、PB运动到底端的用时t相等,则OP=?,t=?
8.不计摩擦,无初速,质点沿两个管道无初速无摩擦运动,t ABC=t AC,求: θ= ?
A Array
B
四.好题收集(请同学们把自己遇到的与这一节内容相关的经典好题整理收集于此栏)。

相关文档
最新文档