《2 简单的平移作图》练习
精品课件简单的平移作图

E D F
H G
经过平移, B C 1、对应点所连的线段平行且相等; 2、对应线段平行且相等, 3、对应角相等 4、平移只改变位置,不改变图形的形状、 大小。(全等) 5、图形上每个点都沿相同的方向移
动了相同的距离。
1如图,河两边有A、B两个村庄,现准备建一座桥,桥 必须与河岸垂直, 问桥应建在何处才能使由甲到乙的路程最短?请作 出图形,并说说理由.
做一做:
在下图中,左图是一个正六边形,它经过怎样的平移能 得到右图?自己动手做做看,你能得到右图的图案吗?
议一议:
(课本76页)
(1)在下图中左图是一种“工”字形的砖,右 图是怎样通过左图得到的?
议一议:
(课本76页)
可以把左边的图沿上下方向平移,再沿左右平移便可得到.
议一议:
(课本76页)
图形与变换
(2)学校花园有一块正方形花池,打算将它面积八等份, 种上八种花草,请你利用平移、旋转、轴对称等知识设 计几个方案(至少三种)。 (1) (2) (3) (4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
设计图案:课本77页第2题: 正六边形中剪去一
个与边长相同的正 三角形,将其平移到 左边,形成一个新的 图案.
A E
AB AD 1.则S 1 重叠部分的面积正方形的一半 H
1 2 S 则边长为 2 2 对角线长为1
B
F
D
C
G
移动距离为 2 1
1.平移作图需要的条件:
图形原来的位置、 平移的方向 平移的距离。 2、作图的方法: 以局部带整体的平移作图方法, (1)确定图形的关键点。 (2)确定方向。 (3)沿相同的方向移动相同的距离。 (4)或做对应线段的平行线。 3作图时一定要记得下结论。
小学数学平移图形练习题

小学数学平移图形练习题1. 知识回顾在学习平移图形之前,我们首先需要回顾一些相关的数学知识。
在平面几何中,平移是指在平面上将一个图形沿着特定的方向移动一定的距离,而不改变其形状和方向。
平移操作可以通过平移向量来描述,它包括了平移的方向和距离。
2. 平移图形的性质在平移图形的过程中,以下是一些重要的性质:- 平移前后的两个图形相似,即形状和角度都保持不变。
- 平移前后的两个图形相等,即每个点在平移过程中都移动了相同的距离和方向。
3. 平移图形练习题现在,我们来尝试一些小学数学平移图形的练习题。
题目1:平移图形将图形A沿向量u平移得到图形B,如下图所示。
请写出向量u的坐标。
(A图形和B图形的示意图)题目2:图形对称将图形A沿向量u平移得到图形B,如下图所示。
请写出图形A和图形B之间的对称中心。
(A图形和B图形的示意图)题目3:图形拼接将图形A沿向量u平移得到图形B,如下图所示。
请写出图形A和图形B之间的平移向量。
(A图形和B图形的示意图)题目4:方程推导图形A经过向量u的平移得到图形B,则可以用一个方程来描述。
请写出表示图形B的方程。
题目5:图形嵌套图形A经过向量u的平移得到图形B,而图形B经过向量v的平移又得到图形C,如下图所示。
请写出图形A、B和C之间的平移向量。
(A图形、B图形和C图形的示意图)4. 解答及说明- 题目1的解答:向量u的坐标为(u₁, u₂)。
- 题目2的解答:图形A和图形B之间的对称中心为点P。
- 题目3的解答:图形A和图形B之间的平移向量为向量v。
- 题目4的解答:表示图形B的方程为f(x, y) = g(x - u₁, y - u₂)。
- 题目5的解答:图形A、B和C之间的平移向量分别为向量u、v 和w。
请同学们根据以上解答来完成相应的计算,并在纸上写出自己的答案。
在解答过程中,要注意向量的平移方向和距离,以及图形的对称性等性质。
5. 总结通过这些平移图形的练习题,我们可以更好地理解平移操作的性质和应用。
四年级上册数学一课一练2.3平移与平行_北师大版(含解析)-word文档

《平移与平行》同步练习一、判断题1.不相交的两条直线一定是平行线。
()2.经过直线外一点画这条直线的平行线可以画无数条。
()3.一个三角形的三条边不可能是相互平行的。
()4.平行四边形的四条边是两组平行线。
()5.同一平面内的两条直线不相交就平行。
()二、单选题1.两条相交直线,若将他们平移,则移动后的直线与原直线构成的图形可能是()。
A. 三角形B. 梯形C. 平行四边形D. 五边形2.梯形有()组平行线。
A. 0B. 1C. 23.图形经过()后,与原图形相等。
A. 平移B. 平行C. 旋转4红旗沿着旗杆上升的运动是()。
A. 旋转B. 平行C. 平移5.下列现象中,不属于平移的是()。
A. 乘坐直升电梯从一楼到三楼。
B. 钟表的指针嘀嗒嘀嗒的走。
C. 火车在笔直的轨道上行驶。
三、填空题1.在同一平面内,________的两条直线,叫平行线。
2.双杠的两根杠是互相________的,铅笔平移前后的线条是________的。
3.过直线外一点,能画________条这条直线的平行线。
4.一个长方形有________组互相平行的对边。
5.正方形的两组对边互相________。
6.平行线间的距离处处________。
7.对于平行线,一定要在________范畴内研究。
8.黑板上的上下两边是一组________。
9.平行四边形中,相对的两条边是互相________的。
10.平移后的图形与原图形________。
四、作图题1.过A点画已知直线的平行线。
2.过O点画直线AB的平行线。
3.过点P分别作出直线A和直线B的平行线。
五、解答题1.下图中有哪些线段是平行的,请写出三组。
2.下面哪组是平行线。
答案解析部分一、判断题1.【答案】错误【解析】【解答】不相交的两条直线不一定是平行线。
【分析】平行线必须是在同一平面内。
本题考查垂直与平行的特征及性质。
2.【答案】错误【解析】【解答】经过直线外一点画这条直线的平行线不可以画无数条。
12平移与旋转--知识讲解及其练习 含答案

平移与旋转--知识讲解【学习目标】1.理解平移、旋转的基本概念,掌握平移、旋转的基本特征,并能利用平移与旋转的性质进行证明有关问题;2.知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计;理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;3.能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计.【要点梳理】要点一、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;(4)平移后,新图形与原图形的形状与大小不变.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.要点二、旋转的概念把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角(如∠AOA′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.要点三、旋转的性质(1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形的形状与大小不变.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点四、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.【典型例题】类型一、平移1.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.【思路点拨】平移一个图形,首先要确定它移动的方向和距离,连接AA′后这个问题便获得解决.根据平移后的图形与原来的图形的对应线段平行(或在一条直线上)且相等,容易画出所求的线段.【答案与解析】解:如图所示,(1)连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【总结升华】平移一个图形,首先要确定它移动的方向和距离.连接AA′,这个问题就解决了,然后分别把B、C按AA′的方向平移AA′的长度,便可得到其对应点B′、C′,这就是确定了关键点平移后的位置,依次连接A′B′,B′C′,C′A′便得到平移后的三角形A′B′C′.2.(•东台市模拟)如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为______.【答案】25°【解析】∵∠B=55°,∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.【总结升华】图形在平移的过程有“一变两不变”、“一变”是位置的变化,“两不变”是形状和大小不变.本例中由△ABC经过平移得到△A′B′C′.则有AB=A′B′,BC=B′C′,AC=A′C′,∠A=∠A′,∠C=∠C,∠B=∠B′.举一反三:【变式】(•临淄区一模)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为.【答案】20;解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+A C=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.类型二、旋转的概念及性质3.如图,把四边形AOBC绕点O旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是谁?(2)旋转方向如何?(3)经过旋转,点A、B的对应点分别是谁?(4)图中哪个角是旋转角?(5)四边形AOBC与四边形DOEF的形状、大小有何关系?(6)AO与DO的长度有什么关系? BO与EO呢?(7)∠AOD与∠BOE的大小有什么关系?【答案与解析】(1)旋转中心是点O;(2)旋转方向是顺时针方向;(3)点A的对应点是点D,点B的对应点是点E;(4)∠AOD和∠BOE;(5)四边形AOBC与四边形DOEF的图形全等,即形状一致,大小相等;(6)AO=DO,BO=EO;(7)∠AOD=∠BOE.【总结升华】通过具体实例认识旋转,了解旋转的概念和性质.举一反三【变式】如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.【答案】下面给出几种解法:解法一:连接OA、OB、OC即可.如图甲所示;解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、 OD2即得,如图乙所示.解法三:在解法二中,用相同的曲线连结OD、OD1、OD2即得如图丙所示4.如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )【答案】C.【解析】抓住图形特征,观察图中的每个小的图形绕中心点旋转180°后能否与自身重合.【总结升华】在解题的过程中,可看出如果选取的基本图形不同,可得到不同的形成过程,甚至所选取的基本图形相同,也有不同的形成过程,因此分析图案的形成过程旨在了解图形的变化规律,而不必强求分析的一致性.类型三、旋转的作图5. 如图,已知△ABC与△DEF关于某一点对称,作出对称中心.【答案与解析】【总结升华】确定关于某点成中心对称的两个图形的对称中心的方法:⑴利用中心对称的性质:对称点所连线段被对称中心所平分,所以连接任意一对对称点,取这条线段的中点,则该点即为对称中心;⑵利用中心对称的性质:对称点所连线段都经过对称中心,所以连接任意两对对称点,则这两条线段的交点即为对称中心.6.(•南宁)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).【思路点拨】(1)根据题意画出△ABC 关于y 轴对称的△A 1B 1C 1即可;(2)根据题意画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,线段BC 旋转过程中扫过的面积为扇形BCC 2的面积,求出即可. 【答案与解析】解:(1)如图所示,画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)如图所示,画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,由勾股定理得,BC=222+3=13,线段BC 旋转过程中所扫过得面积S=π21134⨯()=.【总结升华】此题考查了作图﹣旋转变换,对称轴变换,以及扇形面积,作出正确的图形是解本题的关键. 举一反三【变式】如图,画出ABC ∆绕点O 逆时针旋转100︒所得到的图形.【答案】(∠AOA′=∠BOB′=∠COC′=100°)平移与旋转--巩固练习【巩固练习】一、选择题1.如图所示的图形中的小三角形可以由△ABC平移得到的有 ( )A.3个 B.4个 C.5个 D.6个2.(•株洲)如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.下面生活中的物体的运动情况可以看成平移的是().(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)摇动的大绳;(5)汽车玻璃上雨刷的运动;(6)从楼顶自由落下的球(球不旋转).A.(1)(3) B.(4)(5) C.(3)(5) D.(2)(6)4.如图,4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( ).A.点A B.点B C.点C D.点D5.如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为 ( )A.600m2 B.551m2 C.550m2 D.500m26.如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为( )A.10°B.15°C.20°D.25°二、填空题7.(春•博野县期末)图形在平移时,下列特征中不发生改变的有(把你认为正确的序号都填上),①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系.8.如图所示,△ABC经过平移得到△A′B′C′,图中△_________与△_________大小形状不变,线段AB与A′B′的位置关系是________,线段CC′与BB′的位置关系是________.9.(•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.10.(春•新化县期末)钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了_______度.11.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于__________度.12.如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是______三角形.三.解答题13.如图,将四边形ABCD平移到四边形EFGH的位置,根据平移后对应点所连的线段平行且相等,写出图中平行的线段和相等的线段.14.(吉安校级期中)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.15.如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的部分种植花草,求种植花草部分的面积.【答案与解析】一、选择题1.【答案】C ;【解析】图中小三角形△BDE ,△CEF ,△DGH ,△EHI ,△FIJ 都可以由△ABC 平移得到.2.【答案】B ;【解析】解:∵在三角形ABC 中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB ﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C +∠ACB′=∠B+∠ACB′=60°.故选B .3.【答案】D ;【解析】(1)摆动的钟摆,方向发生改变,不属于平移;(2)在笔直的公路上行驶的汽车沿直线运动,属于平移;(3)随风摆动的旗帜,形状发生改变,不属于平移;(4)摇动的大绳,方向发生改变,不属于平移;(5)汽车玻璃上雨刷的运动,方向发生改变,不属于平移;(6)从楼顶自由落下的球沿直线运动,属于平移.∴可以看成平移的是(2)(6).故选D.4.【答案】B ;【解析】连接对应点111,,PP MM NN ,做三条线段的垂直平分线,交点即是旋转中心.5.【答案】B ;6.【答案】B ;【解析】因为△BCE 旋转90°得到△DCF ,所以EC=CF,∠CFD=∠CEB=60°,即∠EFC=45°,所以∠EFD=60°-45°=15°.二、填空题7.【答案】①③④⑤⑥;【解析】解:由图形平移的性质,知图形在平移时,其特征不发生改变的有①③④⑤⑥.8.【答案】ABC , A ′B ′C ′,平行,平行;【解析】平移的性质.9.【答案】42;【解析】解:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.10.【答案】120°;【解析】2036012060⨯︒=︒.11.【答案】105°;【解析】∠BAC′=∠BAB′+∠B′AC′=60°+45°=105°.12.【答案】等边三角形;【解析】因为△ABC旋转60°得到△''ABC,则AB= AB′,∠BAB′=60°,所以是等边三角形.三、解答题13.【解析】解:平行的线段:AE∥BG∥DH,相等的线段:AE=BF=OG=DH.14.【解析】解:(1)如图1所示过点B作BC⊥OA,垂足为C.∵△OAB为等边三角形,∴∠BOC=60°,OB=BA.∵OB=AB,BC⊥OA,∴OC=CA=1.在Rt△OBC中,,∴BC=.∴点B的坐标为(1,).(2)如图2所示:∵点B1与点A1的纵坐标相同,∴A1B1∥OA.①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B的坐标为(1,2),∴点B1的坐标为(﹣1,).如图3所示:由旋转的性质可知:点B1的坐标为(1,﹣).∴点B1的坐标为(﹣1,)或(1,﹣).15.【解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).。
《生活中的平移》《简单的平移作图》测试题

_导 学 生
.
将 图形
:
0 0
,
,
.
A B
.
向右平 移
2
个单位
.
向右平 移 向左 平移 向左 平 移
、
8
8 2 14
个单位
c
D
.
个单位
个单位
、
, 7
, 7 \
|
.
、
l
三
解 答题 (
,
15
、
16
题 每题
10
分
,
17
题
11
分
.
共
4 1 4
分 )
,
14
如图
小船经 过平移
,
到 了新 的位
图4
钏 引 副 刻
3
,
9
.
R t △ 4 B C
,
沿 直 角边
D E F
B C
所 在
)
的 直 线 向右 平 移 错 误 的是
A B C
D
.
得 到 △
下 列 结 论 中 (
△ A 曰C
[
竺
=
A DE F
。
盐
图 3
.
D E E
=
9 0
.
A C
.
D F
E C
.
=
C F
10
△A B C
沿 某射线
X Y
的方 向平 移
2 5
.
5
12
. .
个圆 )
么 B CE
=
A
:
10
.
.
A
一
小学数学平移练习题

小学数学平移练习题练习题一:图形平移1. 小明用方格纸做了一个图形,如图所示。
请你将这个图形向右平移两个单位,并用方格纸绘制平移后的图形。
2. 用已知线段作为边,分别绘制一个正方形、一个长方形和一个菱形。
然后将这些图形分别向下平移三个单位,并用方格纸绘制平移后的图形。
3. 小红用三角尺绘制了一个直角三角形ABC,其中∠ABC为直角。
请你将这个三角形向左平移四个单位,并用三角尺绘制平移后的三角形。
练习题二:图形的翻转1. 小明用方格纸做了一个图形,如图所示。
请你将这个图形以原点为对称中心进行翻转,并用方格纸绘制翻转后的图形。
2. 用已知线段作为边,分别绘制一个正方形、一个长方形和一个菱形。
然后将这些图形以原点为对称中心进行翻转,并用方格纸绘制翻转后的图形。
3. 小红用三角尺绘制了一个等腰直角三角形,其中∠ABC为直角,AB=BC。
请你将这个三角形以AB为对称轴进行翻转,并用三角尺绘制翻转后的三角形。
练习题三:图形的旋转1. 小明用方格纸做了一个图形,如图所示。
请你将这个图形以原点为中心逆时针旋转90°,并用方格纸绘制旋转后的图形。
2. 用已知线段作为边,分别绘制一个正方形、一个长方形和一个菱形。
然后将这些图形以原点为中心逆时针旋转180°,并用方格纸绘制旋转后的图形。
3. 小红用三角尺绘制了一个等边三角形ABC。
请你将这个三角形以顶点B为中心逆时针旋转60°,并用三角尺绘制旋转后的三角形。
练习题四:坐标系中的平移1. 在坐标系中,点A(-3, 2)、B(-1, 5)、C(0, -1)、D(-4, -3)分别表示平面上的四个点。
请你将这些点向右平移5个单位,并写出平移后的坐标。
2. 在坐标系中,点E(2, 1)、F(4, -3)、G(5, 0)、H(1, -2)分别表示平面上的四个点。
请你将这些点向左平移3个单位,并写出平移后的坐标。
3. 在坐标系中,点I(0, 3)、J(2, 0)、K(3, 1)、L(-1, -2)分别表示平面上的四个点。
专题8几何图形变化—8.1平移之概念性质-2021届鲁教版(五四制)九年级数学专题复习训练

一、平移(1)平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点。
(2)平移的性质:①对应点的连线平行(或共线)且相等②对应线段平行(或共线)且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形(四个端点共线除外)③对应角相等,对应角两边分别平行,且方向一致。
(3)用坐标表示平移:如果把一个图形各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形向右(或向左)平移a个单位长;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形向上(或向下)平移a个单位长。
(从坐标来讲:向正方向平移为加,逆方向平移为减)(4)平移的两个要素:平移方向、平移距离(5)平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法。
类型一:平移的坐标特点【经典例题1】如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,3),(4,0),把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,3),则点E的坐标为.【解析】由题意知:A,B两点的横坐标差为4-3=1,由平移性质可知:E,D两点横坐标之差与B,A两点横坐标之差相等,设E点横坐标为a,∴a-6=1,∴a=7,∴E点坐标为(7,0).练习1-1(2020四川成都)在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是()A.(3,0)B.(1,2)C.(5,2)D.(3,4)练习1-2 (2020上海)如果存在一条线把一个图形分割成两部分,使其中一个部分沿某个方向平移后能与另一部分重合,那么我们把这个图形叫做平移重合图形,下列图形中,平移重合图形是()A. 平行四边形B. 等腰梯形C. 正六边形D. 圆【解析】过平行四边形对边中点的直线,把平行四边形分成两部分,将其中一部分平移后能与另一部分重合,在等腰梯形、正六边形、圆中不存在这样的直线.故选A.练习1-3(2020·台州中考)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为DA.(0,0) B.(1,2) C.(1,3) D.(3,1)(第1题图)练习1-4(2020河南)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0),将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A. (32,2) B. (2,2) C. (114,2) D. (4,2)【解析】如解图,∵A(-2,6),B(7,0),∴C(-2,0),OC=2,即正方形OCDE的边长为2,∴D1E1=E1O1=O1C1=2,BC=9,AC=6,在Rt△ACB中,tan∠ABC=ACBC=69=23,∴O1B=O1E1tan∠ABC=3.∴O1O=OB-O1B=7-3=4,∴ED1=OC1=4-2=2,∴点D1的坐标为(2,2),即当点E落在AB边上时,点D的坐标为(2,2).所以此题选B练习1-5如图,A,B两点的坐标分别为(-2,0),(0,1),将线段AB平移到线段A1B1的位置.若A1(b,1),B1(-1,a),则b-a=________.练习1-6(2020上海)(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是()A.平行四边形B.等腰梯形C.正六边形D.圆【解析】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.∵四边形ABEF向右平移可以与四边形EFCD重合,∴平行四边形ABCD是平移重合图形,故选:A.练习1-7在直角坐标系中,△ABC的三个顶点都在边长为1的小正方形的格点上,△ABC关于y轴的对称图形为△A1B1C1,以△ABC与△A1B1C1组成一个基本图形,不断复制与平移这个基本图形,得到如图所示的图形(1)观察以上图形并填写下列各点坐标:A1(,),A2(,),...,A m(,)(m 为正整数)(2)若△A m B n C k是这组图形中的一个三角形,当n=2019时,则m= ,k= . 【解析】(1)2,2;6,2;4m-2,2(2)1010,1009类型二:平移的简单计算【经典例题2】(2020青海省卷)如图,将周长为8的△ABC沿BC边向右平移2个单位,得到△DEF,则四边形ABFD的周长为________.【解析】∵△ABC沿BC边向右平移2个单位,得到△DEF,∴AD=CF=2,AC=DF,∵△ABC的周长为8,∴AB+BC+AC=8,∴AB+BC+DF=8,∴四边形ABFD的周长=AB+BC+CF+DF+AD=C△ABC+AD+CF=8+2+2=12.练习2-1如图,在△ABC中,已知∠ACB=90°,∠BAC=30°,∠ACB的平分线与AB相交于点P,等腰直角△DEF的顶点D在射线CP上,且EF∥AB,连接PE,PF。
二次函数平移旋转总归纳及二次函数典型习题

二次函数平移旋转总归纳及二次函数典型习题二次函数平移旋转总归纳及二次函数典型习题二次函数图像平移、旋转总归纳一、二次函数的图象的平移,先作出二次函数y=2x2+1的图象①向上平移3个单位,所得图象的函数表达式是:y=2x2+4;②向下平移4个单位,所得图象的函数表达式是:y=2x2-3;③向左平移5个单位,所得图象的函数表达式是:y=2(x+5)2+1;④向右平移6个单位,所得图象的函数表达式是:y=2(x-6)2+1.由此可以归纳二次函数y=ax2+c向上平移m个单位,所得图象的函数表达式是:y=ax2+c+m;向下平移m 个单位,所得图象的函数表达式是:y=ax+c-m;向左平移n个单位,所得图象的函数表达式是:y=a(x+n)2+c;向右平移n个单位,所得图象的函数表达式是:y=a(x-n)2+c,二、二次函数的图象的翻折在一张纸上作出二次函数y=x2-2x-3的图象,⑤沿x轴把这张纸对折,所得图象的函数表达式是:y=x2+2x-3.⑥沿y 轴把这张纸对折,所得图象的函数表达式是:y=x2+2x-3由此可以归纳二次函数y=ax2+bx+c若沿x轴翻折,所得图象的函数表达式是:y=-ax2-bx-c,若沿y轴翻折,所得图象的函数表达式是:y=ax2-bx+c三、二次函数的图象的旋转,将二次函数y=-2x+x-1的图象,绕原点旋转180°,所得图象的函数表达式是y=221221x-x+1;由此可以归纳二次函数y=ax2+bx+c的图象绕原点旋转180°,所得图象的函数表达式是y=-ax2-bx-c.(备用图如下)1、(202*桂林)在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=-(x+1)2+2 B.y=-(x-1)2+4C.y=-(x-1)2+2D.y=-(x+1)2+42、(202*浙江宁波中考)把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为________.3、飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数关系式是s=60t-1.5t2,飞机着陆后滑行的最远距离是()A.600m B.300mC.1200mD.400m4、(202*襄阳)某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x2,该型号飞机着陆后滑行m才能停下来.5、已知二次函数yax2bxc的图象与x轴交于点(-2,0),(x1,0)且1<x1<2,与y轴正半轴的交点在点(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0,④2a-b+l>0.其中的有正确的结论是(填写序号)__________.6、已知二次函数y=ax2(a≥1)的图像上两点A、B的横坐标分别是-1、2,点O是坐标原点,如果△AOB是直角三角形,则△OAB的周长为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《2 简单的平移作图》练习
一、目标导航
知识目标:
①能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
②经历对图形进行观察、分析、欣赏和动手操作、画图等过程,掌握有关画图的操作技能,学会平移作图,掌握作图技巧.
能力目标:
①对组合图形要找到一个或者几个“基本图案”,逐步探索图形之间的平移关系,并能通过对“基本图案”的平移,复制所求的图形;
②通过对图形的观察、分析、对比平移前后的图形特征,动手操作,发展动手能力.
情感目标:
经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识.
二、基础过关
1.图形平移具有以下特征:;;.
2.平移作图的关键是;图形平移的是有要求的.
3.将△ABC平移到△DEF,不能确定△DEF位置的是()
A.已知平移的方向
B.已知点A的对应点D的位置
C.已知边AB的对应边DE的位置
D.已知∠A的对应角∠D的位置
4.如图,线段CD是线段AB平移后的图形,C是A的对应点,作出线段AB.
A
C
D
A
B C
D
4题图 5题图
5.如图,经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.6.如图,经过平移,小船上的点A移到了点B,作出平移后的小船.
B
A
7.如图,正方形ABCD 的对角线交点O 移到了O ′的位置,你能做出此正方形平移后的图形吗?
A B C
D O
O'
8.如图,方格中有一条美丽可爱的小鱼.
(1)若方格边长为1,则一条小鱼的面积为多少?
(2)画出小鱼向左平移3格后的图形.
9.如图,在长方形ABCD 中,AB =10cm ,BC =6cm ,试问将长方形ABCD 沿着AB 方向平移多少才能使平移后的长方形与原来的长方形ABCD 重叠部分的面积为24cm 2?
A B C D D' C'
B' A'
10.小文和丽丽在一起做拼图游戏,他们用“○、△”构成了如下的一些图案:
观察以上图案
(1)这些图案有什么特点?
(2)它们可以通过一个“基本图案”经过怎样的平移而形成?
(3)在平移的过程中,“基本图案”的大小、形状、位置是否发生了变化?试解释其中的道理.请你也利用此“基本图案”构造一些图案,并与同学交流.
三、能力提升
11.经过平移,△ABC 的边AB 移到了A ′B ′,作出平移后的三角形,你能给出几种作法?你认为哪种方法更简便?请用其中一种方法作出平移后的三角形.
B'
A'
A
B C
12.如图,已知等腰Rt △ABC 中,∠C =90°,BC =AC =4,现将△ABC 沿CB 方向平移到△A ′B ′C ′的位置,若平移距离为3,求△ABC 与△A ′B ′C ′的重叠部分的面积.
C'B' A'
A B C
13.如图,在四边形ABCD 中,AD ∥BC ,AC 与BD 互相垂直,画出线段AC 平移后的线段,其平移的方向为射线AD 的方向,平移的距离为线段AD 的长,平移后所得到的线段与BC 的延长线相交于E ,请你判断以下结论是否正确,并简要说明理由.
①AC =DE ;②BE =AD +BC ;③∠BDE =90º;④BE =2CE
A
B C
D
O
14.如图,利用平移知识求阴影部分的面积.
5
10
15.生活中有许多以圆为“基本图案”构成的美丽图形,请你也以一个圆为“基本图案”,结合生活实际,利用平移设计一个图案,并与同学交流你要表达的思想.
四、聚沙成塔
如图所示有两个村庄A和B被一条河(两岸平行)隔开,现要架一座桥(桥与河岸垂直),请你利用所学的平移知识设计一种方案,使由A到B的路程最短.
A
B。