回归分析法过程计算表

合集下载

回归分析法计算公式

回归分析法计算公式

回归分析法计算公式
回归分析法是统计分析中很重要的一个分析方法,它可以有效地帮助我们从一组数据中提取信息,用于建立特定问题的模型。

本文旨在介绍回归分析法的计算公式,并介绍其应用。

一、回归分析法的计算公式
回归分析法的计算公式主要是求解一元线性回归模型的最小二
乘法(Least Squares)估计量。

一元线性回归模型的估计量可以表示为:
Y=bX+a
其中Y是被解释变量,X是解释变量,a和b是需要求解的参数。

其求解最小二乘估计量的计算公式分别是:
a=(∑(x-x)(y-y))/(∑(x-x)^2)
b=∑(y-y)/∑(x-x)^2
式中x和y分别代表X和Y的均值,∑表示所有数据集上的累加之和。

二、回归分析法的应用
回归分析法的应用十分广泛,由于它能够比较有效地建立模型,因此在多领域都得到了广泛的应用。

例如,经济学家常将回归分析法应用于研究经济变量之间的关系,而市场营销人员则将其用于研究和预测消费者对产品的反应等。

此外,社会科学研究者也经常会用回归分析法来研究社会现象。

三、结论
从上文可以看出,回归分析法是一种用于求解最小二乘估计量的统计分析方法,此外,它也在多领域得到广泛的应用。

因此,为了熟练掌握回归分析法,需要不断练习使用,以扩大其应用领域,发挥其价值。

回归分析

回归分析

回归系数,因此失去两个自由度。 回归系数,因此失去两个自由度。

dfR=dfT-dfE=1
⑷.计算方差
♦ ♦
回归方差 残差方差
SS R MS R = df R
SS E MS E = df E
⑷.计算F ⑷.计算F值
MS R F= MS E
⑹.列回归方程的方差分析表
表21-1 回归方程方差分析表
变异 来源 回归 残差 总变异 平方和 自由度 方差 F 值 概率

β=0 H0:β=0 H1:β≠0

统计量计算
ΣX 2 − (ΣX ) / n bYX t= = bYX ⋅ SEb MS E
2
50520 − 710 2 / 10 = 1.22 × = 3.542 13.047
二.一元线性回归方程的评价── 二.一元线性回归方程的评价── 测定系数

一元线性回归方程中, 一元线性回归方程中,总平方和等于回归平
2 2
SS R = SST
(21.5)
r2
X的变异
Y的变异
图21-1 21-
测定系数示意图
图21-2 21-
测定系数示意图

例3:10名学生初一对初二年级数学成 10名学生初一对初二年级数学成
绩回归方程方差分析计算中得到: 绩回归方程方差分析计算中得到:
♦ SST=268.1

2
SSR=163.724
数学成绩估计初二数学成绩的回归方程; 数学成绩估计初二数学成绩的回归方程;将另一 学生的初一数学成绩代入方程, 学生的初一数学成绩代入方程,估计其初二成绩
Y = 1.22 X − 14.32 = 1.22 × 76 − 14.32 = 78.4

回归分析

回归分析

回归分析摘要回归分析是应用极其广泛的数据分析方法之一。

它基于观测数据建立变量间适当的相关关系,以分析数据的内在规律,并用于预报、控制等问题。

本次我们选取27名糖尿病人的四种血液成分测量值,依次选用线性回归模型、逐步回归模型和线性Logistic 回归模型来进行数据分析。

关键字:多元线性回归 逐步回归 Logistic 回归题目:27名糖尿病人的血清总胆固醇、甘油三酯、空腹胰岛素、糖化血红蛋白、空腹血糖的测量值于表1中,建立三种回归模型进行分析血糖和其他指标的关系。

表1序 号 总胆 固醇 甘油 三酯 胰岛 素 糖化血 红蛋白 血糖 序 号 总胆 固醇 甘油 三酯 胰岛 素 糖化血 红蛋白 血糖X1 X2 X3 X4 Y X1 X2 X3 X4 Y5 1 5.68 1.90 4.53 8.2 11.2 15 6.13 2.06 10.35 10.5 10.9 2 3.79 1.64 7.32 6.9 8.8 16 5.71 1.78 8.53 8.0 10.1 3 6.02 3.56 6.95 10.8 12.3 17 6.4 2.4 4.53 10.3 14.8 4 4.85 1.07 5.88 8.3 11.6 18 6.06 3.67 12.79 7.1 9.1 5 4.60 2.32 4.05 7.5 13.4 19 5.09 1.03 2.53 8.9 10.8 6 6.05 0.64 1.42 13.6 18.3 20 6.13 1.71 5.28 9.9 10.2 7 4.90 8.50 12.60 8.5 11.1 21 5.78 3.36 2.96 8.0 13.6 8 7.08 3.00 6.75 11.5 12.1 22 5.43 1.13 4.31 11.3 14.9 9 3.85 2.11 16.28 7.9 9.6 23 6.50 6.21 3.47 12.3 16.0 10 4.65 0.63 6.59 7.1 8.4 24 7.98 7.92 3.37 9.8 13.2 11 4.59 1.97 3.61 8.7 9.3 25 11.54 10.89 1.20 10.5 20.0 12 4.29 1.97 6.61 7.8 10.6 26 5.84 0.92 8.61 6.4 13.3 13 7.79 1.93 7.87 9.9 8.4 27 3.84 1.20 6.45 9.6 10.4 14 6.19 1.18 1.42 6.9 9.6一.多元线性回归分析解:设Y 与 1X ,2X ,3X 和4X 的观测值之间满足关系i i i i i i x x x x y εβββββ+++++=443322110 27,...,2,1=i ,其中)27,...,2,1(=i i ε相互独立,均服从正态分布).,0(2σN 利用SAS 系统中的PROC REG 过程可得如下分析结果。

第17章 回归分析

第17章 回归分析

§17.1 相关关系与相关系数17.1.1 相关关系17.1.2 相关系数17.1.3 相关系数r 的性质与示意图17.1.4 相关系数的检验§17.2 一元线性回归17.2.1 模型17.2.2 回归系数的最小二乘估计17.2.3 计算步骤17.2.4 回归方程的显著性检验17.2.5 利用回归方程作预测17.2.6 利用回归方程作控制§17.3 可化为一元线性回归的非线性回归17.3.1 问题17.3.2 确定曲线回归方程形式17.3.3 曲线回归方程中参数的估计17.3.4 曲线回归方程的比较§17.4 多元线性回归17.4.1 问题与模型17.4.2 回归系数的最小二乘估计17.4.3 回归方程的显著性检验17.4.4 对回归系数的显著性检验17.4.5 利用回归方程进行预测17.4.6 统计软件的应用§17.1 相关关系与相关系数17.1.1 相关关系在实际工作中,我们经常与变量打交道,它们是处在一个共同体中的若干个变量。

变量间常见的关系有两类:(1)确定性关系:譬如正方形的面积与边长之间有关系:S=a2,电路中有欧姆定律V=IR等。

这些变量间的关系完全是已知的,可以用函数y=f(x)来表示,x(可以是向量)给定后,y的值就唯一确定了。

(2)相关关系:变量间有关系,但是不能用函数来表示,譬如:例17.1.1 由专业知识知道,合金的强度y(×107Pa)与合金中碳的含量x(%)有关。

为了生产强度满足用户需要的合金,在冶炼时如何控制碳的含量?如果在冶炼过程中通过化验得12组数据,列于下表中:表17.1.1 合金钢的强度与钢中的碳含量数据序号i x i(%) y(×107Pa)1 0.10 42.02 0.11 43.03 0.12 45.04 0.13 45.05 0.14 45.06 0.15 47.57 0.16 49.08 0.17 53.09 0.18 50.010 0.20 55.011 0.21 55.012 0.23 60.0为解决这类问题就需要研究两个变量间的关系。

多元统计与程序设计回归分析流程图

多元统计与程序设计回归分析流程图

多元统计与程序设计回归分析流程图下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!多元统计与程序设计:回归分析的流程图解析在数据科学和统计学中,回归分析是一种广泛使用的方法,用于研究两个或多个变量之间的关系。

用EXCEL做回归分析的详细步骤

用EXCEL做回归分析的详细步骤

一、什么是回归分析法“回归分析”是解析“注目变量”和“因于变量”并明确两者关系的统计方法。

此时,我们把因子变量称为“说明变量”,把注目变量称为“目标变量址(被说明变量)”。

清楚了回归分析的目的后,下面我们以回归分析预测法的步骤来说明什么是回归分析法:回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。

只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。

因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。

进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。

二、回归分析的目的回归分析的目的大致可分为两种:第一,“预测”。

预测目标变量,求解目标变量y和说明变量(x1,x2,…)的方程。

y=a0+b1x1+b2x2+…+bkxk+误差(方程A)把方程A叫做(多元)回归方程或者(多元)回归模型。

a0是y截距,b1,b2,…,bk是回归系数。

当k=l 时,只有1个说明变量,叫做一元回归方程。

根据最小平方法求解最小误差平方和,非求出y截距和回归系数。

若求解回归方程.分別代入x1,x2,…xk的数值,预测y的值。

第二,“因子分析”。

因子分析是根据回归分析结果,得出各个自变量对目标变量产生的影响,因此,需要求出各个自变量的影响程度。

希望初学者在阅读接下来的文章之前,首先学习一元回归分析、相关分析、多元回归分析、数量化理论I 等知识。

根据最小平方法,使用Excel求解y=a+bx中的a和b。

那么什么是最小平方法?分别从散点图的各个数据标记点,做一条平行于y轴的平行线,相交于图中直线(如下图)平行线的长度在统计学中叫做“误差”或者‘残差”。

误差(残差)是指分析结果的运算值和实际值之间的差。

接这,求平行线长度曲平方值。

可以把平方值看做边长等于平行线长度的正方形面积(如下图)最后,求解所有正方形面积之和。

回 归 分 析

回 归 分 析
离差及离差分解:y -y =(y -yˆ)+(yˆ -y)
总的离差平方和及其分解:
(y -y)2=([ y -yˆ)+(yˆ -y)]2
此项为0
=(y -yˆ)2+(yˆ -y)2+2(y -yˆ)(yˆ -y)
(y -y)2 =(y -yˆ)2+(yˆ -y)2
回归分析
三、拟合优度和估计标准误差 1、离差的分解
表8.3 企业研发费用与利润数据表
解:为了估计参数a、b的值,进行如下表计算:
表8.4 参数估计计算过程表
回归分析
【例8.3】
根据最小平方和原理得到的参数a、b求解公式,计算得到
截距项a和斜率b的值为:
b
n xy- x y n x2-( x)2
6× 1 000-30× 180 6× 200-302
参数的正规方程组或标准方程组,如下:
y na+b x xy a x+b x2
解此联立方程组,便可以求得参数a、b的解为:
b
n xy - x y n x2-( x)2
a
y -b x
n
n
y-bx
回归分析
【例8.3】 某地区6个企业研发费用(x)和利润(y)资料 如表8.4所示,求y与x线性回归方程。
R2 SSR 1-SSE SST SST
可决系数用于衡量回归直线对样本数据拟合的优越程度。可
决系数是一个描述性非负统计量,0 ≤ R2 ≤1 ,R2 越大,即线性 回归直线拟合的效果越好。
在例8.3中,
SST=
SSR=
(yi-y)2 =
y2-1( n
(yˆ -y)2=b2Lxx=22 ×
y)2=5
方程为 yˆ =20+2x , 那么,回归系数是否显著大于零?

线性回归计算方法及公式

线性回归计算方法及公式

• 多元线性回归方程的评价
评价回归方程的优劣、好坏可用确定系 数R2和剩余标准差Sy,x1,2..p 。 Sy,x1,2. p =SQRT(SS误差/n-p-1) 如用于预测,重要的是组外回代结果。
回归方程中自变量的选择
• 多元线性回归方程中并非自变量越多越 好,原因是自变量越多剩余标准差可能 变大;同时也增加收集资料的难度。故 需寻求“最佳”回归方程,逐步回归分 析是寻求“较佳”回归方程的一种方法。
• 逐步引入-剔除法(stepwise selection) 先规定两个阀值F引入和F剔除,当候选变 量中最大F值>=F引入时,引入相应变量; 已进入方程的变量最小F<=F剔除时,剔 除相应变量。如此交替进行直到无引入 和无剔除为止。( 因素分析 • 调整混杂因素的作用 • 统计预测
2、偏回归系数的显著性检验:目的是检验回 归模型中自变量的系数是否为零,等价于总 体优势比OR是否为零。 H0:B等于零 H1:B不等于零 A、wald检验: B、Score test: C、likelihood ratio test(wald chi-square test):
回归模型中自变量的筛选
logistic回归模型参数的意义
优势比(odds ratio, OR):暴露人群发病优势与非暴露 人群发病优势之比。
P(1) / [1-p(1)] OR= ——————— P(0) / [1-p(0)]
Ln(oR)=logit[p(1)]-logit[p(0)]=(B0+B×1) -(B0+B×0)=B 可见 B 是暴露剂量增加一个单位所引起的对数优势的增 量,或单位暴露剂量与零剂量死亡优势比的对数。eB就 是两剂量死亡优势比。常数项B0是所有变量 X等于零时 事件发生优势的对数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档