线性回归方程公式证明

合集下载

简单回归分析

简单回归分析

一、线性回归分析若是自变数与依变数都是一个,且Y 和X 呈线性关系,这就称为一元线性回归。

例如,以X 表示小麦每667m 2有效穗数,Y 表示小麦每667m 2的产量,有效穗数即属于自变数,产量即属于依变数。

在这种情形下,可求出产量依有效穗数而变更的线性回归方程。

在另一种情形下,两类变数是平行关系很难分出哪个是自变数,哪个是依变数。

例如,大豆脂肪含量与蛋白质含量的关系,依照需要确信求脂肪含量依蛋白质含量而变更的回归方程,或求蛋白质含量依脂肪含量而变更的回归方程。

回归分析要解决的问题要紧有四个方面:一是依如实验观看值成立适当的回归方程;二是查验回归方程是不是适用,或对回归方程中的回归系数的进行估量;三是对未知参数进行假设考试;四是利用成立起的方程进行预测和操纵。

(一)成立线性回归方程用来归纳两类变数互变关系的线性方程称为线性回归方程。

若是两个变数在散点图上呈线性,其数量关系可能用一个线性方程来表示。

这一方程的通式为:上式叫做y 依x 的直线回归。

其中x 是自变数,y ˆ是依变数y 的估量值,a 是x =0时的y ˆ值,即回归直线在y 轴上的截距,称为回归截距,b 是x 每增加一个单位时,y 将平均地增加(b >0时)或减少(b <0时) b 个单位数,称为回归系数或斜率(regression coefficient or slope )。

要使 能够最好地代表Y 和X 在数量上的互变关系,依照最小平方式原理,必需使将Q 看成两个变数a 与b 的函数,应该选择a 与b ,使Q 取得最小值,必需求Q 对a ,b 的一阶偏导数,且令其等于零,即得:()()⎩⎨⎧∑=∑+∑∑=∑+212xyx b x a yx b an ()()∑∑=--=-=nn Q bx a y yy Q 1min212ˆbx a y +=ˆ()1.7ˆbx a y+=由上述(1)解得:将()代入(2),那么得:()的分子 是x 的离均差与y 的离均差乘积总和,简称乘积和(sum of products ),可记为SP ,分母是x 的离均差平方和,也可记为SS x 。

高中数学:线性回归方程

高中数学:线性回归方程

高中数学:线性回归方程线性回归是利用数理统计中的回归分析来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法,是变量间的相关关系中最重要的一部分,主要考查概率与统计知识,考察学生的阅读能力、数据处理能力及运算能力,题目难度中等,应用广泛.一线性回归方程公式二规律总结(3)回归分析是处理变量相关关系的一种数学方法.主要用来解决:①确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;②根据一组观察值,预测变量的取值及判断变量取值的变化趋势;③求线性回归方程.线性回归方程的求法1四线性回归方程的应用例2例3例4例5例6推导2个样本点的线性回归方程例7 设有两个点A(x1,y1),B(x2,y2),用最小二乘法推导其线性回归方程并进行分析。

解:由最小二乘法,设,则样本点到该直线的“距离之和”为从而可知:当时,b有最小值。

将代入“距离和”计算式中,视其为关于b的二次函数,再用配方法,可知:此时直线方程为:设AB中点为M,则上述线性回归方程为可以看出,由两个样本点推导的线性回归方程即为过这两点的直线方程。

这和我们的认识是一致的:对两个样本点,最好的拟合直线就是过这两点的直线。

上面我们是用最小二乘法对有两个样本点的线性回归直线方程进行了直接推导,主要是分别对关于a和b的二次函数进行研究,由配方法求其最值及所需条件。

实际上,由线性回归系数计算公式:可得到线性回归方程为设AB中点为M,则上述线性回归方程为。

求回归直线方程例8 在硝酸钠的溶解试验中,测得在不同温度下,溶解于100份水中的硝酸钠份数的数据如下0 4 10 15 21 29 36 51 6866.7 71.0 76.3 80.6 85.7 92.9 99.4 113.6 125.1 描出散点图并求其回归直线方程.解:建立坐标系,绘出散点图如下:由散点图可以看出:两组数据呈线性相关性。

设回归直线方程为:由回归系数计算公式:可求得:b=0.87,a=67.52,从而回归直线方程为:y=0.87x+67.52。

线 性 回 归 方 程 推 导

线 性 回 归 方 程 推 导

线性回归——正规方程推导过程线性回归——正规方程推导过程我们知道线性回归中除了利用梯度下降算法来求最优解之外,还可以通过正规方程的形式来求解。

首先看到我们的线性回归模型:f(xi)=wTxif(x_i)=w^Tx_if(xi?)=wTxi?其中w=(w0w1.wn)w=begin{pmatrix}w_0w_1.w_nend{pmatrix}w=?w0?w1?. wn?,xi=(x0x1.xn)x_i=begin{pmatrix}x_0x_1.x_nend{pmatrix}xi?=?x0 x1.xn,m表示样本数,n是特征数。

然后我们的代价函数(这里使用均方误差):J(w)=∑i=1m(f(xi)?yi)2J(w)=sum_{i=1}^m(f(x_i)-y_i)^2J(w) =i=1∑m?(f(xi?)?yi?)2接着把我的代价函数写成向量的形式:J(w)=(Xw?y)T(Xw?y)J(w)=(Xw-y)^T(Xw-y)J(w)=(Xw?y)T(Xw?y) 其中X=(1x11x12?x1n1x21x22?x2n?1xm1xm2?xmn)X=begin{pmatrix}1 x_{11} x_{12} cdots x_{1n}1 x_{21} x_{22} cdots x_{2n}vdots vdots vdots ddots vdots1 x_{m1} x_{m2} cdots x_{mn}end{pmatrix}X=?11?1?x11?x21?xm1?x12?x22?xm2?x1n?x2n?xmn?最后我们对w进行求导,等于0,即求出最优解。

在求导之前,先补充一下线性代数中矩阵的知识:1.左分配率:A(B+C)=AB+ACA(B+C) = AB+ACA(B+C)=AB+AC;右分配率:(B+C)A=BA+CA(B+C)A = BA + CA(B+C)A=BA+CA2.转置和逆:(AT)?1=(A?1)T(A^T)^{-1}=(A^{-1})^T(AT)?1=(A?1)T,(AT)T=A(A^T)^T=A(AT)T=A3.矩阵转置的运算规律:(A+B)T=AT+BT(A+B)^T=A^T+B^T(A+B)T=AT+BT;(AB)T=BTAT(AB)^T=B^TA^T(AB)T=BTAT然后介绍一下常用的矩阵求导公式:1.δXTAXδX=(A+AT)Xfrac{delta X^TAX}{delta X}=(A+A^T)XδXδXTAX?=(A+AT)X2.δAXδX=ATfrac{delta AX}{delta X}=A^TδXδAX?=AT3.δXTAδX=Afrac{delta X^TA}{delta X}=AδXδXTA?=A然后我们来看一下求导的过程:1.展开原函数,利用上面的定理J(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw?wTXTy?yTXw+yT yJ(w)=(Xw-y)^T(Xw-y)=((Xw)^T-y^T)(Xw-y)=w^TX^TXw-w^TX^Ty-y^TXw+y^TyJ(w)=(Xw?y)T(Xw?y)=((Xw)T?yT)(Xw?y)=wTXTXw?wTXTy?yT Xw+yTy2.求导,化简得,δJ(w)δw=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTXw?2XTy=0?XTXw=X Ty?w=(XXT)?1XTyfrac{delta J(w)}{delta w}=(X^TX+(X^TX)^T)w-X^Ty-(y^TX)^T=0implies2X^TXw-2X^Ty=0implies X^TXw=X^Tyimplies w=(XX^T)^{-1}X^TyδwδJ(w)?=(XTX+(XTX)T)w?XTy?(yTX)T=0?2XTX w?2XTy=0?XTXw=XTy?w=(XXT)?1XTy最后补充一下关于矩阵求导的一些知识,不懂可以查阅:矩阵求导、几种重要的矩阵及常用的矩阵求导公式这次接着一元线性回归继续介绍多元线性回归,同样还是参靠周志华老师的《机器学习》,把其中我一开始学习时花了较大精力弄通的推导环节详细叙述一下。

线性回归方程lnx公式

线性回归方程lnx公式

线性回归方程lnx公式b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。

线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。

线性回归方程公式求法第一:用所给样本求出两个相关变量的(算术)平均值:x_=(x1+x2+x3+...+xn)/ny_=(y1+y2+y3+...+yn)/n第二:分别计算分子和分母:(两个公式任选其一)分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2第三:计算b:b=分子/分母用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。

先求x,y的平均值X,Y再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)后把x,y的平均数X,Y代入a=Y-bX求出a并代入总的公式y=bx+a得到线性回归方程(X为xi的平均数,Y为yi的平均数)线性回归线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,应用十分广泛。

变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点,将散布在某一直线周围。

因此,可以认为关于的回归函数的类型为线性函数。

分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

直线回归法公式

直线回归法公式

直线回归法公式直线回归法公式1. 简介直线回归法是一种用于建立变量之间线性关系的统计方法。

它通过找到一条最佳拟合直线,以最小化观测值与拟合值之间的误差,来预测因变量的值。

直线回归法广泛应用于经济学、统计学和机器学习等领域。

2. 简单线性回归简单线性回归是直线回归法的最基本形式,用于建立一个自变量和一个因变量之间的线性关系。

其回归方程可以用以下公式表示:y=β0+β1x+ϵ其中,y是因变量,x是自变量,β0和β1是回归系数,ϵ是误差。

举个例子来说明简单线性回归公式的应用。

假设我们要研究一个国家的人口增长与经济增长之间的关系。

我们收集了一系列年份和对应的人口数量和GDP增长率数据。

我们可以使用简单线性回归来建立人口数量(因变量)与GDP增长率(自变量)之间的关系模型。

3. 多元线性回归多元线性回归是在简单线性回归的基础上进一步扩展,用于建立多个自变量和一个因变量之间的线性关系。

其回归方程可以用以下公式表示:y=β0+β1x1+β2x2+⋯+βp x p+ϵ其中,y是因变量,x1,x2,…,x p是自变量,β0,β1,β2,…,βp是回归系数,ϵ是误差。

举个例子来说明多元线性回归公式的应用。

假设我们要研究一个公司的销售额与广告投入、产品价格、季节性因素等变量之间的关系。

我们可以使用多元线性回归来建立销售额(因变量)与广告投入、产品价格、季节性因素等(自变量)之间的关系模型。

4. 最小二乘法最小二乘法是直线回归法中常用的参数估计方法,用于寻找最佳拟合直线。

其原理是最小化观测值与拟合值之间的误差平方和。

最小二乘法通过最小化以下目标函数来估计回归系数:nmin∑(y i−y î)2i=1其中,y i是观测值,y î是拟合值,n是观测值的数量。

使用最小二乘法可以得到最优的回归系数,使得拟合直线与观测值之间的误差最小化。

5. 总结直线回归法是一种用于建立变量之间线性关系的统计方法。

简单线性回归和多元线性回归是直线回归法的两种形式。

回归方程b的两个公式

回归方程b的两个公式

回归方程b的两个公式第一个公式是简单线性回归方程b的公式。

简单线性回归方程b通常用来描述一个自变量对一个因变量的影响。

这个公式是y = bx + a,其中y是因变量,x是自变量,b是斜率,a是截距。

通过简单线性回归方程b,我们可以计算出斜率b的值,从而了解自变量对因变量的影响程度。

斜率b的值越大,自变量对因变量的影响越大,反之亦然。

通过简单线性回归方程b,我们可以进行预测和分析,帮助我们更好地理解数据背后的规律。

第二个公式是多元线性回归方程b的公式。

多元线性回归方程b通常用来描述多个自变量对一个因变量的影响。

这个公式是y = b0 + b1x1 + b2x2 + ... + bnxn,其中y是因变量,x1、x2、...、xn是自变量,b0是截距,b1、b2、...、bn是系数。

通过多元线性回归方程b,我们可以计算出各个自变量的系数,从而了解它们对因变量的影响程度。

不同自变量的系数可以帮助我们理解各个因素对结果的影响,进行因果分析和预测。

回归方程b的两个公式在实际应用中具有广泛的用途。

在统计学中,我们可以利用回归方程b来分析数据之间的关系,进行预测和决策。

例如,在市场营销领域,我们可以利用回归分析来预测产品销量,制定营销策略。

在经济学中,我们可以利用回归分析来研究经济现象,制定政策措施。

回归方程b的两个公式可以帮助我们更好地理解数据,作出科学的决策。

回归方程b的两个公式在统计学和经济学中扮演着重要的角色。

通过这两个公式,我们可以深入分析数据之间的关系,揭示规律,进行预测和决策。

回归分析是一种强大的工具,可以帮助我们更好地理解世界,做出明智的选择。

希望通过学习回归方程b的两个公式,我们可以更好地应用它们,提升自己的分析能力和决策水平。

线 性 回 归 方 程 推 导

线 性 回 归 方 程 推 导

线性回归之最小二乘法线性回归Linear Regression——线性回归是机器学习中有监督机器学习下的一种简单的回归算法。

分为一元线性回归(简单线性回归)和多元线性回归,其中一元线性回归是多元线性回归的一种特殊情况,我们主要讨论多元线性回归如果因变量和自变量之间的关系满足线性关系(自变量的最高幂为一次),那么我们可以用线性回归模型来拟合因变量与自变量之间的关系.简单线性回归的公式如下:y^=ax+b hat y=ax+by^?=ax+b多元线性回归的公式如下:y^=θTx hat y= theta^T x y^?=θTx上式中的θthetaθ为系数矩阵,x为单个多元样本.由训练集中的样本数据来求得系数矩阵,求解的结果就是线性回归模型,预测样本带入x就能获得预测值y^hat yy^?,求解系数矩阵的具体公式接下来会推导.推导过程推导总似然函数假设线性回归公式为y^=θxhat y= theta xy^?=θx.真实值y与预测值y^hat yy^?之间必然有误差?=y^?yepsilon=haty-y?=y^?y,按照中心极限定理(见知识储备),我们可以假定?epsilon?服从正态分布,正态分布的概率密度公式为:ρ(x)=1σ2πe?(x?μ)22σ2rho (x)=frac {1}{sigmasqrt{2pi}}e^{-frac{(x-mu)^2}{2sigma^2}}ρ(x)=σ2π1e2σ2(x?μ)2?为了模型的准确性,我们希望?epsilon?的值越小越好,所以正态分布的期望μmuμ为0.概率函数需要由概率密度函数求积分,计算太复杂,但是概率函数和概率密度函数呈正相关,当概率密度函数求得最大值时概率函数也在此时能得到最大值,因此之后会用概率密度函数代替概率函数做计算.我们就得到了单个样本的误差似然函数(μ=0,σmu=0,sigmaμ=0,σ为某个定值):ρ(?)=1σ2πe?(?0)22σ2rho (epsilon)=frac {1}{sigmasqrt{2pi}}e^{-frac{(epsilon-0)^2}{2sigma^2}}ρ(?)=σ2π?1?e?2σ2(?0)2?而一组样本的误差总似然函数即为:Lθ(?1,?,?m)=f(?1,?,?m∣μ,σ2)L_theta(epsilon_1,cdots,e psilon_m)=f(epsilon_1,cdots,epsilon_m|mu,sigma^2)Lθ?(?1?,? ,?m?)=f(?1?,?,?m?∣μ,σ2)因为我们假定了?epsilon?服从正态分布,也就是说样本之间互相独立,所以我们可以把上式写成连乘的形式:f(?1,?,?m∣μ,σ2)=f(?1∣μ,σ2)?f(?m∣μ,σ2)f(epsilon_1,cdots,epsilon_m|mu,sigma^2)=f(epsilon_1|mu,sigma^2)*cdots *f(epsilon_m|mu,sigma^2)f(?1?,?,?m?∣μ,σ2)=f(?1?∣μ,σ2)?f(?m?∣μ,σ2) Lθ(?1,?,?m)=∏i=1mf(?i∣μ,σ2)=∏i=1m1σ2πe?(?i?0)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1}f(epsilon _i|mu,sigma^2)=prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}Lθ? (?1?,?,?m?)=i=1∏m?f(?i?∣μ,σ2)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?在线性回归中,误差函数可以写为如下形式:i=∣yiy^i∣=∣yiθTxi∣epsilon_i=|y_i-haty_i|=|y_i-theta^Tx_i|?i?=∣yi?y^?i?∣=∣yi?θTxi?∣最后可以得到在正态分布假设下的总似然估计函数如下:Lθ(?1,?,?m)=∏i=1m1σ2πe?(?i?0)22σ2=∏i=1m1σ2πe?(yi θTxi)22σ2L_theta(epsilon_1,cdots,epsilon_m)=prod^m_{i=1} frac{1}{sigmasqrt{2pi}}e^{-frac{(epsilon_i-0)^2}{2sigma^2}}=pro d^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}L θ?(?1?,?,?m?)=i=1∏m?σ2π?1?e?2σ2(?i?0)2?=i=1∏m?σ2π?1 e2σ2(yi?θTxi?)2?推导损失函数按照最大总似然的数学思想(见知识储备),我们可以试着去求总似然的最大值.遇到连乘符号的时候,一般思路是对两边做对数运算(见知识储备),获得对数总似然函数:l(θ)=loge(Lθ(?1,?,?m))=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)l(theta)=log_e(L_theta(epsilon_1,cdots,epsilon_m))=log_ e(prod^m_{i=1}frac{1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) l(θ)=loge?(Lθ?(?1?,?,?m?))=loge?(i=1∏m?σ2π?1?e?2σ2(yi θTxi?)2?)l(θ)=loge(∏i=1m1σ2πe?(yi?θTxi)22σ2)=∑i=1mloge1σ2πexp(?(yi?θTxi)22σ2)=mloge1σ2π?12σ2∑i=1m(yi?θTxi)2l (theta) = log_e(prod^m_{i=1}frac {1}{sigmasqrt{2pi}}e^{-frac{(y_i-theta^Tx_i)^2}{2sigma^2}}) = sum_{i=1}^mlog_efrac {1}{sigmasqrt{2pi}}exp({-frac{(y_i-theta^Tx_i)^2}{2sigma^2} })=mlog_efrac{1}{sigmasqrt{2pi}}-frac{1}{2sigma^2}sum^m_{i= 1}(y^i-theta^Tx^i)^2l(θ)=loge?(i=1∏m?σ2π?1?e?2σ2(yi?θTxi?)2?)=i=1∑m?loge?σ2π?1?exp(?2σ2(yi?θTxi?)2?)=mloge?σ2π?1?2σ21?i=1∑m?(yi?θTxi)2前部分是一个常数,后部分越小那么总似然值越大,后部分则称之为损失函数,则有损失函数的公式J(θ)J(theta)J(θ):J(θ)=12∑i=1m(yi?θTxi)2=12∑i=1m(yi?hθ(xi))2=12∑i=1m (hθ(xi)?yi)2J(theta)=frac{1}{2}sum^m_{i=1}(y^i-theta^Tx^i)^2=frac{1}{2} sum^m_{i=1}(y^i-h_theta(x^i))^2=frac{1}{2}sum^m_{i=1}(h_the ta(x^i)-y^i)^2J(θ)=21?i=1∑m?(yi?θTxi)2=21?i=1∑m?(yi?hθ?(xi))2=21?i=1∑m?(hθ?(xi)?yi)2解析方法求解线性回归要求的总似然最大,需要使得损失函数最小,我们可以对损失函数求导.首先对损失函数做进一步推导:J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)J(theta)=fr ac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1}{2}(Xtheta-y )^T(Xtheta-y)J(θ)=21?i=1∑m?(hθ?(xi)?yi)2=21?(Xθ?y)T(Xθy)注意上式中的X是一组样本形成的样本矩阵,θthetaθ是系数向量,y也是样本真实值形成的矩阵,这一步转换不能理解的话可以试着把12(Xθ?y)T(Xθ?y)frac{1}{2}(Xtheta-y)^T(Xtheta-y)21?(Xθ?y) T(Xθ?y)带入值展开试试.J(θ)=12∑i=1m(hθ(xi)?yi)2=12(Xθ?y)T(Xθ?y)=12((Xθ)T? yT)(Xθ?y)=12(θTXT?yT)(Xθ?y)=12(θTXTXθ?yTXθ?θTXTy+yTy)J(theta)=frac{1}{2}sum^m_{i=1}(h_theta(x^i)-y^i)^2=frac{1} {2}(Xtheta-y)^T(Xtheta-y)=frac{1}{2}((Xtheta)^T-y^T)(Xtheta -y)=frac{1}{2}(theta^TX^T-y^T)(Xtheta-y)=frac{1}{2}(theta^T X^TXtheta-y^TXtheta-theta^TX^Ty+y^Ty)J(θ)=21?i=1∑m?(hθ?( xi)?yi)2=21?(Xθ?y)T(Xθ?y)=21?((Xθ)T?yT)(Xθ?y)=21?(θTXT yT)(Xθ?y)=21?(θTXTXθ?yTXθ?θTXTy+yTy)根据黑塞矩阵可以判断出J(θ)J(theta)J(θ)是凸函数,即J(θ)J(theta)J(θ)的对θthetaθ的导数为零时可以求得J(θ)J(theta)J(θ)的最小值.J(θ)?θ=12(2XTXθ?(yTX)T?XTy)=12(2XTXθ?XTy?XTy)=XTXθXTyfrac{partialJ(theta)}{partialtheta}=frac{1}{2}(2X^TXtheta-(y^TX)^T-X^Ty )=frac{1}{2}(2X^TXtheta-X^Ty-X^Ty)=X^TXtheta-X^Ty?θ?J(θ)? =21?(2XTXθ?(yTX)T?XTy)=21?(2XTXθ?XTy?XTy)=XTXθ?XTy 当上式等于零时可以求得损失函数最小时对应的θthetaθ,即我们最终想要获得的系数矩阵:XTXθ?XTy=0XTXθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1 XTyθ=(XTX)?1XTyX^TXtheta-X^Ty=0X^TXtheta=X^Ty((X^TX)^{-1}X^TX)theta=(X^TX)^{-1}X^TyEtheta=(X^TX)^{-1}X^Tytheta=(X^TX)^{-1}X^TyXTXθ?XTy=0XT Xθ=XTy((XTX)?1XTX)θ=(XTX)?1XTyEθ=(XTX)?1XTyθ=(XTX)?1XTy (顺便附上一元线性回归的系数解析解公式:θ=∑i=1m(xi?x ̄)(yi?y ̄)∑i=1m(xi?x  ̄)2theta=frac{sum^m_{i=1}(x_i-overline{x})(y_i-overline{y} )}{sum^m_{i=1}(x_i-overline{x})^2}θ=∑i=1m?(xi?x)2∑i=1m?( xi?x)(yi?y?)?)简单实现import numpy as npimport matplotlib.pyplot as plt# 随机创建训练集,X中有一列全为'1'作为截距项X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 按上面获得的解析解来求得系数矩阵thetatheta = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)# 打印结果print(theta)# 测试部分X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict = X_test.dot(theta)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()sklearn实现import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegression X = 2 * np.random.rand(100, 1)y = 5 + 4 * X + np.random.randn(100, 1)X = np.c_[np.ones((100,1)),X]# 新建线性回归模型model = LinearRegression(fit_intercept=False)# 代入训练集数据做训练model.fit(X,y)# 打印训练结果print(model.intercept_,model.coef_)X_test = np.array([[0],X_test = np.c_[(np.ones((2, 1))), X_test]print(X_test)y_predict =model.predict(X_test)print(y_predict)plt.plot(X_test[:,-1], y_predict, 'r-')plt.axis([0, 2, 0, 15])plt.show()使用解析解的公式来求得地模型是最准确的.计算量非常大,这会使得求解耗时极多,因此我们一般用的都是梯度下降法求解.知识储备距离公式机器学习中常见的距离公式 - WingPig - 博客园中心极限定理是讨论随机变量序列部分和分布渐近于正态分布的一类定理。

线 性 回 归 方 程 推 导

线 性 回 归 方 程 推 导

线性回归方程推导理论推导机器学习所针对的问题有两种:一种是回归,一种是分类。

回归是解决连续数据的预测问题,而分类是解决离散数据的预测问题。

线性回归是一个典型的回归问题。

其实我们在中学时期就接触过,叫最小二乘法。

线性回归试图学得一个线性模型以尽可能准确地预测输出结果。

?先从简单的模型看起:?首先,我们只考虑单组变量的情况,有:?使得?假设有m个数据,我们希望通过x预测的结果f(x)来估计y。

其中w和b都是线性回归模型的参数。

?为了能更好地预测出结果,我们希望自己预测的结果f(x)与y 的差值尽可能地小,所以我们可以写出代价函数(cost function)如下:?接着代入f(x)的公式可以得到:?不难看出,这里的代价函数表示的是预测值f(x)与实际值y之间的误差的平方。

它对应了常用的欧几里得距离简称“欧氏距离”。

基于均方误差最小化来求解模型的方法我们叫做“最小二乘法”。

在线性回归中,最小二乘法实质上就是找到一条直线,使所有样本数据到该直线的欧式距离之和最小,即误差最小。

?我们希望这个代价函数能有最小值,那么就分别对其求w和b的偏导,使其等于0,求解方程。

?先求偏导,得到下面两个式子:?很明显,公式中的参数m,b,w都与i无关,简化时可以直接提出来。

?另这两个偏导等于0:?求解方程组,解得:?这样根据数据集中给出的x和y,我们可以求出w和b来构建简单的线性模型来预测结果。

接下来,推广到更一般的情况:?我们假设数据集中共有m个样本,每个样本有n个特征,用X矩阵表示样本和特征,是一个m×n的矩阵:?用Y矩阵表示标签,是一个m×1的矩阵:?为了构建线性模型,我们还需要假设一些参数:?(有时还要加一个偏差(bias)也就是,为了推导方便没加,实际上结果是一样的)好了,我们可以表示出线性模型了:?h(x)表示假设,即hypothesis。

通过矩阵乘法,我们知道结果是一个n×1的矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档