高中数学2.4线性回归方程
《线性回归方程》课件

线性回归方程的假设
线性关系
自变量和因变量之间存在线性关系,即它们 之间的关系可以用一条直线来描述。
无异方差性
误差项的方差在所有观测值中保持恒定,没 有系统的变化。
无多重共线性
自变量之间不存在多重共线性,即它们之间 没有高度的相关性。
无自相关
误差项在不同观测值之间是独立的,没有相 关性。
02
线性回归方程的建立
详细描述
在销售预测中,线性回归方程可以用来分析历史销售数据,并找出影响销售的关键因素。通过建立线性回归模型 ,可以预测未来的销售趋势,为企业的生产和营销策略提供依据。
案例二:股票价格预测
总结词
线性回归方程在股票价格预测中具有一定的 应用价值,通过分析历史股票价ቤተ መጻሕፍቲ ባይዱ和影响股 票价格的因素,可以预测未来的股票价格走 势。
04
线性回归方程的应用
预测新数据
1 2
预测新数据
线性回归方程可以用来预测新数据,通过将自变 量代入方程,可以计算出对应的因变量的预测值 。
预测趋势
通过分析历史数据,线性回归方程可以预测未来 的趋势,帮助决策者制定相应的策略。
3
预测异常值
线性回归方程还可以用于检测异常值,通过观察 偏离预测值的点,可以发现可能的数据错误或异 常情况。
确定自变量和因变量
确定自变量
自变量是影响因变量的因素,通 常在研究问题中是可控制的变量 。在建立线性回归方程时,首先 需要确定自变量。
确定因变量
因变量是受自变量影响的变量, 通常是我们关心的结果或目标。 在建立线性回归方程时,需要明 确因变量的定义和测量方式。
收集数据
数据来源
确定数据来源,包括调查、实验、公开数据等,确保数据质量和可靠性。
高中数学线性回归方程线性回归方程公式详解

高中数学线性回归方程线性回归方程公式详解
线性回归方程是一种用于拟合一组数据的最常见的数学模型,它可以用来预测一个因变量(例如销售额)和一个或多个自变量(例如广告费用)之间的关系。
下面是线性回归方程的公式详解:
假设有n个数据点,每个数据点包含一个因变量y和k个自变量x1,x2,...,xk。
线性回归方程可以表示为:
y = β0 + β1*x1 + β2*x2 + ... + βk*xk + ε
其中,β0, β1, β2, ..., βk是模型的系数,ε是误差项,用来表示实际数据和模型预测之间的差异。
系数β0表示当所有自变量均为0时的截距,而β1, β2, ..., βk 则表示每个自变量对因变量的影响。
当系数为正时,自变量增加时因变量也会增加;而当系数为负时,自变量增加时因变量会减少。
通常,我们使用最小二乘法来估计模型的系数。
最小二乘法就是通过最小化所有数据点与模型预测之间的距离来找到最优的系数。
具体来说,我们可以使用以下公式来计算系数:
β = (X'X)-1 X'y
其中,X是一个n×(k+1)的矩阵,第一列全为1,其余的列为自变量x1,x2,...,xk。
y是一个n×1的向量,每一行对应一个因
变量。
X'表示X的转置,-1表示X的逆矩阵,而β则是一个(k+1)×1的向量,包含所有系数。
当拟合出线性回归方程后,我们可以使用它来预测新的数据点的因变量。
具体来说,我们可以将自变量代入方程中,计算出相应的因变量值。
如果模型的系数是可靠的,我们可以相信这些预测结果是比较准确的。
线性回归方程-高中数学知识点讲解

线性回归方程
1.线性回归方程
【概念】
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点将散布在某一直线周围.因此,可以认为关于的回归函数的类型为线性函数.
【实例解析】
例:对于线性回归方程푦=1.5푥+45,푥1∈{1,7,5,13,19},则푦=
解:푥=1+7+5+13+19
5
=
9,因为回归直线必过样本中心(푥,푦),
所以푦=1.5×9+45=13.5+45=58.5.
故答案为:58.5.
方法就是根据线性回归直线必过样本中心(푥,푦),求出푥,代入即可求푦.这里面可以看出线性规划这类题解题方法比较套路化,需要熟记公式.
【考点点评】
这类题记住公式就可以了,也是高考中一个比较重要的点.
1/ 1。
高中数学 2.4 线性回归方程课件 苏教版必修3

的特征. 解析: 由图可知①是一次函数关系,不是相关关系;
②中的所有点在一条直线附近波动,是线性相关的; 栏
目
③中的点杂乱无章,没有什么关系,是不相关的;④
链 接
中的所有点在某条曲线附近波动,是非线性相关的,
即两个变量(biànliàng)具有相关关系的是②④.
答案: ②④
第二十页,共39页。
典例 剖析
规律总结: 散点图直观地描述了两个变量之间有没
有相关关系,由散点图判断相关关系有两种情况,若
栏
所有的点看上去都在一条直线附近波动,则两个变量
目 链
是线性相关的;若所有的点看上去都在某条曲线 接
(qūxiàn)附近波动,则两个变量是非线性相关的,这
两种情况都说明两个变量间具有相关关系.
第二十一页,共39页。
栏 目 链 接
xiǎo),这种关系称为________. 负相关
3.线性回归方程是________________,其中b=
_n____________,a=_______y_^.=bx+a
iΣ=1xiyi-nx y
y-bx
iΣ=n1xi2-nx2
第六页,共39页。
自主 学习
4.线性回归方程 (jiāodiǎn)________.,
第三十一页,共39页。
典例
剖 析 题型四 用回归直线估计总体
例3高二(2)班学生(xué sheng)每周用于数学学习的
时间x(单位:h)与数学成绩y(单位:分)之间有如下数据:
栏
目
x
2 4
1 5
2 3
1 9
1 6
1 1
2 0
1 6
1 7
1 3
高中数学2.4线性回归方程 PPT课件 图文

i=1
∴回归直线方程为y^=1.143x+0.571.
课前探究学习
课堂讲练互动
活页规范训练
题型三 利用回归直线对总体进行估计 【例3】 (14分)下表提供了某厂节能降耗技术改造后生产甲 产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几 组对照数据.
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小平方法求出y关于x的线
即最贴近已知的数据点,最能代表变量x与y之间的关系.
课前探究学习
课堂讲练互动
活页规范训练
(2)利用回归直线对总体进行估计 利用回归直线,我们可以进行预测,若回归直线方程为:y^= bx+a,则 x=x0 处的估计值为:y^=bx0+a.
课前探究学习
课堂讲练互动
活页规范训练
题型一 相关关系的判断 【例1】 下列两个变量之间的关系中,①角度和它的余弦 值;②正方形的边长和面积;③正n边形的边数和其内角度数之 和;④人的年龄和身高.不是函数关系的是________.(填序号) [思路探索] 函数关系是一种变量之间确定性的关系.而相 关关系是非确定性关系. 解析 选项①②③都是函数关系,可以写出它们的函数表 达式:f(θ)=cos θ,g(a)=a2,h(n)=nπ-2π,④不是函数关系, 对于相同年龄的人群中,仍可以有不同身高的人. 答案 ④
xi2-n x 2
n
xi- x 2
i=1
i=1
a= y -b x .
想一想:1.相关关系是不是都为线性关系? 提示 不是.有些变量间的相关关系是非线性相关的. 2.散点图只描述具有相关关系的两个变量所对应点的图形吗? 提示 不是.两个变量统计数据所对应的点的图形都是散点图.
高中数学:2.4《线性回归方程》素材(苏教版必修3)

线性回归方程导学一、学法指导利用样本数据的情况估计总体数据的情况,这是统计的基本思想.线性回归方程是从样本中各个数据之间的相关关系入手,来分析验证样本中各个数据的特点规律,进而对总体数据的相关关系作出估计.因此学好线性回归方程,要在进一步体会统计的基本思想和方法的基础上,还要回忆我们已学过的两个变量之间存在的函数关系(即确定性关系).学习本节时,首先要知道变量相互关系有两种:一类是确定性的函数关系,如正方形的边长与面积的关系;另一类是变量确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的.例如,某位同学的“物理成绩”与“数学成绩”之间的关系,我们称它们为相关关系;其次是如何判断和分析具有相关关系的两个或多个变量,也就是如何寻找具有相关关系的两个变量中非确定性关系的某种确定性.本节的难点问题是建立回归直线方程的思想方法,其关键是如何用数学的方法来刻画“从整体上看各点与直线的距离最小”,即最贴近已知的数据点,最能代表变量x 与y 之间的关系,这就是“最小二乘法”的思想.另外还要注意,进行回归分析,通常先进行相关性检验,若能确定两个变量具有线性相关性,再去求其线性回归方程,否则所求方程毫无意义. 二、知识点概要 1.相关关系所谓相关关系是自变量取值一定时,因变量的取值带有一定的随机性. 对相关关系的理解应注意以下几点:(1)相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.(2)函数关系是一种因果关系,而相关关系不一定是因果关系,它也可能是伴随关系. (3)在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断. 2.回归分析对具有相关关系的两个变量进行统计分析的方法叫做回归分析.通俗地讲,回归分析就是寻找相关关系中非确定性关系的某种确定性. 3.散点图我们把一组具有相关关系的两个变量的数据()(123)i i x y i n ,,,,,对应的点(即样本点)画在坐标系内,得到的图形叫做散点图. 利用散点图可以判断变量之间有无相关关系,所以判断两个变量之间是否存在某种关系时,必须从散点图入手.画出散点图,可以作出如下判断:(1)如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即说明变量之间具有函数关系;(2)如果所有的样本点都落在某一函数曲线附近,则说明变量之间具有相关关系; (3)如果所有的样本点都落在某一直线附近,则变量之间具有线性相关关系. 4.正相关、负相关线性相关关系又分为正相关和负相关. 正相关是指两个变量具有相同的变化趋势,即从整体上来看一个变量会随另一个变量变大而变大.从散点图可以看出因变量随自变量的增大而增大,图中的点分布在左下角到右上角的区域.负相关是指两个变量具有相反的变化趋势,即从整体上来看一个变量会随另一个变量变大而变小.负相关的散点图中的点分布在左上角到右下角的区域. 由此,我们得出判断两个变量之间到底是不是具有线性相关关系,可以用“数据”说话,画出散点图更具有说服力.5.回归直线和回归直线方程如果散点图中的点的分布从整体上看大致在一条直线附近,就称这两变量之间具有线性相关关系.这条直线叫做这两个变量的回归直线,回归直线的方程叫做回归方程. 这里注意,只有散点图中的点呈条状集中在某一直线周围的时候,才可以说两个变量之间具有线性相关关系,才有两个变量的正线性相关和负线性相关的概念,才可以用回归直线来描述这两个变量之间的关系.(1)求回归直线方程的思想方法 观察散点图的特征,发现各点大致分布在一条直线的附近.类似图中的直线可画出不止一条,比如可以连接最左侧点和最右侧点得到一条直线,也可以让画出的直线上方的点和下方的点数目相等,……,但这些能保证各点与此直线在整体上是最接近的吗?它们虽然都有一定的道理,却总让人感到可靠性不强.那么,其中的哪一条直线最能代表变量x 与y 之间的关系呢?实际上求回归直线方程的关键是如何用数学的方法来刻画“从整体上看各点与此直线的距离最小”,即最贴近已知的数据点,最能代表变量x 与y 之间的关系.最能代表变量x 与y 之间关系的直线的特征是直线与这n 个点的离差的平方和最小. (2)回归直线方程的求法根据最小二乘法的思想和公式,利用计算器或计算机,可以方便地求出回归方程. 利用计算机求回归方程(Excel 软件):在Excel 的工作表中添加“图表”得到散点图后,用鼠标选中散点,单击鼠标右键,单击“添加趋势线”,在出现的对话框中单击类型标签,选择“线性”,单击“选项”标签,选中“显示公式”单选框,最后点击“确定”即可. 利用科学计算器求回归方程:大多科学计算器都有回归计算(REG 模式),但不同的计算器参数可能不同,这里不作详细介绍.一般在输入数据后按相应按键可直接得到a 和b ,这样就可以写出回归方程y bx a =+,非常简便,同学们在使用前一定要看懂计算器的使用说明书.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并且可根据情况进行估测、补充.因此,学过回归直线方程以后,应能积极应用回归直线方程解决一些相关的实际问题,并进一步体会回归直线的应用价值.(3)相关系数与相关性检验给定()(123)i i x y i n =,,,,,,只要123n x x x x ,,,,不全相等,就能求出一条回归直线,但它有无意义可是一个大问题.由于根据散点图看数据点是否大致在一直线附近主观性太强,为此可以利用样本相关系数来衡量两个变量之间线性关系的强弱. 样本相关系数:()()nii xx y y r --=∑叫做变量y 与x 之间的样本相关系数,简称相关系数,用它来衡量它们之间的线性相关程度.1r ≤,且|r|越接近于1,相关程度越高;r越接近于0,相关程度越低.统计学认为,相关变量的相关系数: [10.75]r ∈--,时,两变量负相关很强; [0.751]r ∈,时,两变量正相关很强;(]0.750.3r ∈--,或[)0.30.75,时,两变量相关性一般;[0.250.25]r ∈-,时,两变量相关程度很弱.三、特别提示1.相关关系的理解.借助实例(如数学成绩与物理成绩之间的关系,粮食产量与施肥量之间的关系,吸烟与健康之间的关系,父母身高与子女身高之间的关系等)明确相关关系与函数关系不同,它是一种非确定性的关系,即一个变量取值一定时,另一个变量的取值带有一定的随机性.相关关系包括正相关和负相关.2.相关关系的研究方法:散点图法和写出回归直线方程y bx a =+,其中11112222111nn n ni i i i i ii i i i nn nii i i i i n x y x y x ynx yb xnxn x x a y bx =======⎧⎛⎫⎛⎫--⎪⎪⎪⎝⎭⎝⎭⎪==⎪⎛⎫⎨-- ⎪⎪⎝⎭⎪⎪=-⎩∑∑∑∑∑∑∑,.3.线性回归思想:把相关关系(不确定性关系)转化为函数关系(确定性关系).当两个具有相关关系的变量近似满足一次函数关系时,所进行的回归分析又叫线性回归分析,所求的函数关系y bx a =+就是线性回归方程.4.求线性回归直线方程前应对数据进行线性相关分析,其关键是求a b ,,由于计算量大,因此计算过程要注意分层次、按步骤进行.线性回归中的相关系数线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法统计中常用相关系数r 来衡量两个变量之间的线性相关的强弱,当i x 不全为零,yi 也不全为零时,则两个变量的相关系数的计算公式是:()()nnii i ixx y y x ynx yr ---==∑∑r 就叫做变量y 与x 的相关系数(简称相关系数).说明:(1)对于相关系数r ,首先值得注意的是它的符号,当r 为正数时,表示变量x ,y 正相关;当r 为负数时,表示两个变量x ,y 负相关; (2)另外注意r 的大小,如果[]0.751r ∈,,那么正相关很强;如果[]10.75r ∈--,,那么负相关很强;如果(]0.750.30r ∈--,或[)0.300.75r ∈,,那么相关性一般;如果[]0.250.25r ∈-,,那么相关性较弱.下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析例1 测得某国10对父子身高(单位:英寸)如下:(1)对变量y 与x 进行相关性检验;(2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高. 解:(1)66.8x =,67y =,102144794ii x==∑,102144929.22ii y==∑,4475.6xy =,24462.24x =,24489y =,10144836.4i ii x y==∑,所以10i ix ynx yr -=∑44836.4104475.6(4479444622.4)(44929.2244890)-⨯=--80.40.9882.04=≈≈,所以y 与x 之间具有线性相关关系.(2)设回归直线方程为y a bx =+,则101102211010i ii i i x yx yb x x==-=-∑∑44836.4447560.46854479444622.4-=≈-,670.468566.835.7042a y bx =-=-⨯=.故所求的回归直线方程为0.468535.7042y x =+.(3)当73x =英寸时,0.46857335.704269.9047y =⨯+=,所以当父亲身高为73英寸时,估计儿子的身高约为69.9英寸.点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型.例2 10其中x 为高一数学成绩,y 为高二数学成绩. (1)y 与x 是否具有相关关系;(2)如果y 与x 是相关关系,求回归直线方程.解:(1)由已知表格中的数据,利用计算器进行计算得101710ii x==∑,101723ii y==∑,71x =,72.3y =,10151467i ii x y==∑.102150520i i x ==∑,102152541ii y==∑.1010i ix yx yr -=∑0.78≈.由于0.78r ≈,由0.780.75>知,有很大的把握认为x 与y 之间具有线性相关关系. (2)y 与x 具有线性相关关系,设回归直线方程为y a bx =+,则1011022211051467107172.31.2250520107110i ii i i x yx yb x x==--⨯⨯==≈-⨯-∑∑,72.3 1.227114.32a y bx =-=-⨯=-.所以y 关于x 的回归直线方程为 1.2214.32y x =-.点评:通过以上两例可以看出,回归方程在生活中应用广泛,要明确这类问题的计算公式、解题步骤,并会通过计算确定两个变量是否具有相关关系.方方面面评说回归直线方程一、回归分析对于线性回归分析,我们要注意以下几个方面:(1)回归分析是对具有相关关系的两个变量进行统计分析的方法.两个变量具有相关关系是回归分析的前提.(2)对于关系不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行回归分析.(3)通过散点图的观察,一般地,若图中数据大致分布在一条直线附近,那么这两个变量近似成线性相关关系.(4)求回归直线方程,首先应注意到,只有在散点图大至呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义. 二、回归直线方程一般地,设x 与y 是具有相关关系的两个变量,且对应于n 组观测值的n 个点(()12)i i x y i n =,,,,,大致分布在一条直线的附近,求在整体上与这n 个点最接近的一条直线,记此直线方程为y a bx =+ (1)这里在y 的上方加记号“^”,是为了区分Y 的实际值y ,表示当x 取值(12)i x i n =,,,时,Y 相应的观察值为i y ,而直线上对应于i x 的纵坐标是i y a bx =+.(1)式叫做Y 对x 的回归直线方程,a ,b 叫做回归系数. 三、求回归直线方程的思想方法 在观察散点图特征时,我们会发现有时各点大致分布在一条直线的附近,且画出不止一条类似的直线,而最能代表变量x 与y 之间关系的直线的特征,即为n 个离差的平方和最小.设所求直线方程为y a bx =+,其中a ,b 是待定系数,则(12)i i y a bx i n =+=,,,. 于是得到各个离差()(12)i i i i y y y bx a i n -=-+=,,,. 显然,离差i i y y -的符号有正有负,若将它们相加会造成相互抵消,故采用n 个离差的平方和21()ni iiQ y bx a==--∑,采用最小二乘法可求出使Q为最小值时的a和b.1122211()()()n ni i i ii in ni ii ix x y y x y nx ybx x x nx====---==--∑∑∑∑,a y bx=-,其中11niix xn==∑,11niiy yn==∑.四、求回归直线方程的一般步骤(1)作出散点图,判断散点是否在一条直线附近;(2)如果散点在一条直线附近,用公式求出a,b,并写出回归直线方程.注:计算a,b时由于计算量较大,所以在计算时应借助技术手段(如计算器或计算机),认真细致,谨防计算中产生错误.例在10第几年城市居民收入x(亿元)某商品销售额y(万元)1 32.2 25.02 31.1 30.03 32.9 34.04 35.8 37.05 37.1 39.06 38.0 41.07 39.0 42.08 43.0 44.09 44.6 48.010 46.0 51.0(1)画出散点图;(2)如果散点图中各点大致分布在一条直线的附近,求x与y之间的回归直线方程;(3)试预测居民年收入50亿元时这种商品的销售额.解题指导:只有散点图大致表现为线性时,求回归直线方程才有实际意义.解:(1)散点图如图所示:(2)通过观察散点图可知各点大致分布在一条直线的附近.列出下表,利用计算器进行计算.1011022211015202.9379.739.1 1.447379.71014663.671010i ii ii x yx y b xx==--⨯==≈⎛⎫--⨯ ⎪⎝⎭∑∑。
高中数学知识点:线性回归方程

高中数学知识点:线性回归方程
线性回归方程是高中数学中的一个重要知识点。
其中,回归直线是指通过散点图中心的一条直线,表示两个变量之间的线性相关关系。
回归直线方程可以通过最小二乘法求得。
具体地,可以设与n个观测点(xi,yi)最接近的直线方程为
y=bx+a,其中a、b是待定系数。
然后,通过计算n个偏差的平方和来求出使Q为最小值时的a、b的值。
最终得到的直线方程即为回归直线方程。
需要注意的是,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义。
因此,在进行线性回归分析时,应先看其散点图是否成线性。
另外,求回归直线方程时,需要仔细谨慎地进行计算,避免因计算产生失误。
回归直线方程在现实生活与生产中有广泛的应用。
这种方程可以将非确定性问题转化为确定性问题,从而使“无序”变得“有序”,并对情况进行估测和补充。
因此,研究回归直线方程后,学生应更加重视其在解决相关实际问题中的应用。
注:原文已经没有格式错误和明显有问题的段落。
高中数学:2.4《线性回归方程课件》课件(苏教版必修三)

Part
02
线性回归方程的建立与求解
线性回归方程的建立方法
STEP 01
散点图观察
STEP 02
确定回归系数
通过绘制散点图,观察自 变量与因变量之间的关系 ,初步判断是否具有线性 关系。
STEP 03
检验残差
通过观察残差图或计算残 差平方和,检验模型的拟 合效果,判断是否需要进 一步调整模型。
根据最小二乘法原理,通 过计算得到回归系数,从 而确定线性回归方程的斜 率和截距。
以是( )
习题
A. ŷ = 1.23x + 4 B. ŷ = 1.23x + 5
C. ŷ = 1.23x + 4.5 D. ŷ = 1.23x + 3
3、题目:已知回归直线的斜率的估计值是1.23,且样本点的中心为(4,5),则回归直线的方 程可以是( )
习题
01
A. ŷ = 1.23x + 4 B. ŷ = 1.23x +5
预测性
利用线性回归方程可以对 未知数据进行预测。
线性回归方程的应用场景
经济预测
科学实验
通过对历史数据的分析,利用线性回 归方程预测未来经济指标的变化趋势 。
在科学实验中,通过控制变量法来研 究自变量和因变量之间的线性关系, 并利用线性回归方程进行数据分析。
销售预测
根据历史销售数据和市场调查,利用 线性回归方程预测未来产品的销售情 况。
增加自变量
增加自变量可以更好地解释因变 量的变化,从而优化线性回归方 程。
调整模型形式
根据实际情况调整模型形式,可 以更好地拟合数据,从而优化线 性回归方程。
Part
04
线性回归方程的实例分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。