固体物理基础课后1到10题答案
东南大学固体物理基础课后习题解答

《电子工程物理基础》课后习题参考答案第一章 微观粒子的状态1-1一维运动的粒子处在下面状态(0,0)()0(0)xAxe x x x λλψ-⎧≥>=⎨<⎩①将此项函数归一化;②求粒子坐标的概率分布函数;③在何处找到粒子的概率最大? 解:(1)由归一化条件,可知22201xAx edx λ∞-=⎰,解得归一化常数322A λ=。
所以归一化波函数为:322(0,0)()0(0)xxex x x λλλψ-⎧⎪≥>=⎨⎪<⎩(2)粒子坐标的概率分布函数为:32224(0,0)()()0(0)xx e x w x x x λλλψ-⎧≥>==⎨<⎩(3)令()0dw x dx =得10x x λ==或,根据题意,在x=0处,()w x =0,所以在1x λ=处找到粒子的概率最大。
1-2若在一维无限深势阱中运动的粒子的量子数为n 。
①距势阱的左壁1/4宽度内发现粒子概率是多少? ②n 取何值时,在此范围内找到粒子的概率最大?③当n→∞时,这个概率的极限是多少?这个结果说明了什么问题?解:(1)假设一维无限深势阱的势函数为U (x ),0x a ≤≤,那么在距势阱的左壁1/4宽度内发现粒子概率为:22440211()()(sin )sin422a a n n P x x dx x dx a a n ππψπ===-⎰⎰。
(2)当n=3时,在此范围内找到粒子的概率最大,且max 11()+46P x π=。
(3)当n→∞时,1()4P x =。
此时,概率分布均匀,接近于宏观情况。
1-3一个势能为221()2V x m x ω=的线性谐振子处在下面状态2212()()x m x Aeαωψα-=求:①归一化常数A ;②在何处发现振子的概率最大;③势能平均值2212U m x ω=。
解:(1)由归一化条件,可知2221x A e dx α+∞--∞=⎰,得到归一化常数4A απ=。
固体物理(胡安)课后答案(可编辑)

固体物理(胡安)课后答案第一章晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。
为什么?作出这一结构所对应的两维点阵和初基元胞。
解:石墨层中原子排成的六角网状结构是复式格子。
因为如图点A和点B的格点在晶格结构中所处的地位不同,并不完全等价,平移A→B,平移后晶格结构不能完全复原所以是复式格子。
1.2在正交直角坐标系中,若矢量,,,为单位向量。
为整数。
问下列情况属于什么点阵?(a)当为全奇或全偶时;(b)当之和为偶数时。
解:当为全奇或全偶时为面心立方结构点阵,当之和为偶数时是面心立方结构1.3 在上题中若奇数位上有负离子,偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。
1.4 (a)分别证明,面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角相等,对fcc为,对bcc为(b)在金刚石结构中,作任意原子与其四个最近邻原子的连线。
证明任意两条线之间夹角θ均为解:(1)对于面心立方 (2)对于体心立方 (3)对于金刚石晶胞1.5 证明:在六角晶系中密勒指数为(h,k,l)的晶面族间距为证明:元胞基矢的体积倒格子基矢倒格矢:晶面间距1.6 证明:底心正交的倒点阵仍为底心正交的。
证明:简单六角点阵的第一布里渊区是一个六角正棱柱体底心正交点阵的惯用晶胞如图: 初级晶胞体积: 倒易点阵的基矢: 这组基矢确定的面是正交底心点阵1.7 证明:正点阵是其本身的倒易点阵的倒格子。
证明:倒易点阵初级元胞的体积:是初基元胞的体积而由于而或:现在证明: 又令又:代入同理 1.8 从二维平面点阵作图说明点阵不可能有七重旋转对称轴。
解: 1.9 试解释为什么:(a)四角(四方)晶系中没有底心四角和面心四角点阵。
(b)立方晶系中没有底心立方点阵。
(c)六角晶中只有简单六角点阵。
解:(a)因为四方晶系加底心,会失去4次轴。
(b)因为立方晶系加底心,将失去3次轴。
东南大学固体物理基础课后习题解答

《电子工程物理基础》课后习题参考答案第一章 微观粒子的状态1-1一维运动的粒子处在下面状态(0,0)()0(0)xAxe x x x λλψ-⎧≥>=⎨<⎩①将此项函数归一化;②求粒子坐标的概率分布函数;③在何处找到粒子的概率最大? 解:(1)由归一化条件,可知22201xAx edx λ∞-=⎰,解得归一化常数322A λ=。
所以归一化波函数为:322(0,0)()0(0)xxex x x λλλψ-⎧⎪≥>=⎨⎪<⎩(2)粒子坐标的概率分布函数为:32224(0,0)()()0(0)xx e x w x x x λλλψ-⎧≥>==⎨<⎩(3)令()0dw x dx =得10x x λ==或,根据题意,在x=0处,()w x =0,所以在1x λ=处找到粒子的概率最大。
1-2若在一维无限深势阱中运动的粒子的量子数为n 。
①距势阱的左壁1/4宽度内发现粒子概率是多少? ②n 取何值时,在此范围内找到粒子的概率最大?③当n→∞时,这个概率的极限是多少?这个结果说明了什么问题?解:(1)假设一维无限深势阱的势函数为U (x ),0x a ≤≤,那么在距势阱的左壁1/4宽度内发现粒子概率为:22440211()()(sin )sin422a a n n P x x dx x dx a a n ππψπ===-⎰⎰。
(2)当n=3时,在此范围内找到粒子的概率最大,且max 11()+46P x π=。
(3)当n→∞时,1()4P x =。
此时,概率分布均匀,接近于宏观情况。
1-3一个势能为221()2V x m x ω=的线性谐振子处在下面状态2212()()x m x Aeαωψα-=求:①归一化常数A ;②在何处发现振子的概率最大;③势能平均值2212U m x ω=。
解:(1)由归一化条件,可知2221x A e dx α+∞--∞=⎰,得到归一化常数4A απ=。
固体物理课后习题答案

(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .
固体物理 课后答案

第一章、晶体的结构习题1.以刚性原子球堆积模型,计算以下各结构的致密度分别为:(1)简立方,6π; (2)体心立方, ;83π(3)面心立方,;62π(4)六角密积,;62π(5)金刚石结构,;163π[解答]设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度,设n为一个晶胞中的刚性原子球数,r表示刚性原子球半径,V表示晶胞体积,则致密度ρ=Vrn334π(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为,,433aVra==面1.2 简立方晶胞晶胞内包含1个原子,所以ρ=6)(33234ππ=aa(2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433aVra==晶胞内包含2个原子,所以ρ=ππ83)(*2334334=aa图1.3 体心立方晶胞(3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以ρ=62)(*4334234ππ=a a .(4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。
5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,图 1.5 六角晶胞 图 1.6 正四面体晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高h =223232c r a == 晶胞体积 V = 222360sin ca ca =, 一个晶胞内包含两个原子,所以ρ=ππ62)(*22233234=ca a .(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O原子与中心在1,2,3,4处的原子相切,因为,8 3r a=晶胞体积3aV=,一个晶胞内包含8个原子,所以ρ=163)83(*83334ππ=aa.2.在立方晶胞中,画出(102),(021),(122-),和(201-)晶面。
《固体物理》课后习题答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52 体心立方3π/ 8 ≈0.68 面心立方2π/ 6 ≈0.74六方密排2π/ 6 ≈0.74 金刚石3π/16 ≈0.34解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。
证明:体心立方格子的基矢可以写为面心立方格子的基矢可以写为根据定义,体心立方晶格的倒格子基矢为同理与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。
注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。
根据定义,面心立方的倒格子基矢为同理而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。
证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为即为平面的法线根据定义,倒格子基矢为则倒格子原胞的体积为1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足其中a 为立方边长。
解:根据倒格子的特点,倒格子与晶面族(h, k,l)的面间距有如下关系因此只要先求出倒格,求出其大小即可。
因为倒格子基矢互相正交,因此其大小为则带入前边的关系式,即得晶面族的面间距。
1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。
若立方边长为a ,写出最近邻和次近邻的原子间距。
答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a ;面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a 。
固体物理基础(吴代鸣之高教版)课后1到10题答案
固体物理基础(吴代鸣之高教版)课后1到10题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一. 本章习题P272习题1.试证理想六方密堆结构中c/a=1.633.一. 说明:C 是上下底面距离,a 是六边形边长。
二. 分析:首先看是怎样密堆的。
如图(书图1.10(a),P8),六方密堆结构每个格点有12个近邻。
(同一面上有6个,上下各有3个)上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。
中间层的三个球相切,又分别与上下底面的各七个球相切。
球心之间距离为a 。
所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。
三.证明:如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点33'aAB AO ==∴(由余弦定理)330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=633.1322384132)2()2()3()2(2222222222''≈===∴+=+=+=a c c a ac a ac OA AO OO2.若晶胞基矢c b a,,互相垂直,试求晶面族(hkl )的面间距。
一、分析:我们想到倒格矢与面间距的关系G d π2=。
倒格矢与晶面族 (hkl )的关系321b l b k b h G++=写出)(321b b b 与正格子基矢 )(c b a的关系。
即可得与晶面族(hkl ) 垂直的倒格矢G。
进而求得此面间距d 。
二、解:c b a ,,互相垂直,可令k c c j b b i a a===,,晶胞体积abc c b a v =⨯⋅=)(倒格子基矢: kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢 222321)()()(2)(2cl b k a h G k cl j b k i a h b l b k b h G ++=∴++=++=ππ故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h Gd ++=++==πππ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择每个原胞含有几个原子1.分析:考虑选取原胞的条件:(即布拉菲晶格的最小单元)(1)体积最小的重复结构单元(2)只包含一个格点(3)能反映晶格的周期性应将几个原子组合成一个格点,然后构成原胞。
黄昆版固体物理课后习题解答
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
高中物理固体课后习题答案及解析
高中物理固体课后习题答案及解析1.某人为了检验一块薄片物质是否为晶体,做了一个实验。
他以薄片的正中央O为坐标原点,建立Oxy平面直角坐标系,在两个坐标轴上分别取两点x1和y1,使x1和y1到O点的距离相等。
在x1和y1上分别固定一个测温元件,再把一个针状热源放在O点,发现x1点和y1点的温度在缓慢升高,但两点温度的高低没有差异。
于是得出结论:这块薄片是非晶体。
请说明:以上结论科学吗?为什么?解析:实验说明该均匀薄片在x,y两个方向上导热性能相同,但不能因此就确定这块薄片是非晶体,因为晶体有可能在导热性能上表现为各向同性,而在其他性质上表现为各向异性;由于多晶体具有各向同性,该薄片也有可能是多晶体。
2.食盐晶体的结构可以用钠离子和氯离子空间分布的示意图表示(图2.4-8),图中相邻离子的中心用线连起来了,组成了一个个大小相等的立方体。
现在要估算相邻两个钠离子中心的距离,除了知道食盐的密度ρ为2.17×103 kg/m3外,还要知道哪些数据?请用字母表示这些已知数据,推导出相邻两个钠离子中心距离的表达式。
提示:图中最小立方体的个数与离子数目相等。
答案及解析如下:3.内陆盐矿中开采的氯化钠称为岩盐,岩盐的颗粒很大,我们能清楚地看出它的立方体形状。
把大颗粒的岩盐敲碎后,小颗粒的岩盐仍然呈立方体形状。
图2.4-13表示了岩盐晶体的平面结构:粉红点为氯离子,灰点为钠离子,如果把它们用直线连起来,将构成一系列大小相同的正方形,作分界线AA 1,使它平行于正方形的对角线,作分界线BB 1,使它平行于正方形的一边。
在两线的左侧各取一个钠离子M 和N ,为了比较这两个钠离子所受分界线另一侧的离子对它作用力的大小,分别以M 、N 为圆心,作两个相同的扇形,不考虑扇形以外远处离子的作用。
(1)如果F 表示两个相邻离子之间引力的大小,问:M 、N 所受扇形范围内的正负离子对它作用力的合力是F 的多少倍?为使问题简化,设所有离子都是质点,而且它们之间的相互作用遵从“平方反ABB 1A 1 MN 图 2.4-13 岩盐晶体的平面结构比”规律。
固体物理基础 第三版 课后答案 西安电子科技大学出版社(曹全喜 雷天明 黄云霞 著)
13.若轴矢 a 、 b、 c 构成简单正交系,证明。晶面族(h、k、l)的面间距为
2 d hkl
1 l 2 ( ) ( ) (c )
h 2 a k 2 b
co
证毕
m
2 a1 a 2 2 b3 k c
证 1:把原点选在该面族中任意一晶面上任一点,设相邻晶面分别与正交系 a 、 b、 c 交于
求面间距 d111。 解:由布拉格反射模型,认为入射角=反射角 2dsin= d=
ww
1.54 =2.34(Å) 2 sin 19.2 0
17.试说明:1〕劳厄方程与布拉格公式是一致的; 2〕劳厄方程亦是布里渊区界面方程; 解:1〕由坐标空间劳厄方程: 与正倒格矢关系
Rl k h 2
w.
案 网
因为 b1 、 b2 、 b3 相互正交。
2 2
2
2
n 2 sin
Rl (k k 0 ) 2
比较可知:若
即入射波矢 k 0 ,衍射波矢 k 之差为任意倒格矢 k h ,则 k 方向产生衍射光, k h k k 0 式
co
the end 对主极大 取 n=1
w.
a3 || b3 , 且 b1 =| b2 |= b3
bi
设
ai
=m(为常值,且有量纲,即不为纯数)
则
ww
G hkl m(h a1 k a 2 l a3)=m A
则
Ghkl 与 A 平行。
若以上正、倒基矢,换为正、倒轴矢,以上证明仍成立,则可用于 fcc 和 bcc 晶格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.本章习题P272习题1.试证理想六方密堆结构中c/a=.一. 说明:C 是上下底面距离,a 是六边形边长。
二. 分析:首先看是怎样密堆的。
如图(书图(a),P8),六方密堆结构每个格点有12个近邻。
(同一面上有6个,上下各有3个)上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。
中间层的三个球相切,又分别与上下底面的各七个球相切。
球心之间距离为a 。
所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。
三. 证明:如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点33'a AB AO ==∴(由余弦定理)330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=οοο633.1322384132)2()2()3()2(2222222222''≈===∴+=+=+=a c c a ac a ac OA AO OO2.若晶胞基矢c b a ρρρ,,互相垂直,试求晶面族(hkl )的面间距。
一、分析:我们想到倒格矢与面间距的关系G d ρπ2=。
倒格矢与晶面族 (hkl )的关系321b l b k b h G ρρρρ++=写出)(321b b b ρρρ与正格子基矢 )(c b a ρρρ的关系。
即可得与晶面族(hkl ) 垂直的倒格矢G ρ。
进而求得此面间距d 。
二、解:c b a ρρρΘ,,互相垂直,可令k c c j b b i a a ρρρρρρ===,,晶胞体积abc c b a v =⨯⋅=)(ρρρ倒格子基矢:kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b ρρρρρρρρρρρρρρρρρρπππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢 222321)()()(2)(2cl b k a h G k cl j b k i a h b l b k b h G ++=∴++=++=ππρρρρρρρρ故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h G d ++=++==πππρ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子?1.分析:考虑选取原胞的条件:(即布拉菲晶格的最小单元)(1)体积最小的重复结构单元(2)只包含一个格点(3)能反映晶格的周期性应将几个原子组合成一个格点,然后构成原胞。
原胞反映周期性,在空间无空隙无交叠排列成晶格。
我们不容易看出哪几个原子组合成一个格点。
我们可先分析晶胞是否组成复式格子?何种格子组成的复式格子?是由几层套构而成的?我们知道如果是体心立方,将是两个简立方套构而成的二重复式格子。
如果是面心立方,将有对面面心处的原子构成三重简立方格子;加上顶点处是四重简立方格子。
这样,我们的题中是体心加面心,面心的四重格子加上体心处的原子构成的一重格子,故应是五重简立方的复式格子。
所以布拉菲晶格是简单立方格子。
这样可将体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为一个组合形成一个格点,即由5个原子形成一个格点,亦即基元是选这样的原子组合。
最后格点的原胞是简立方,每个原胞含一个格点,每个格点含五个原子。
故每个原胞含有5个原子。
2.答:通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。
体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。
布拉菲晶格是简单立方格子。
4.试求面心立方结构的(111)和(110)面的原子面密度。
一.(111)面(1) 分析:先分析有几个原子? 如图(书图,P10)。
(111)面由3顶点连线组成的面。
3个顶点原子,每个贡献1/6,3个面心原子,每个贡献1/2,共6原子,每个(111)面有2213613=⨯+⨯个原子。
求出(111)面面积可得原子面密度。
(2) 解:平均每个(111)面有2213613=⨯+⨯个原子。
(111)面面积()222232322)22()2(221a a a a a a =⋅=-⋅ 所以原子面密度22)111(34232aa ==σ二.(110)面(1) 分析:如图(书图,P10)。
(110)面是四顶点组成的面。
分析有几个原子?4个顶点原子,每个贡献1/4(上下两层,每层两个单胞中的(110)共用一个顶点);2个面心原子,每个贡献1/2。
共6个原子,平均每个(110)面有2212414=⨯+⨯原子。
再求出(110)面积即可。
(2) 解:平均每个(110)面有2212414=⨯+⨯个原子。
(110)面面积222a a a =⋅所以(110)面原子面密度22)110(222a a==σ5.设二维矩形格子的基矢为j a a i a a ρρρρ2,21==,试画出第一、二、三、布里渊区。
解:倒格子基矢:jb j a j a j ax x a a a a v b k x a i ax i a x a a a a v b ρρρρρρρρρρρρρρρ11323321212212222)(2)(2222)(2===⋅⋅=⨯===⋅⋅=⨯=πππππππ所以倒格子也是二维矩形格子。
2b ρ方向短一半。
最近邻;,22b b ρρ-次近邻;2,2,,2211b b b b ρρρρ--再次近邻;,,,12122121b b b b b b b b ρρρρρρρρ---+-再再次近邻;3,322b b ρρ-做所有这些点与原点间连线的垂直平分线,围成布里渊区。
再按各布里渊区的判断原则进行判断,得:第一布里渊区是一个扁长方形;第二布里渊区是2块梯形和2块三角形组成;第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。
6.六方密堆结构的原胞基矢为:kc a j a i a a ja i a a ρρρρρρρρ=+-=+=32123212321试求倒格子基矢并画出第一布里渊区。
1. 分析:从前面的学习我们已经知道,六方密堆结构是两个简单六方格子复合成的二重复式格子。
所以原胞为简单六方结构。
1. 解:原胞为简单六方结构。
原胞体积:c a j i j i c a i j ac j i a k c j i a j i a a a a v 2232123)3()3(41)]3(21[)3(21])3(21[)3(21)(=+⋅+=+⋅+=⨯+-⋅+=⨯⋅=ρρρρρρϖρρρρρρρρρ 倒格子基矢:kca a vb j i aj i a k c c a a a vb j i a kc j i a c a a a v b ρρρρρρρρρρρρρρρρρρρρππππππππ2)(2)3(2)]3(21[232)(2)3(32])3(21[232)(221321322321=⨯=+-=+⨯=⨯=+=⨯+-=⨯=由此看到,倒格子同原胞一样,只是长度不同,因此倒格子仍是简单六方结构。
(注意:倒格子是简单六方,而不是六方密堆)选六边形面心处格点为原点,则最近邻为六个角顶点,各自倒格矢的垂直平分面构成一个六面柱体。
次近邻为上下底面中心,其垂直平分面为上下平行平面。
再次近邻是上下面六个顶角,其垂直平分面不截上面由最近邻和次近邻垂直平分面构成的六角柱体。
所以第一布里渊区是一个六角柱体。
比倒格子六方要小。
7.试求金刚石的结构因子并讨论X 射线衍射消失的条件。
解:图见书P7图(a)金刚石结构的布拉菲晶格是面心立方格子,基元中有两个原子。
将顶角处选为原点,另一原子位置)(4k j i a r L ρρρρ++=进而,将面心再看成是四套简立方的复式格子。
简立方每个格点有四个面心立方的格点,而面心立方的格点有2个原子。
所以简立方的每个格点就相当于有842=⨯个原子。
也就是考虑一个金刚石结构单胞中,顶点中的一个原子和6个面心中的3个原子(每对对面中取一个)及4个对角原子作为一个基元。
最后可构成简单立方晶格。
这时基矢:k a a j a a i a a ρρρρρρ===321,,一个单胞中各原子位矢:顶点:,01=r ρ面心:),(2),(2),(2432k i a r k j a r j i a r ρρρρρρρρρ+=+=+=对角:)33(4),33(4),33(4),(48765k j i ar k j i a r k j i a r k j i a r ρρρρρρρρρρρρρρρρ++=++=++=++=因为都是同一原子,故原子散射因子都为f ,简立方布拉菲晶格的倒格矢)(2321k h j h i h aa ρρρρ++=π则结构因子⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++++==++⋅++++⋅++++⋅++++⋅+++⋅+++⋅+++⋅++⋅∑)33()(2)33()(2)33()(2)(4)(2)()()()()()(3213213213213213213211)(k j i k h j h i h i k j i k h j h i h i k j i k h j h i h i k j i a k h j h i h a i k i k h j h i h i k j k h j h i h i j i k h j h i h i jr G i j e e e e e e e f ef G S jρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρπππππππ ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+++++++=+++++++++++)33(2)33(2)33(2)(2)()()(3213213213213132211h h h i h h h i h h h i h h h i h h i h h i h h i e e e e e e e f πππππππ ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+++++++=++++++++]1[1)()()()(2)()()(312132321313221h h i h h i h h i h h h i h h i h h i h h i e e e e e e e f πππππππ⎭⎬⎫⎩⎨⎧++++=+++++]1][1[)(2)()()(321313221h h h i h h i h h i h h i e e e e f ππππ故当(1){}1)()()(313221-=+++++h h i h h i h h i e e e πππ 时,S=0,消光;或当(2)1)(2321-=⎭⎬⎫⎩⎨⎧++h h h i e π时,也有S=0,也消光。