(完整版)等差数列基础题训练.docx

合集下载

(完整版)等差数列练习题及答案

(完整版)等差数列练习题及答案

(完整版)等差数列练习题及答案等差数列练习一、选择题1、等差数列{}n a 中,10120S =,那么110a a +=()A. 12B. 24C. 36D. 482、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ()A.有最小值且是整数B. 有最小值且是分数C. 有最大值且是整数D. 有最大值且是分数3、已知等差数列{}n a 的公差12d =,8010042=+++a a a Λ,那么=100S A .80 B .120 C .135D .160. 4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13SA .390B .195C .180D .1205、从前180个正偶数的和中减去前180个正奇数的和,其差为()A. 0B. 90C. 180D. 3606、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 2607、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则()A.54S S <B.54S S =C. 56S S <D. 56S S =8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为()A. 13B. 12C. 11D. 109、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2+n n ,则前n 个奇数项的和为()A .)1(32+-n nB .)34(2-n nC .23n -D .321n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为()A .6B .8C .10D .12二.填空题1、等差数列{}n a 中,若638a a a =+,则9s = .2、等差数列{}n a 中,若232n S n n =+,则公差d = .3、在小于100的正整数中,被3除余2的数的和是4、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=?aa a ,则前10项的和S 10=5、一个等差数列共有10项,其中奇数项的和为252,偶数项的和为15,则这个数列的第6项是*6、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88a b = . 三.解答题1、在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++L .2、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0,①求公差d 的取值范围;②1212,,,S S S L 中哪一个值最大?并说明理由.3、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求:(1)原数列的第12项是新数列的第几项?(2)新数列的第29项是原数列的第几项?4、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)}{n a 的通项公式a n 及前n项的和S n ;(2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.5、某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元,(Ⅰ)问第几年开始获利?(Ⅱ)若干年后,有两种处理方案:(1)年平均获利最大时,以26万元出售该渔船;(2)总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算.参考答案一、 1-5 B A C B C 6-10 C B A B A二、 1、0 2、6 3、1650 4、-10 5、3 6、6三.1、n a n 2.0=,393805251=+++a a a Λ.2、①∵121126767713113712()6()002130()1302S a a a a a a a S a a a ?=+=+>?+>+解得,2437d -<<-,②由67700a a a +>??<?6700a a ><<- ∴{}n a 是递减数列, ∴1212,,,S S S L 中6S 最大.3、解:设新数列为{},4,)1(,3,2,1512511d b b d n b b a b a b b n n +=-+=====有根据则即3=2+4d ,∴14d =,∴172(1)44n n b n +=+-?= 1(43)7(1)114n n a a n n -+=+-?=+=Q 又,∴43n n a b -=即原数列的第n 项为新数列的第4n -3项.(1)当n=12时,4n -3=4×12-3=45,故原数列的第12项为新数列的第45项;(2)由4n -3=29,得n=8,故新数列的第29项是原数列的第8项。

等差数列练习题(打印版)

等差数列练习题(打印版)

等差数列练习题(打印版)# 等差数列练习题## 一、选择题1. 已知等差数列的首项为5,公差为3,求第10项的值。

A. 32B. 35C. 38D. 412. 一个等差数列的前5项和为50,首项为2,求公差。

A. 10B. 8C. 6D. 43. 如果等差数列的第3项和第5项的和为26,且首项为a,公差为d,求第4项的值。

A. 13B. 14C. 15D. 16## 二、填空题1. 等差数列\[ a_n = a_1 + (n - 1)d \]中,如果\( a_1 = 10 \),\( d = 2 \),那么第6项\( a_6 \)的值为 \_\_\_\_\_\_。

2. 已知等差数列的前n项和公式为\[ S_n = \frac{n}{2}(2a_1 + (n - 1)d) \],如果\( S_6 = 90 \),\( a_1 = 5 \),求公差\( d \)。

3. 等差数列中,如果第1项和第4项的和为20,第2项和第3项的和为22,求首项\( a_1 \)和公差\( d \)。

## 三、解答题1. 一个等差数列的前10项和为220,首项为12,求公差和第10项的值。

2. 已知等差数列的前n项和公式,如果\( S_{15} = 1170 \),\( a_1 = 8 \),求\( S_{20} \)。

3. 一个等差数列的第1项为3,公差为2,求前20项的和。

## 四、证明题1. 证明:等差数列中,连续三项的和构成的数列也是等差数列。

2. 证明:等差数列的前n项和公式\[ S_n = \frac{n(a_1 + a_n)}{2} \]。

3. 证明:等差数列中,任意两项的等差中项等于它们的算术平均数。

注意:请同学们认真审题,仔细计算,确保答案的准确性。

练习题的目的是帮助大家更好地理解和掌握等差数列的相关知识,希望同学们能够通过练习提高解题能力。

等差数列通项公式基础训练题(含详解)

等差数列通项公式基础训练题(含详解)
等差数列通项公式基础训练题(含详解)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.等差数列 中,已知 , ,则 ()
A.16B.17C.18D.19
2.设 为等差数列,若 ,则
A.4B.5C.6D.7
3.设数列 是公差为 的等差数列,若 ,则 ()
A.4B.3C.2D.1
4.已知数列 满足 ,且 ,那么 ()
A.8B.9C.10D.11
5.在数列{an}中,若 ,a1=8,则数列{an}的通项公式为()
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)
6.在数列 中, =1, ,则 的值为()
A.99B.49C.101D.102
7.在数列 中, , , ,则 ()
A.6B.7C.8D.9
8.等差数列 中, ,则 ( ).
A.110B.120C.130D.140
9.已知数列 是等差数列, ,则 ( )
A.36B.30C.24 D.1
10.在等差数列 中,若 ,则 ()
A.10B.5C. D.
11.等差数列 满足 ,则其前10项之和为( )
【详解】
根据题意,设 ,数列 是等差数列,
则 , ,
则 ,
即 ;
解可得 ;
故答案为:
【点睛】
本题考查等差数列的性质,关键是求出数列 的通项公式.
19.
【解析】
【分析】
本次考察的是等差数列通项公式的求法。
【详解】

【点睛】
等差数列通项公式除了掌握 ,考生还应掌握

(完整版)等差数列基础习题选(附详细答案)-答案

(完整版)等差数列基础习题选(附详细答案)-答案

参考答案与试题解析一.选择题(共26小题)1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()A.B.1C.D.﹣1考点:等差数列.专题:计算题.分析:本题可由题意,构造方程组,解出该方程组即可得到答案.解答:解:等差数列{a n}中,a3=9,a9=3,由等差数列的通项公式,可得解得,即等差数列的公差d=﹣1.故选D点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列C.以5为首项,公差为2的等差数列D.不是等差数列考点:等差数列.专题:计算题.分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.解答:解:因为a n=2n+5,所以a1=2×1+5=7;a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.故此数列是以7为首项,公差为2的等差数列.故选A.点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()A.23 B.24 C.25 D.26考点:等差数列.专题:综合题.分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.解答:解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,则a n=13﹣(n﹣1)=﹣n+=2,解得n=23故选A点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()A.一1 B.2C.3D.一2考点:等差数列.专题:计算题.分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.解答:解:∵等差数列{a n}的前n项和为S n,S3=6,∴a2=2∵a4=8,∴8=2+2d∴d=3,故选C.点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.5.两个数1与5的等差中项是()A.1B.3C.2D.考点:等差数列.专题:计算题.分析:由于a,b的等差中项为,由此可求出1与5的等差中项.解答:解:1与5的等差中项为:=3,故选B.点评:本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:等差数列.专题:计算题.分析:设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差.解答:解:设等差数列{a n}的公差为d,所以a6=23+5d,a7=23+6d,又因为数列前六项均为正数,第七项起为负数,所以,因为数列是公差为整数的等差数列,所以d=﹣4.故选C.点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.7.(2012•福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.4考点:等差数列的通项公式.专题:计算题.分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.点评:本题主要考查等差数列的通项公式的应用,属于基础题.8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11考点:等差数列的通项公式.专题:计算题.分析:先确定等差数列的通项,再利用,我们可以求得的值.解答:解:∵为等差数列,,,∴∴b n=b3+(n﹣3)×2=2n﹣8∵∴b8=a8﹣a1∵数列的首项为3∴2×8﹣8=a8﹣3,∴a8=11.故选D点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题.9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.19考点:等差数列的通项公式.专题:计算题.分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11∵数列5,8,11,…与3,7,11,…公差分别为3与4,∴{a n}的公差d=3×4=12,∴a n=11+12(n﹣1)=12n﹣1.又∵5,8,11,…与3,7,11,…的第100项分别是302与399,∴a n=12n﹣1≤302,即n≤25.5.又∵n∈N*,∴两个数列有25个相同的项.故选A解法二:设5,8,11,与3,7,11,分别为{a n}与{b n},则a n=3n+2,b n=4n﹣1.设{a n}中的第n项与{b n}中的第m项相同,即3n+2=4m﹣1,∴n=m﹣1.又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.根据题意得1≤3r≤100 1≤4r﹣1≤100 解得≤r≤∵r∈N*从而有25个相同的项故选A点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()A.5B.3C.﹣1 D.1考点:等差数列的通项公式.专题:计算题.分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),∴等差数列{a n}的公差是2,由S3=3a1+=9解得,a1=1.故选D.点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.11.(2005•黑龙江)如果数列{a n}是等差数列,则()A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5考点:等差数列的性质.分析:用通项公式来寻求a1+a8与a4+a5的关系.解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0∴a1+a8=a4+a5∴故选B点评:本题主要考查等差数列通项公式,来证明等差数列的性质.12.(2004•福建)设S n是等差数列{a n}的前n项和,若=()A.1B.﹣1 C.2D.考点:等差数列的性质.专题:计算题.分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.13.(2009•安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1C.3D.7考点:等差数列的性质.专题:计算题.分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.解答:解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a3和a4.14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D.考点:数列的求和;等差数列的性质.专题:计算题.分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和.解答:解:∵等差数列{a n}中,a2=4,a6=12;∴公差d=;∴a n=a2+(n﹣2)×2=2n;∴;∴的前n项和,=两式相减得=∴故选B点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()A.6B.7C.8D.9考点:等差数列的性质.专题:计算题.分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,,联立可求d,a1,代入等差数列的通项公式可求解答:解:等差数列{a n}中,a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①根据等差数列的前n项和公式可得,所以a1+a7=6②②﹣①可得d=2,a1=﹣3所以a7=9故选D点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()A.30 B.35 C.36 D.24考点:等差数列的性质.专题:计算题.分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答案.解答:解:a1+a3+a5=3a3=15,∴a3=5∴a1+a6=a3+a4=12∴s6=×6=36故选C点评:本题主要考查了等差数列的性质.特别是等差中项的性质.17.(2012•营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是()A.5B.6C.5或6 D.6或7考点:等差数列的前n项和;等差数列的通项公式.专题:计算题.分析:由,知a1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.解答:解:由,知a1+a11=0.∴a6=0,故选C.点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.18.(2012•辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58 B.88 C.143 D.176考点:等差数列的性质;等差数列的前n项和.专题:计算题.分析:根据等差数列的定义和性质得a1+a11=a4+a8=16,再由S11=运算求得结果.解答:解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,故选B.点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()A.﹣1 B.0C.1D.2考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:由等差数列得性质可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5﹣a6=0解答:解:由等差数列得性质可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,故5a5=10,即a5=2.同理可得5a6=20,a6=4.再由等差中项可知:a4=2a5﹣a6=0故选B点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.20.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()A.6B.7C.8D.9考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:先利用公式a n=求出a n,再由第k项满足4<a k<7,建立不等式,求出k的值.解答:解:a n==∵n=1时适合a n=2n﹣9,∴a n=2n﹣9.∵4<a k<7,∴4<2k﹣9<7,∴<k<8,又∵k∈N+,∴k=7,故选B.点评:本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()A.4或5 B.5或6 C.4D.5考点:等差数列的前n项和.专题:计算题.分析:把数列的前n项的和S n看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到S n取得最小值时n的值.解答:解:因为S n=2n2﹣17n=2﹣,又n为正整数,所以当n=4时,S n取得最小值.故选C点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.22.等差数列{a n}中,a n=2n﹣4,则S4等于()A.12 B.10 C.8D.4考点:等差数列的前n项和.专题:计算题.分析:利用等差数列{a n}中,a n=2n﹣4,先求出a1,d,再由等差数列的前n项和公式求S4.解答:解:∵等差数列{a n}中,a n=2n﹣4,∴a1=2﹣4=﹣2,a2=4﹣4=0,d=0﹣(﹣2)=2,∴S4=4a1+=4×(﹣2)+4×3=4.故选D.点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()A.230 B.140 C.115 D.95考点:等差数列的前n项和.专题:综合题.分析:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前n项和的公式即可求出数列前10项的和.解答:解:a3=a1+2d=4①,a8=a1+7d=19②,②﹣①得5d=15,解得d=3,把d=3代入①求得a1=﹣2,所以S10=10×(﹣2)+×3=115故选C.点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.26.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()A.第10项B.第11项C.第10项或11项D.第12项考点:等差数列的前n项和;二次函数的性质.专题:转化思想.分析:方法一:由a n,令n=1求出数列的首项,利用a n﹣a n﹣1等于一个常数,得到此数列为等差数列,然后根据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口向下的抛物线,当n=﹣时,前n项的和有最大值,即可得到正确答案;方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.解答:解:方法一:由a n=﹣2n+21,得到首项a1=﹣2+21=19,a n﹣1=﹣2(n﹣1)+21=﹣2n+23,则a n﹣a n﹣1=(﹣2n+21)﹣(﹣2n+23)=﹣2,(n>1,n∈N+),所以此数列是首项为19,公差为﹣2的等差数列,则S n=19n+•(﹣2)=﹣n2+20n,为开口向下的抛物线,当n=﹣=10时,S n最大.所以数列{a n}从首项到第10项和最大.方法二:令a n=﹣2n+21≥0,解得n≤,因为n取正整数,所以n的最大值为10,所以此数列从首项到第10项的和都为正数,从第11项开始为负数,则数列{a n}从首项到第10项的和最大.故选A点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n 的值;也可以直接令a n≥0,求出解集中的最大正整数解,要求学生一题多解.二.填空题(共4小题)27.如果数列{a n}满足:=.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.解答:解:∵根据所给的数列的递推式∴数列{}是一个公差是5的等差数列,∵a1=3,∴=,∴数列的通项是∴故答案为:点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=101.考点:数列递推式;等差数列的通项公式.专题:计算题.分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够求出f(100).解答:解:∵f(n+1)=f(n)+1,x∈N+,f(1)=2,∴f(2)=f(1)+1=2+1=3,f(3)=f(2)+1=3+1=4,f(4)=f(3)+1=4+1=5,…∴f(n)=n+1,∴f(100)=100+1=101.故答案为:101.点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为58.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:先求出等差数列的前两项,可得通项公式为a n=7﹣2n,从而得到n≤3时,|a n|=7﹣2n,当n>3时,|a n|= 2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.解答:解:由于等差数列{an}的前n项的和,故a1=s1=5,∴a2=s2﹣s1=8﹣5=3,故公差d=﹣2,故a n=5+(n﹣1)(﹣2)=7﹣2n.当n≤3时,|a n|=7﹣2n,当n>3时,|a n|=2n﹣7.故前10项之和为a1+a2+a3﹣a4﹣a5﹣…﹣a10=+=9+49=58,故答案为58.点评:本题主要考查等差数列的通项公式,前n项和公式及其应用,体现了分类讨论的数学思想,属于中档题.11。

(完整版)等差数列基础练习题.docx

(完整版)等差数列基础练习题.docx

数列基础知识点和方法归纳1. 等差数列的定义与性质定义: a n 1 a n d ( d 为常数), a n a 1n 1 d等差中项: x , A , y 成等差数列2Ax ya 1 a n nnn 1 前 n 项和Snna 1d22性质: a n 是等差数列(1)若 m n p q ,则 a ma n a p a q ;2. 等比数列的定义与性质定义:a n1q( q 为常数, q0 ),an aqn 1a n.1等 比 中 项 : x 、 G 、 y 成 等 比 数 列G2xy , 或Gxy .na 1 ( q 1) 前 项和:S n a 1qnn 1( q 1) (要注意!)1 q性质: a n 是等比数列(1)若 m np q ,则 a · aa · amnpq等差数列·基础练习题一、填空1.等差数列 8,5, 2,⋯的第 20___________.2.在等差数列中已知 a1=12, a6=27, d=___________3. 在等差数列中已知d 1,a7=8,a1=_______________ 34.等差数列 -10,-6,-2, 2,⋯前 ___的和是 545.数列 a n的前n和S n=3n n2,a n=___________二、9. 在等差数列a n中a3a1140 , a4a5a6a7a8a9a10的()A.84B.72C.60.D.4810. 在等差数列a n中,前 15 的和S1590 , a8()A.6B.3C.12D.412. 在等差数列a n中,若a3a4a5a6a7450 , a2a8的等于()A.45B.75C.180D.30014. 数列 3, 7,13, 21,31,⋯的通公式是()A. C.a n4n1B. a n n3n2n 2 a n n2n1 D.不存在16.设等差数列a n的前n 项和公式是S n5n23n ,求它的前3项,并求它的通项公式17.如果等差数列a n的前4项的和是2,前 9 项的和是 -6,求其前 n 项和的公式。

等差数列基础练习题及答案.doc

等差数列基础练习题及答案.doc

等差数列基础练习题及答案精品文档等差数列基础练习题及答案一(选择题8(数列的首项为3,为等差数列且,若,,则=设Sn是等差数列{an}的前n项和,若=)14(在等差数列{an}中,a2=4,a6=12,,那么数列{}的前n项和等于17(等差数列{an}的公差d,0,且,则数列{an}的前n项和Sn取得最大值时的项数n是二(填空题27(如果数列{an}满足:=2)28(如果f=f+1,且f=2,则f=(29(等差数列{an}的前n项的和,则数列{|an|}的前10项之和为(30(已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16( 求数列{an}的通项公式:若数列{an}和数列{bn}满足等式:an==,求数列{bn}的前n项和Sn(1 / 13精品文档参考答案与试题解析一(选择题348(数列的首项为3,为等差数列且,若,,则= )5姓名:_______________学号:____________________班级:_____________________等差数列基础检测题一、选择题1、已知等差数列{an}的首项a1,1,公差d,2,则a4等于A(5B(6C(7D(92、已知{an}为等差数列,a2,a8,12,则a5等于A( B(5C(6D(73、在数列{an}中,若a1,1,an,1,an,2,则该数列的通项公式an,A(2n,1B(2n,1C(2nD(24、等差数列{an}的公差为d,则数列{can}A(是公差为d的等差数列B(是公差为cd的等差数2 / 13精品文档列C(不是等差数列D(以上都不对5、在等差数列{an}中,a1,21,a7,18,则公差d,11 B.311C(,D36、在等差数列{an}中,a2,5,a6,17,则a14,A(45B(41C(39D(37X k b 1 . c o m1517、等差数列{an}a101, x,16xx12A(50B(1332C(24D(8*8、已知数列{an}对任意的n?N,点Pn都在直线y,2x,1上,则{an}为A(公差为2的等差数列 B(公差为1的等差数列C(公差为,2的等差数列 D(非等差数列9、已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是A(2B(3C(6D(910、若数列{an}是等差数列,且a1,a4,45,a2,a5,39,则a3,a6,3 / 13精品文档A(24B(27C(30D(3311、下面数列中,是等差数列的有4,5,6,7,8,… ?3,0,,3,0,,6,… ?0,0,0,0,…1234?,, 10101010A(1个B(2个C(3个D(4个12、首项为,24的等差数列从第10项起开始为正数,则公差d的取值范围是8A(d,B(d,388d,3D.,d?33二、填空题13、在等差数列{an}中,a10,10,a20,20,则a30,________.14、?ABC三个内角A、B、C成等差数列,则B,__________.15、在等差数列{an}中,若a7,m,a14,n,则a21,________.216、已知数列{an}满足a2n,1,an,4,且a1,1,an,0,则an,________.三、解答题17、在等差数列{an}中,已知a5,10,a12,31,求4 / 13精品文档它的通项公式(18、在等差数列{an}中,已知a5,,1,a8,2,求a1与d;已知a1,a6,12,a4,7,求a9.19、已知{an}是等差数列,且a1,a2,a3,12,a8,16.求数列{an}的通项公式;若从数列{an}中,依次取出第2项,第4项,第6项,…,第2n项,按原来顺序组成一个新数列{bn},试求出{bn}的通项公式(20、已知等差数列{an}中,a1,a2,a3,…,an且a3,a6为方程x2,10x,16,0的两个实根(求此数列{an}的通项公式;268是不是此数列中的项,若是,是第多少项,若不是,说明理由(21、已知三个数成等差数列,其和为15,首、末两项的积为9,求这三个数(22、已知,是等差数列{an}图象上的两点(求这个数列的通项公式;画出这个数列的图象;判断这个数列的单调性(5 / 13精品文档答案:一、选择题1-CCBBC6-10 BDABD 11-1BD二、填空题a20,a1020,1013、解析:法一:d1,a30,a20,10d,20,10,30.0,1020,10法二:由题意可知,a10、a20、a30成等差数列,所以a30,2a20,a10,2×20,10,30. 答案:3014、解析:?A、B、C成等差数列,?2B,A,C. 又A,B,C,180?,?3B,180?,?B,60?. 答案:60?15、解析:?a7、a14、a21成等差数列,?a7,a21,2a14,a21,2a14,a7,2n,m. 答案:2n,m22216、解析:根据已知条件a2n,1,an,4,即an,1,an,4,数列{a2n}是公差为4的等差数列,22?an,a1,?4,4n,3.an,0,?an,4n,3.4n,3三、解答题17、解:由an,a1,d得10,a1,4d?a1,,2?,解得?. ?31,a1,11d?d,3??6 / 13精品文档等差数列的通项公式为an,3n,5.a1,?5,1?d,,1,18、解:由题意,知? ?a1,?8,1?d,2.?a1,,5,解得? ?d,1.?a1,a1,?6,1?d,12,?由题意,知? ??a1,?4,1?d,7.a1,1,?解得? ?d,2.?a9,a1,d,1,8×2,17.19、解:?a1,a2,a3,12,?a2,4,a8,a2,d,?16,4,6d,?d,2, ?an,a2,d,4,×2,2n.a2,4,a4,8,a8,16,…,a2n,2×2n,4n. 当n,1时,a2n,a2,4n,4,4.{bn}是以4为首项,4为公差的等差数列( ?bn,b1,d,4,4,4n.20、解:由已知条件得a3,2,a6,8.又?{an}为等差数列,设首项为a1,公差为d, a1,2d,2?a1,,2??,解得?. ?a1,5d,8?d,2??an,,2,×2,2n,4(数列{an}的通项公式为an,2n,4.7 / 13精品文档令268,2n,4,解得n,136.268是此数列的第136项(6-2等差数列基础巩固一、选择题1(如果等差数列{an}中,a3,a4,a5,12,那么a1,a2,…,a7,A(14C(28[答案] C[解析] 由a3,a4,a5,12得,a4,4, ?a1,a2,…,a7,a1,a727,7a4,28.B(21 D(352(在等差数列{an}中,已知a4,a8,16,则a2,a10,A(12C(20[答案] B[解析] 本题考查等差数列的性质(由等差数列的性质得,a2,a10,a4,a8,16,B正确( 在等差数列{an}中,已知a4,a8,16,则该数列前11项和S11,A(58C(143[答案] B[解析] 本题主要考查等差数列的性质及求和公式(8 / 13精品文档11?a1,a11?11×16由条件知a4,a8,a1,a11,16,S112,11×82B(8D(17B(1D(24,88.3(设等差数列{an}的前n项和为Sn.若a1,,11,a4,a6,,6,则当Sn取最小值时,n等于A(6C(8[答案] Aa1,,11,?a1,,11[解析] 设公差为d,.a4,a6,,6,?d,2B(D(9n?n,1?Sn,na12d,,11n,n2,n,n2,12n. ,2,36. 即n,6时,Sn最小(4(在等差数列{an}中,若a4,a6,12,Sn是数列{an}的前n项和,则S9的值为A(48C(60 [答案] B[解析] 解法1:?a4,a6,a1,a9,12,?a1,a9?9×12?S9,,254.解法2:利用结论:S2n,1,an, ?a4,a6?S9,9×a5,9×2,54.5(若一个等差数列的前3项的和为34,最后3项的9 / 13精品文档和为146,且所有项的和为390,则这个数列有A(13项C(11项B(12项 D(10项 B(5D(66[答案] Aa1,a2,a3,34[解析] 依题意?,an,2,an,1,an,146两式相加得,,,180. ?a1,an,a2,an,1,a3,an,2,?a1,an,60. n?a1,an?Sn,,390,?n,13.anan,1,126(等差数列{an}中,a1,a3,a7,2a4,4,则2的值为整n,3n数时n的个数为A(4C(2[答案] C[解析] a3,a7,2a4,2d,4, ?d,2.?an,2n,2.anan,1,12?2n,2??2n,4?,12?n,3nn,3n20,4,n?n,3?当n,1,2时,符合题意( 二、填空题7(设Sn为等差数列{an}的前n项和,S4,14,S10,S7,30,则S9,________.10 / 13精品文档[答案]4[解析] 设首项为a1,公差为d,由S4,14得B(D(14×34a1,2,14.?由S10,S7,30得3a1,24d,30,即a1,8d,10.?联立??得a1,2,d,1,?S9,54.8(在等差数列{an}中,|a3|,|a9|,公差d [答案]或6[解析] ?d0,Sn取得最大值时的自然数n是5或6. 三、解答题9(设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列(求数列{an}的公比;证明:对任意k?N,,Sk,2,Sk,Sk,1成等差数列( [解析] 设数列{an}的公比为q,由a5,a3,a4成等差数列,得2a3,a5,a4,即2a1q2,a1q4,a1q3,由a1?0,q?0得q2,q,2,0,解得q1,,2,q2,1,所以q,,2.证明:对任意k?N,,Sk,2,Sk,1,2Sk,, ,ak,1,ak,2,ak,1,2ak,1,ak,1? ,0,11 / 13精品文档所以,对任意k?N,,Sk,2,Sk,Sk,1成等差数列(能力提升一、选择题1(设Sn是公差为d的无穷等差数列{an}的前n项和,则下列命题错误的是A(若d C(若数列{Sn}是递增数列,则对任意n?N,,均有Sn>0 D(若对任意n?N,,均有Sn>0,则数列{Sn}是递增数列 [答案] C[解析] 本题考查等差数列的性质(对于等差数列,1,1,3,…,其{Sn}是递增数列,但S1,S2不大于0,故选C.SS2(等差数列{an}中,Sn是其前n项和,a1,,2014012010,2,则S014的值为A(,012C(012[答案] DSSS[解析] 设Sn,An,Bn,则n,An,B,012010,2A,2,2B(01D(,014S故A,1.又a1,S1,A,B,,014,?B,,015.?014,014,015,,1.?S2014,,014.二、填空题12 / 13精品文档13 / 13。

等差数列基础训练(含答案)

等差数列基础训练(含答案)

等差数列一、选择题1、已知为等差数列,是的前n项和,若,则()A. B. C. D.2、已知数列,,,,…,则5是数列的( )A.第18项 B.第19项 C.第17项 D.第20项3、等差数列满足:,则=()A. B.0 C.1 D.24、等差数列中,若,则等于( )A.3 B.4 C.5 D.65、等差数列().A、13B、12C、11D、106、已知等差数列的前项和为,且满足,则数列的公差是()A. B. C. D.7、如果a,x1,x2,b 成等差数列,a,y1,y2,b 成等比数列,那么(x1+x2)/y1y2等于A、(a+b)/(a-b)B、(b-a)/abC、ab/(a+b)D、(a+b)/ab8、前100个自然数中,除以7余数为2的所有数的和是()A、765B、653C、658D、6609、数列{a n}的前n项和S n=5n-3n2(n∈),则有()A.S n>na1>na n B.S n<na n<na1C.na n>S n>na1 D.na n<S n<na110、在等差数列,则在S n中最大的负数为()A.S17 B.S18 C.S19 D.S2011、已知数列{a n}的通项公式是,则S n达到最小值时,n的值是()A.23 B.24 C.25 D.2612、差数列中,公差=1,=8,则=()A.40 B.45 C.50 D.5513、若a、b、c成等差数列,则函数的图像与x轴的交点的个数是()A.0个 B.1个 C.2个 D.不确定14、设等于A.667 B.668 C.669 D.67015、在等差数列{a n}中,若等于A.7 B.8 C.9 D.1016、在等差数列{a}中,已知a=2,a+a=13,则a+a+a等于A.40B.42C.43D.4517、已知数列的等差数列,若,则数列的公差等于A.1 B.3 C.5 D.618、设数列是等差数列,且,是数列的前项和,则A. B. = C. D.19、在等差数列{a n}中,a1=13,a3=12若a n=2,则n等于A.23 B.24 C.25 D.2620、在等差数列中,若,则等于A.30 B.40 C.60 D.8021、等差数列{a n}的前n项和为S n,若A.12B.18C.24D.4222、若等差数列的前3项和且,则等于A、3B、4C、5D、623、等差数列的前项和为若A.12B.10C.8D.624、若,则a n+1-a n=A. B. C. D.25、已知等差数列中,前项和为若则A.12 B. 33 C.66 D.99 26、记等差数列{a n}的前n项和为S n,若S1=4,S4=20,则该数列的公差d=27、已知等差数列中,,则前10项的和A. B. C. D.二、填空题28、在等差数列中,已知,,则第3项★.29、设是等差数列的前项和,且,,则 .30、设等差数列的前项和为,若,则= 。

等差数列基础测试题(附详细答案)

等差数列基础测试题(附详细答案)

姓名:_______________学号:____________________班级:_____________________等差数列根底检测题一、选择题〔共60分,每题5分〕1、等差数列{a n }的首项a 1=1,公差d =2,那么a 4等于( )A .5B .6C .7D .92、{a n }为等差数列,a 2+a 8=12,那么a 5等于( )A .4B .5C .6D .73、在数列{a n }中,假设a 1=1,a n +1=a n +2(n ≥1),那么该数列的通项公式a n =( )A .2n +1B .2n -1C .2nD .2(n -1)4、等差数列{a n }的公差为d ,那么数列{ca n }(c 为常数且c ≠0)( )A .是公差为d 的等差数列B .是公差为cd 的等差数列C .不是等差数列D .以上都不对5、在等差数列{a n }中,a 1=21,a 7=18,那么公差d =( )A.12B.13C .-12D .-136、在等差数列{a n }中,a 2=5,a 6=17,那么a 14=( )A .45B .41C .39D .37X k b 1 . c o m7、等差数列{a n }中,前三项依次为1x +1,56x ,1x,那么a 101=( ) A .5013 B .1323C .24D .8238、数列{a n }对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,那么{a n }为( )A .公差为2的等差数列B .公差为1的等差数列C .公差为-2的等差数列D .非等差数列9、m 和2n 的等差中项是4,2m 和n 的等差中项是5,那么m 和n 的等差中项是( )A .2B .3C .6D .910、假设数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,那么a 3+a 6=( )A .24B .27C .30D .3311、下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,…④110,210,310,410,… A .1个 B .2个C .3个D .4个12、首项为-24的等差数列从第10项起开场为正数,那么公差d 的取值范围是( )A .d >83B .d <3 C.83≤d <3 D.83<d ≤3二、填空题〔共20,每题5分〕13、在等差数列{a n}中,a10=10,a20=20,那么a30=________.14、△ABC三个内角A、B、C成等差数列,那么B=__________.15、在等差数列{a n}中,假设a7=m,a14=n,那么a21=________.16、数列{a n}满足a2n+1=a2n+4,且a1=1,a n>0,那么a n=________.三、解答题〔共70分〕17、在等差数列{a n}中,a5=10,a12=31,求它的通项公式.〔10分〕18、在等差数列{a n}中,(1)a5=-1,a8=2,求a1与d;(2)a1+a6=12,a4=7,求a9.19、{a n}是等差数列,且a1+a2+a3=12,a8=16.〔12分〕(1)求数列{a n}的通项公式;(2)假设从数列{a n}中,依次取出第2项,第4项,第6项,…,第2n项,按原来顺序组成一个新数列{b n},试求出{b n}的通项公式.20、等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2-10x+16=0的两个实根.〔12分〕(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?假设是,是第多少项?假设不是,说明理由.21、三个数成等差数列,其和为15,首、末两项的积为9,求这三个数.〔12分〕22、(1,1),(3,5)是等差数列{a n }图象上的两点.〔12分〕(1)求这个数列的通项公式;(2)画出这个数列的图象;(3)判断这个数列的单调性.答案:一、选择题1-5 CCBBC 6-10 BDABD 11-12 BD二、填空题四、附加题 正数a ,b ,c 组成等差数列,且公差不为零,那么由它们的倒数所组成的数列1a ,1b ,1c 能否成为等差数列?13、解析:法一:d =a 20-a 1020-10=20-1020-10=1,a 30=a 20+10d =20+10=30. 法二:由题意可知,a 10、a 20、a 30成等差数列,所以a 30=2a 20-a 10=2×20-10=30. 答案:3014、解析:∵A 、B 、C 成等差数列,∴2B =A +C .又A +B +C =180°,∴3B =180°,∴B =60°.答案:60°15、解析:∵a 7、a 14、a 21成等差数列,∴a 7+a 21=2a 14,a 21=2a 14-a 7=2n -m . 答案:2n -m16、解析:根据条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4,∴数列{a 2n }是公差为4的等差数列,∴a 2n =a 21+(n -1)·4=4n -3. ∵a n >0,∴a n =4n -3.答案:4n -3三、解答题17、解:由a n =a 1+(n -1)d 得⎩⎪⎨⎪⎧ 10=a 1+4d 31=a 1+11d ,解得⎩⎪⎨⎪⎧a 1=-2d =3. ∴等差数列的通项公式为a n =3n -5.18、解:(1)由题意,知⎩⎪⎨⎪⎧ a 1+(5-1)d =-1,a 1+(8-1)d =2. 解得⎩⎪⎨⎪⎧ a 1=-5,d =1. (2)由题意,知⎩⎪⎨⎪⎧ a 1+a 1+(6-1)d =12,a 1+(4-1)d =7.解得⎩⎪⎨⎪⎧ a 1=1,d =2. ∴a 9=a 1+(9-1)d =1+8×2=17.19、解:(1)∵a 1+a 2+a 3=12,∴a 2=4,∵a 8=a 2+(8-2)d ,∴16=4+6d ,∴d =2,∴a n =a 2+(n -2)d =4+(n -2)×2=2n .(2)a 2=4,a 4=8,a 8=16,…,a 2n =2×2n =4n .当n >1时,a 2n -a 2(n -1)=4n -4(n -1)=4.∴{b n }是以4为首项,4为公差的等差数列.∴b n =b 1+(n -1)d =4+4(n -1)=4n .20、解:(1)由条件得a 3=2,a 6=8.又∵{a n }为等差数列,设首项为a 1,公差为d ,∴⎩⎪⎨⎪⎧ a 1+2d =2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-2d =2. ∴a n =-2+(n -1)×2=2n -4(n ∈N *).∴数列{a n }的通项公式为a n =2n -4.(2)令268=2n -4(n ∈N *),解得n =136.∴268是此数列的第136项.21、解:由题意,可设这三个数分别为a -d ,a ,a +d ,那么⎩⎪⎨⎪⎧(a -d )+a +(a +d )=15,(a -d )(a +d )=9, 解得⎩⎪⎨⎪⎧ a =5d =4或⎩⎪⎨⎪⎧a =5,d =-4. 所以,当d =4时,这三个数为1,5,9;当d =-4时,这三个数为9,5,1.22、解:(1)由于(1,1),(3,5)是等差数列{a n }图象上的两点,所以a 1=1,a 3=5,由于a 3=a 1+2d =1+2d =5,解得d =2,于是a n =2n -1.(2)图象是直线y =2x -1上一些等间隔的点(如图).(3)因为一次函数y =2x -1是增函数,所以数列{a n }是递增数列四、附加题 解:由,得a ≠b 且b ≠c 且c ≠a ,且2b =a +c ,a >0,b >0,c 2b -(1a +1c )=2b -a +c ac =2ac -2b 2abc =2ac -(a +c )22abc =-(a -c )22abc <0,所以2b ≠1a +1c. 所以1a ,1b ,1c不能成为等差数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 等差数列 a n 中,已知 a 1 10, d 2, 则 a 6 —— .
2. 等差数列 a n 中,已知 a 3 1, a 9
9, 则a 5
a 6 a 7 _______.
3. 等差数列 a n 中, a 2
6,a 8
6,则s 9 _______.
4. 等差数列 a n 中, a 2
9, a 5
21,则 a n
_________.
5. 等差数列 a n 中, a 2 a 5
11, a 4
7, 则 a 8
_____ .
6. 在等差数列 a n 中 a 1 a 4 a 7 39,则 a 2
a 5
a 8
33, 则 a 3
a 6 a 9 ____
7.在等差数列 a n
中,若 a 3 +a 4 +a 5 +a 6 +a 7 =450 , 则 a 2 +a 8 =_______. 8.已知等差数列 a n 中, a 2与
a 6 的等差中项为 5 , a 3与 a 7 的等差中项为 7 ,则
a n
.
9.等差数列 a n 中, S n =40, a 1 =13,d= -2 时, n=______________.
10 .已知等差数列
a n
的前
n 项和为 s , s
7 35, s
80, 则 a
1 __, d=____.
n
10
11. 已知等差数列 a n 的前 m 项和为 30, 前 2m 项和为 100, 则前 3m 项和为 ____.
12.在等差数列
a n
中 a 1
a 2
a 3 15, a 4 a 5
a 6
3, 则s
____
12
13. 等差数列 a n 中 , 若a 10 100, a 100 10, 那么 a 110 _____.
14.等差数列 a n 中, a 1 <0, s 25 s 45, 若 最小,
s n 则 n=______
15.已知等差数列 { a n } 中, a 3 a 7
16, a 4 a 6 0, 求 { a n } 前 n 项和 s n . 16.等差数列 { a n } 的前 n 项和记为 S n ,已知 a 10 20, S 20 410,
(1)求数列 { a n } 的通项公式;
(2)若 S n =135,求以 n .
1.{ a } 为等差数列,且 a - 2a =- 1,a =0,则公差 d=()
n743
11
D.2
A.- 2B.-2 C.2
2. 在等差数列{ a n}中,已知a32,则该数列的前 5 项之和为 ()
(A)10 ( B)16 (C)20 (D)32
3.设等差数列{ a n}的前n项和为S n,若S39 , S636 ,则 a7a8 a9
等于()
(A)63 ( B)45 (C)36 (D)27
4.已知等差数列{ a n}的公差 d 2 ,a1a4a7L a9750 ,
那么 a3a6a9L a99的值是()
(A)- 78 (B)- 82 ( C)- 148 ( D)- 182
5. 设S n是等差数列 { a n } 的前 n 项和.已知a2=3,a6=11,则S7等于 () A. 13B.35C.49D.63
6.设数列{ a n}的前 n 项和S n n2,则a8的值为 ()
( A) 15(B)16(C)49( D)64
7.设等差数列a n的前 n 项和为S n , 若a111, a4 a6 6 ,则当
S n取最小值时,n等于()
A.6B. 7C.8D.9
8.等差数列{ a n}中,a13a8 a15120 ,则 3a9a11的值为________
9.等差数列{ a n}中,a11
, a2a5 4 , a n 3 ,则 n___________. 3
解答题
10.在等差数列 { a n } 中,
( 1)已知S848,S12168 ,求 a1,和d ( 2)已知a610, S5 5 ,求 a8和 S8
11.等差数列{ a n}的前n项和记为S n,已知a1030, a2050 .( 1)求通项公式{ a n};
( 2)若S n242 ,求 n .
12.已知数列a n是等差数列,且a1 2 , a1a2a312 .
(1)求数列 a n的通项公式及前 n 项和 S n;
(2) 求1
11L1的值.S1S2S3S10
基础训练 1 答案:
1、02、 153、04、 4n+15、-196、 27 7、1809、4 或1010、分别为 -1 和 211、210
12、-1213、014、 35
n=2n=-2 15. S n -9n或 S n +9n
16.a n=n+10,n=9
基础训练 2 答案: B A B B C AA8、 489、5 10、( 1)分别为 -8 和 4
( 2)分别为 16 和 44
11、(1)a n=2n+10(2)n=11
12、( 1)s n n2n(2)
10
11。

相关文档
最新文档